897
Views
1
CrossRef citations to date
0
Altmetric
Review

Epithelial–Mesenchymal Transition in Hepatocellular Carcinoma

, , , , , , , , & show all
Pages 1169-1179 | Published online: 26 Oct 2009

Bibliography

  • El-Serag HB , RudolphKL: Hepatocellular carcinoma: epidemiology and molecular carcinogenesis.Gastroenterology132, 2557–2776 (2007).
  • Kensler TW , QianGS, ChenJG, GroopmanJD: Translational strategies for cancer prevention in liver.Nat. Rev. Cancer3, 321–329 (2003).
  • Farazi PA , DePinhoRA: Hepatocellular carcinoma pathogenesis: from genes to environment.Nat. Rev. Cancer6, 674–687 (2006).
  • Friedman SL : Mechanisms of hepatic fibrogenesis.Gastroenterology134, 1655–1669 (2008).
  • Jou J , ChoiSS, DiehlAM: Mechanisms of disease progression in nonalcoholic fatty liver disease.Semin. Liver Dis.28, 370–379 (2008).
  • Wallace DF , SubramaniamVN: Co-factors in liver disease: the role of HFE-related hereditary hemochromatosis and iron.Biochim. Biophys. Acta1790(7), 663-70 (2008).
  • Teufel A , StaibF, KanzlerS, WeinmannA, Schulze-BergkamenH, GallePR: Genetics of hepatocellular carcinoma.World J. Gastroenterol.13, 2271–2282 (2007).
  • Villanueva A , NewellP, ChiangDY, FriedmanSL, LlovetJM: Genomics and signaling pathways in hepatocellular carcinoma.Semin. Liver Dis.27, 55–76 (2007).
  • Sun VC , SarnaL: Symptom management in hepatocellular carcinoma.Clin. J. Oncol. Nurs.12, 759–766 (2008).
  • Llovet JM , BruixJ: Molecular targeted therapies in hepatocellular carcinoma.Hepatology48, 1312–1327 (2008).
  • Michalopoulos GK , DeFrancesMC: Liver regeneration.Science276, 60–66. (1997).
  • Taub R : Liver regeneration: from myth to mechanism.Nat. Rev. Mol. Cell Biol.5, 836–847 (2004).
  • Overturf K , al-DhalimyM, OuCN, FinegoldM, GrompeM: Serial transplantation reveals the stem-cell-like regenerative potential of adult mouse hepatocytes.Am. J. Pathol.151, 1273–1280 (1997).
  • Breuhahn K , LongerichT, SchirmacherP: Dysregulation of growth factor signaling in human hepatocellular carcinoma.Oncogene25, 3787–3800 (2006).
  • Tannapfel A , BusseC, WeinansLet al.: INK4a-ARF alterations and p53 mutations in hepatocellular carcinomas.Oncogene20, 7104–7109. (2001).
  • Friedl P , WolfK: Tumor-cell invasion and migration: diversity and escape mechanisms.Nat. Rev. Cancer3, 362–374 (2003).
  • Gotzmann J , MikulaM, EgerAet al.: Molecular aspects of epithelial cell plasticity: implications for local tumor invasion and metastasis.Mutat. Res.566, 9–20 (2004).
  • Polyak K , WeinbergRA: Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits.Nat. Rev. Cancer9, 265–273 (2009).
  • Thiery JP , SleemanJP: Complex networks orchestrate epithelial–mesenchymal transitions.Nat. Rev. Mol. Cell Biol.7, 131–142 (2006).
  • Grunert S , JechlingerM, BeugH: Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis.Nat. Rev. Mol. Cell Biol.4, 657–665 (2003).
  • Thiery JP : Epithelial–mesenchymal transitions in tumour progression.Nat. Rev. Cancer2, 442–454 (2002).
  • Bissell MJ , RadiskyD: Putting tumours in context.Nat. Rev. Cancer1, 46–54. (2001).
  • Iredale JP : Models of liver fibrosis: exploring the dynamic nature of inflammation and repair in a solid organ.J. Clin. Invest.117, 539–548 (2007).
  • Zeisberg M , YangC, MartinoMet al.: Fibroblasts derive from hepatocytes in liver fibrosis via epithelial to mesenchymal transition.J. Biol. Chem.282, 23337–23347 (2007).
  • Dooley S , HamzaviJ, CiuclanLet al.: Hepatocyte-specific Smad7 expression attenuates TGF-β-mediated fibrogenesis and protects against liver damage.Gastroenterology135, 642–659 (2008).
  • Kaimori A , PotterJ, KaimoriJY, WangC, MezeyE, KoteishA: Transforming growth factor-β1 induces an epithelial-to-mesenchymal transition state in mouse hepatocytes in vitro.J. Biol. Chem.282, 22089–22101 (2007).
  • Godoy P , HengstlerJG, IlkavetsIet al.: Extracellular matrix modulates sensitivity of hepatocytes to fibroblastoid dedifferentiation and transforming growth factor β-induced apoptosis.Hepatology49, 1–13 (2009).
  • Cicchini C , LaudadioI, CitarellaFet al.: TGFβ-induced EMT requires focal adhesion kinase (FAK) signaling.Exp. Cell Res.314, 143–152 (2008).
  • Nitta T , KimJS, MohuczyD, BehrnsKE: Murine cirrhosis induces hepatocyte epithelial mesenchymal transition and alterations in survival signaling pathways.Hepatology48, 909–919 (2008).
  • Murillo MM , del CastilloG, SanchezA, FernandezM, FabregatI: Involvement of EGF receptor and c-Src in the survival signals induced by TGF-β1 in hepatocytes.Oncogene24, 4580–4587 (2005).
  • Valdes F , AlvarezAM, LocascioAet al.: The epithelial mesenchymal transition confers resistance to the apoptotic effects of transforming growth factor β in fetal rat hepatocytes.Mol. Cancer Res.1, 68–78 (2002).
  • Lazarevich NL , CheremnovaOA, VargaEVet al.: Progression of HCC in mice is associated with a downregulation in the expression of hepatocyte nuclear factors.Hepatology39, 1038–1047 (2004).
  • Amicone L , SpagnoliFM, SpathGet al.: Transgenic expression in the liver of truncated Met blocks apoptosis and permits immortalization of hepatocytes.EMBO J.16, 495–503 (1997).
  • Mikula M , FuchsE, HuberH, BeugH, Schulte-HermannR, MikulitsW: Immortalized p19ARF null hepatocytes restore liver injury and generate hepatic progenitors after transplantation.Hepatology39, 628–634 (2004).
  • Gotzmann J , FischerAN, ZojerMet al.: A crucial function of PDGF in TGF-β-mediated cancer progression of hepatocytes.Oncogene25, 3170–3185 (2006).
  • Gotzmann J , HuberH, ThallingerCet al.: Hepatocytes convert to a fibroblastoid phenotype through the cooperation of TGF-β1 and Ha-Ras: steps towards invasiveness.J. Cell Sci.115, 1189–1202 (2002).
  • Fischer AN , HerreraB, MikulaMet al.: Integration of Ras subeffector signaling in TGF-β mediated late stage hepatocarcinogenesis.Carcinogenesis26(5), 931–942 (2005).
  • Mikula M , GotzmannJ, FischerANet al.: The proto-oncoprotein c-Fos negatively regulates hepatocellular tumorigenesis.Oncogene22, 6725–6738 (2003).
  • Lahsnig C , MikulaM, PetzMet al.: ILEI requires oncogenic Ras for the epithelial to mesenchymal transition of hepatocytes and liver carcinoma progression.Oncogene28, 638–650 (2009).
  • Fischer AN , FuchsE, MikulaM, HuberH, BeugH, MikulitsW: PDGF essentially links TGF-β signaling to nuclear β-catenin accumulation in hepatocellular carcinoma progression.Oncogene26, 3395–3405 (2007).
  • Lee HC , KimM, WandsJR: Wnt/Frizzled signaling in hepatocellular carcinoma.Front. Biosci.11, 1901–1915 (2006).
  • van Zijl F , MairM, CsiszarAet al.: Hepatic tumor-stroma crosstalk guides epithelial to mesenchymal transition at the tumor edge.Oncogene DOI 10.1038/onc.2009.253 (2009) (Epub ahead of print).
  • Zulehner G , MikulaM, SchnellerDet al.: Nuclear β-catenin induces an early liver progenitor phenotype in hepatocellular carcinoma and promotes tumor recurrence.Am. J. Pathol. (2009) (In Press).
  • Zhai B , YanHX, LiuSQ, ChenL, WuMC, WangHY: Reduced expression of E-cadherin/catenin complex in hepatocellular carcinomas.World J. Gastroenterol.14, 5665–5673 (2008).
  • Fransvea E , AngelottiU, AntonaciS, GiannelliG: Blocking transforming growth factor-β up-regulates E-cadherin and reduces migration and invasion of hepatocellular carcinoma cells.Hepatology47, 1557–1566 (2008).
  • Lee TK , PoonRT, YuenAPet al.: Twist overexpression correlates with hepatocellular carcinoma metastasis through induction of epithelial-mesenchymal transition.Clin. Cancer Res.12, 5369–5376 (2006).
  • Giannelli G , BergaminiC, FransveaE, SgarraC, AntonaciS: Laminin-5 with transforming growth factor-β1 induces epithelial to mesenchymal transition in hepatocellular carcinoma.Gastroenterology129, 1375–1383 (2005).
  • Bergamini C , SgarraC, TrerotoliPet al.: Laminin-5 stimulates hepatocellular carcinoma growth through a different function of α6β4 and α3β1 integrins.Hepatology46, 1801–1809 (2007).
  • Fransvea E , MazzoccaA, AntonaciS, GiannelliG: Targeting transforming growth factor (TGF)-βRI inhibits activation of β1 integrin and blocks vascular invasion in hepatocellular carcinoma.Hepatology49, 839–850 (2009).
  • Riou P , SaffroyR, ChenaillerCet al.: Expression of T-cadherin in tumor cells influences invasive potential of human hepatocellular carcinoma.FASEB J.20, 2291–2301 (2006).
  • Lee SA , LeeSY, ChoIHet al.: Tetraspanin TM4SF5 mediates loss of contact inhibition through epithelial–mesenchymal transition in human hepatocarcinoma.J. Clin. Invest.118, 1354–1366 (2008).
  • Liao YL , SunYM, ChauGYet al.: Identification of SOX4 target genes using phylogenetic footprinting-based prediction from expression microarrays suggests that overexpression of SOX4 potentiates metastasis in hepatocellular carcinoma.Oncogene5578–5589 (2008).
  • Tsai WC , HsuPW, LaiTCet al.: MicroRNA-122, a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carcinoma.Hepatology49, 1571–1582 (2009).
  • Yuki K , HirohashiS, SakamotoM, KanaiT, ShimosatoY: Growth and spread of hepatocellular carcinoma. A review of 240 consecutive autopsy cases.Cancer66, 2174–2179 (1990).
  • Battaglia S , BenzoubirN, NobiletSet al.: Liver cancer-derived hepatitis C virus core proteins shift TGF-β responses from tumor suppression to epithelial-mesenchymal transition.PLoS ONE4, e4355 (2009).
  • Lee TK , ManK, PoonRTet al.: Signal transducers and activators of transcription 5b activation enhances hepatocellular carcinoma aggressiveness through induction of epithelial–mesenchymal transition.Cancer Res.66, 9948–9956 (2006).
  • Fuchs BC , FujiiT, DorfmanJDet al.: Epithelial-to-mesenchymal transition and integrin-linked kinase mediate sensitivity to epidermal growth factor receptor inhibition in human hepatoma cells.Cancer Res.68, 2391–2399 (2008).
  • Mikula M , ProellV, FischerAN, MikulitsW: Activated hepatic stellate cells induce tumor progression of neoplastic hepatocytes in a TGF-β dependent fashion.J. Cell Physiol.209, 560–567 (2006).
  • Llovet JM , RicciS, MazzaferroVet al.: Sorafenib in advanced hepatocellular carcinoma.N. Engl. J. Med.359, 378–390 (2008).
  • Mani SA , GuoW, LiaoMJet al.: The epithelial–mesenchymal transition generates cells with properties of stem cells.Cell133, 704–715 (2008).
  • Fodde R , BrabletzT: Wnt/β-catenin signaling in cancer stemness and malignant behavior.Curr. Opin. Cell Biol.19, 150–158 (2007).
  • Roskams T : Liver stem cells and their implication in hepatocellular and cholangiocarcinoma.Oncogene25, 3818–3822 (2006).
  • Yang ZF , NgaiP, HoDWet al.: Identification of local and circulating cancer stem cells in human liver cancer.Hepatology47, 919–928 (2008).
  • Ma S , ChanKW, HuLet al.: Identification and characterization of tumorigenic liver cancer stem/progenitor cells.Gastroenterology132, 2542–2556 (2007).
  • Ma S , LeeTK, ZhengBJ, ChanKW, GuanXY: CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway.Oncogene27, 1749–1758 (2008).
  • Thompson EW , NewgreenDF, TarinD: Carcinoma invasion and metastasis: a role for epithelial-mesenchymal transition?Cancer Res.65, 5991–5995; discussion 5995 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.