159
Views
1
CrossRef citations to date
0
Altmetric
Review

Epithelial–Mesenchymal Transition in Mouse Mammary Tumorigenesis

, &
Pages 1113-1127 | Published online: 26 Oct 2009

Bibliography

  • Berx G , RaspeE, ChristoforiG, ThieryJP, SleemanJP: Pre-emting metastasis? Recapitulation of morphogenetic processes in cancer.Clin. Exp. Metastasis24(8), 587–597 (2007).
  • Moustakas A , HeldinCH: Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression.Cancer Sci.98(10), 1512–1520 (2007).
  • Thiery JP : Epithelial-mesenchymal transitions in development and pathologies.Curr. Opin. Cell Biol.15(6), 740–746 (2003).
  • Hugo H , AcklandML, BlickTet al.: Epithelial–mesenchymal and mesenchymal–epithelial transitions in carcinoma progression.J. Cell Physiol.213(2), 374–383 (2007).
  • Wells A , YatesC, ShepardCR: E-cadherin as an indicator of mesenchymal to epithelial reverting transitions during the metastatic seeding of disseminated carcinomas.Clin. Exp. Metastasis25(6), 621–628 (2008).
  • Karreth F , TuvesonDA: Twist induces an epithelial-mesenchymal transition to facilitate tumor metastasis.Cancer Biol. Ther.3(11), 1058–1059 (2004).
  • Apolant H : Die epithelialen geschwülste der maus.Arbeiten a.d. Koniglchn Inst. F. Expt.Ther. zu Frankfurt a.M.1, 7–68 (1906).
  • Cardiff RD , KenneyN: Mouse mammary tumor biology: a short history.Adv. Cancer Res.98, 53–116 (2007).
  • Crisp E : Malignant tumor on the pectoral muscle of a mouse (m. Musculus).Transactions of the Pathological Society of London5, 348 (1854).
  • Morau H : Recherches esperimentalis sur la transmissibilite de certain acoplasmes (epithliomas cylindirques).Arch. de Med. Expl. et d’ anat. Path.6, 677 (1894).
  • Haaland M : Spontaneous tumors in mice.Imperial Cancer Research Fund Scientific Report4, 1–114 (1911).
  • Ehrlich P , ApolantH: Ueber spontane mischtumoren der maus.Berliner Klinische Wochenschrift (44), 1–3 (1907).
  • Woglom WH : The study of experimental cancer research. A review. In: George Crocker Special Research Fund. Studies in Cancer and Allied Subjects. Columbia University Press, NY, USA, 1 (1913).
  • Borrel A : Epithelioses infecticuses of epitheliomas.Ann. de L’Inst. Pasteur17, 81–118 (1903).
  • Borrel A : Parasitisme et tumours.Ann. de L’Inst. Pasteur24, 778 (1910).
  • Murray JA : Cancerous ancestry and the incidence of cancer in mice.Imperial Cancer Research Fund Scientific Report4, 114–130 (1911).
  • Jensen CO : Experimentelle untersuchungen uber krebs bei mausen.Centbl. F. Bakt.34, 28 and 122 (1903).
  • Williams WR : What is Jensen’s tumor?Lancet,1285–1286 (1906).
  • Bashford EF : Introduction.Investigations of the Imperial Cancer Research Fund Scientific Report.,4, vii–xxi (1911).
  • Ewing J : Neoplastic Diseases: A Text-Book on Tumors.WB Saunders Company, PA, USA (1919).
  • Little CC , TyzzerEE: Further experimental studies on the inheritance of susceptibility to a transplantable carcinoma (JA) of the Japanese waltzing mouse.J. Med. Res.33, 393–427 (1916).
  • Dunn TB : Morphology of mammary tumors in mice with and without the agent.Acta Unio. Int. Contra. Cancrum7(2), 234–237 (1951).
  • Dunn TB : Morphology and histogenesis of mammary tumors. In: Symposium on mammary tumors in mice. Moulton FR (Ed.). The American Association for the Advancement of Science, Washington, DC, USA 13–38 (1945).
  • Young LJ , CardiffRD, AshleyRL: Long-term primary culture of mouse mammary tumor cells: Production of virus.J. Natl Cancer Inst.54(5), 1215–1221 (1975).
  • Yagi MJ : Characteristics of mammary tumor cultures from four mouse strains infected with mammary tumor virus.Cancer Res.35(2), 370–373 (1975).
  • Parks WP , ScolnickEM: Murine mammary tumor cell clones with varying degrees of virus expression.Virology55(1), 163–173 (1973).
  • Strange R , Aguilar-CordovaE, YoungLJ, BillyHT, DandekarS, CardiffRD: Harvey-ras mediated neoplastic development in the mouse mammary gland.Oncogene4(3), 309–315 (1989).
  • Cardiff RD : Genomic pathology for genomic biology.Pathologica100(1), 3–5 (2008).
  • Cardiff RD , SinnE, MullerW, LederP: Transgenic oncogene mice. Tumor phenotype predicts genotype.Am. J. Pathol.139(3), 495–501 (1991).
  • Rosner A , MiyoshiK, Landesman-BollagEet al.: Pathway pathology: Histological differences between erbb/ras and wnt pathway transgenic mammary tumors.Am. J. Pathol.161(3), 1087–1097 (2002).
  • Cardiff RD , MunnRJ, GalvezJJ: The tumor pathology of genetically engineered mice: a new approach to molecular pathology. In: The mouse in biomedical research: Experimental biology and oncology. Fox JG, Davisson MT, Quimby FW, Barthold SW, Newcomer CE, Smith Al (Eds). Elsevier, Inc, NY, USA 581–622 (2006).
  • Cui XS , DonehowerLA: Differential gene expression in mouse mammary adenocarcinomas in the presence and absence of wild type p53.Oncogene19(52), 5988–5996 (2000).
  • White DE , CardiffRD, DedharS, MullerWJ: Mammary epithelial-specific expression of the integrin-linked kinase (ilk) results in the induction of mammary gland hyperplasias and tumors in transgenic mice.Oncogene20(48), 7064–7072 (2001).
  • Thiery JP , TuckerGC, BoyerBet al.: [Mechanisms of induced epithelium-fibroblast conversion in a line of vesical cancer in the rat].Pathol. Biol. (Paris)37(9), 1034 (1989).
  • Boyer B , TuckerGC, VallesAM, GavrilovicJ, ThieryJP: Reversible transition towards a fibroblastic phenotype in a rat carcinoma cell line.Int. J. Cancer Suppl.4, 69–75 (1989).
  • Moody SE , PerezD, PanTCet al.: The transcriptional repressor snail promotes mammary tumor recurrence.Cancer Cell8(3), 197–209 (2005).
  • Gunther EJ , MoodySE, BelkaGKet al.: Impact of p53 loss on reversal and recurrence of conditional wnt-induced tumorigenesis.Genes Dev.17(4), 488–501 (2003).
  • Ahmed F , WyckoffJ, LinEYet al.: Gfp expression in the mammary gland for imaging of mammary tumor cells in transgenic mice.Cancer Res.62(24), 7166–7169 (2002).
  • Condeelis J , PollardJW: Macrophages: obligate partners for tumor cell migration, invasion, and metastasis.Cell124(2), 263–266 (2006).
  • Ingman WV , WyckoffJ, Gouon-EvansV, CondeelisJ, PollardJW: Macrophages promote collagen fibrillogenesis around terminal end buds of the developing mammary gland.Dev. Dyn.235(12), 3222–3229 (2006).
  • Wyckoff J , WangW, LinEYet al.: A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors.Cancer Res.64(19), 7022–7029 (2004).
  • Wyckoff JB , WangY, LinEYet al.: Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors.Cancer Res.67(6), 2649–2656 (2007).
  • Kedrin D , Van RheenenJ, HernandezL, CondeelisJ, SegallJE: Cell motility and cytoskeletal regulation in invasion and metastasis.J. Mammary Gland Biol. Neoplasia12(2–3), 143–152 (2007).
  • Pecina-Slaus N : Tumor suppressor gene E-cadherin and its role in normal and malignant cells.Cancer Cell Int.3(1), 17 (2003).
  • Becker KF , AtkinsonMJ, ReichUet al.: E-cadherin gene mutations provide clues to diffuse type gastric carcinomas.Cancer Res.54(14), 3845–3852 (1994).
  • Berx G , Cleton-JansenAM, NolletFet al.: E-cadherin is a tumor/invasion suppressor gene mutated in human lobular breast cancers.EMBO J.14(24), 6107–6115 (1995).
  • Goto T , NakanoM, ItoS, EharaH, YamamotoN, DeguchiT: Significance of an E-cadherin gene promoter polymorphism for risk and disease severity of prostate cancer in a Japanese population.Urology70(1), 127–130 (2007).
  • Lin J , DinneyCP, GrossmanHBet al.: E-cadherin promoter polymorphism (c-160a) and risk of recurrence in patients with superficial bladder cancer.Clin. Genet.70(3), 240–245 (2006).
  • Cattaneo F , VenesioT, MolatoreSet al.: Functional analysis and case–control study of -160c/a polymorphism in the E-cadherin gene promoter: Association with cancer risk.Anticancer Res.26(6B), 4627–4632 (2006).
  • Caldeira JR , PrandoEC, QuevedoFC, NetoFA, RainhoCA, RogattoSR: Cdh1 promoter hypermethylation and E-cadherin protein expression in infiltrating breast cancer.BMC Cancer6, 48 (2006).
  • Prasad CP , MirzaS, SharmaGet al.: Epigenetic alterations of cdh1 and apc genes: Relationship with activation of wnt/β-catenin pathway in invasive ductal carcinoma of breast.Life Sci.83(9–10), 318–325 (2008).
  • Rodenhiser DI , AndrewsJ, KennetteWet al.: Epigenetic mapping and functional analysis in a breast cancer metastasis model using whole-genome promoter tiling microarrays.Breast Cancer Res.10(4), R62 (2008).
  • Dhillon VS , YoungAR, HusainSA, AslamM: Promoter hypermethylation of mgmt, cdh1, rar-β and syk tumor suppressor genes in granulosa cell tumours (gcts) of ovarian origin.Br. J. Cancer90(4), 874–881 (2004).
  • Horikawa Y , SuganoK, ShigyoMet al.: Hypermethylation of an E-cadherin (cdh1) promoter region in high grade transitional cell carcinoma of the bladder comprising carcinoma in situ.J. Urol.169(4), 1541–1545 (2003).
  • Lee EJ , LeeBB, HanJet al.: Cpg island hypermethylation of E-cadherin (cdh1) and integrin α4 is associated with recurrence of early stage esophageal squamous cell carcinoma.Int. J. Cancer123(9), 2073–2079 (2008).
  • Poplawski T , TomaszewskaK, GalickiM, MorawiecZ, BlasiakJ: Promoter methylation of cancer-related genes in gastric carcinoma.Exp. Oncol.30(2), 112–116 (2008).
  • Peinado H , OlmedaD, CanoA: Snail, Zeb and bhlh factors in tumor progression: An alliance against the epithelial phenotype?Nat. Rev. Cancer7(6), 415–428 (2007).
  • Chua HL , Bhat-NakshatriP, ClareSE, MorimiyaA, BadveS, NakshatriH: Nf-κb represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of zeb-1 and zeb-2.Oncogene26(5), 711–724 (2007).
  • Huang D , DuX: Crosstalk between tumor cells and microenvironment via wnt pathway in colorectal cancer dissemination.World J. Gastroenterol.14(12), 1823–1827 (2008).
  • Spoelstra NS , ManningNG, HigashiYet al.: The transcription factor zeb1 is aberrantly expressed in aggressive uterine cancers.Cancer Res.66(7), 3893–3902 (2006).
  • Yang J , ManiSA, DonaherJLet al.: Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis.Cell117(7), 927–939 (2004).
  • Come C , MagninoF, BibeauFet al.: Snail and slug play distinct roles during breast carcinoma progression.Clin. Cancer Res.12(18), 5395–5402 (2006).
  • Leong KG , NiessenK, KulicIet al.: Jagged1-mediated notch activation induces epithelial-to-mesenchymal transition through slug-induced repression of E-cadherin.J. Exp. Med.204(12), 2935–2948 (2007).
  • Wanami LS , ChenHY, PeiroS, Garcia De HerrerosA, BachelderRE: Vascular endothelial growth factor-α stimulates snail expression in breast tumor cells: Implications for tumor progression.Exp. Cell Res.314(13), 2448–2453 (2008).
  • Mani SA , YangJ, BrooksMet al.: Mesenchyme forkhead 1 (foxc2) plays a key role in metastasis and is associated with aggressive basal-like breast cancers.Proc. Natl Acad. Sci. USA104(24), 10069–10074 (2007).
  • Lo HW , HsuSC, XiaWet al.: Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial–mesenchymal transition in cancer cells via up-regulation of twist gene expression.Cancer Res.67(19), 9066–9076 (2007).
  • Elliott BE , HungWL, BoagAH, TuckAB: The role of hepatocyte growth factor (scatter factor) in epithelial-mesenchymal transition and breast cancer.Can. J. Physiol. Pharmacol.80(2), 91–102 (2002).
  • Xian W , SchwertfegerKL, Vargo-GogolaT, RosenJM: Pleiotropic effects of fgfr1 on cell proliferation, survival, and migration in a 3D mammary epithelial cell model.J. Cell Biol.171(4), 663–673 (2005).
  • Watson MA , YlaganLR, TrinkausKMet al.: Isolation and molecular profiling of bone marrow micrometastases identifies twist1 as a marker of early tumor relapse in breast cancer patients.Clin. Cancer Res.13(17), 5001–5009 (2007).
  • Loric S , ParadisV, GalaJLet al.: Abnormal E-cadherin expression and prostate cell blood dissemination as markers of biological recurrence in cancer.Eur. J. Cancer37(12), 1475–1481 (2001).
  • Mason MD , DaviesG, JiangWG: Cell adhesion molecules and adhesion abnormalities in prostate cancer.Crit. Rev. Oncol. Hematol.41(1), 11–28 (2002).
  • Ray ME , MehraR, SandlerHM, DaignaultS, ShahRB: E-cadherin protein expression predicts prostate cancer salvage radiotherapy outcomes.J. Urol.176(4 Pt 1), 1409–1414; discussion 1414 (2006).
  • Graham TR , ZhauHE, Odero-MarahVAet al.: Insulin-like growth factor-I-dependent up-regulation of zeb1 drives epithelial-to-mesenchymal transition in human prostate cancer cells.Cancer Res.68(7), 2479–2488 (2008).
  • Udayakumar TS , NagleRB, BowdenGT: Fibroblast growth factor-1 transcriptionally induces membrane type-1 matrix metalloproteinase expression in prostate carcinoma cell line.Prostate58(1), 66–75 (2004).
  • Cao J , ChiarelliC, RichmanO, ZarrabiK, KozarekarP, ZuckerS: Membrane type 1 matrix metalloproteinase induces epithelial-to-mesenchymal transition in prostate cancer.J. Biol. Chem.283(10), 6232–6240 (2008).
  • Yuen HF , ChuaCW, ChanYP, WongYC, WangX, ChanKW: Significance of twist and E-cadherin expression in the metastatic progression of prostatic cancer.Histopathology50(5), 648–658 (2007).
  • Vogelmann R , Nguyen-TatMD, GiehlK, AdlerG, WedlichD, MenkeA: TGF-β-induced downregulation of E-cadherin-based cell–cell adhesion depends on pi3-kinase and pten.J. Cell Sci.118(Pt 20), 4901–4912 (2005).
  • Gotzmann J , FischerAN, ZojerMet al.: A crucial function of PDGF in TGF-β-mediated cancer progression of hepatocytes.Oncogene25(22), 3170–3185 (2006).
  • Lee TK , PoonRT, YuenAPet al.: Twist overexpression correlates with hepatocellular carcinoma metastasis through induction of epithelial-mesenchymal transition.Clin. Cancer Res.12(18), 5369–5376 (2006).
  • Hlubek F , SpadernaS, SchmalhoferO, JungA, KirchnerT, BrabletzT: Wnt/fzd signaling and colorectal cancer morphogenesis.Front. Biosci.12, 458–470 (2007).
  • Cannito S , NovoE, CompagnoneAet al.: Redox mechanisms switch on hypoxia-dependent epithelial–mesenchymal transition in cancer cells.Carcinogenesis29(12), 2267–2278 (2008).
  • Wu D , ZhauHE, HuangWCet al.: Camp-responsive element-binding protein regulates vascular endothelial growth factor expression: implication in human prostate cancer bone metastasis.Oncogene26(35), 5070–5077 (2007).
  • Liu YN , LiuY, LeeHJ, HsuYH, ChenJH: Activated androgen receptor downregulates E-cadherin gene expression and promotes tumor metastasis.Mol. Cell. Biol.28(23), 7096–7108 (2008).
  • Wright MH , RoblesAI, HerschkowitzJIet al.: Molecular analysis reveals heterogeneity of mouse mammary tumors conditionally mutant for BRCA1.Mol. Cancer7, 29 (2008).
  • Ye Y , XiaoY, WangW, YearsleyK, GaoJX, BarskySH: ERα suppresses slug expression directly by transcriptional repression.Biochem. J.416(2), 179–187 (2008).
  • Bracken CP , GregoryPA, KolesnikoffNet al.: A double-negative feedback loop between zeb1-sip1 and the microrna-200 family regulates epithelial–mesenchymal transition.Cancer Res.68(19), 7846–7854 (2008).
  • Cano A , NietoMA: Noncoding RNAs take centre stage in epithelial-to-mesenchymal transition.Trends Cell Biol.18(8), 357–359 (2008).
  • Katoh Y , KatohM: Hedgehog signaling, epithelial-to-mesenchymal transition and mirna (review).Int. J. Mol. Med.22(3), 271–275 (2008).
  • Paterson EL , KolesnikoffN, GregoryPA, BertAG, Khew-GoodallY, GoodallGJ: The microrna-200 family regulates epithelial to mesenchymal transition.ScientificWorldJournal8, 901–904 (2008).
  • Jiang YG , LuoY, HeDLet al.: Role of wnt/β-catenin signaling pathway in epithelial-mesenchymal transition of human prostate cancer induced by hypoxia-inducible factor-1α.Int. J. Urol.14(11), 1034–1039 (2007).
  • Yook JI , LiXY, OtaIet al.: A wnt-axin2-gsk3β cascade regulates snail1 activity in breast cancer cells.Nat. Cell Biol.8(12), 1398–1406 (2006).
  • Peinado H , Del Carmen Iglesias-De La CruzM, OlmedaDet al.: A molecular role for lysyl oxidase-like 2 enzyme in snail regulation and tumor progression.EMBO J.24(19), 3446–3458 (2005).
  • Peinado H , Moreno-BuenoG, HardissonDet al.: Lysyl oxidase-like 2 as a new poor prognosis marker of squamous cell carcinomas.Cancer Res.68(12), 4541–4550 (2008).
  • Thiery JP , SleemanJP: Complex networks orchestrate epithelial-mesenchymal transitions.Nat. Rev. Mol. Cell Biol.7(2), 131–142 (2006).
  • Hazan RB , QiaoR, KerenR, BadanoI, SuyamaK: Cadherin switch in tumor progression.Ann. NY Acad. Sci.1014, 155–163 (2004).
  • Sarrio D , Rodriguez-PinillaSM, HardissonD, CanoA, Moreno-BuenoG, PalaciosJ: Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype.Cancer Res.68(4), 989–997 (2008).
  • Aigner K , DescovichL, MikulaMet al.: The transcription factor zeb1 (δef1) represses plakophilin 3 during human cancer progression.FEBS Lett.581(8), 1617–1624 (2007).
  • Wang Z , WadeP, MandellKJet al.: Raf 1 represses expression of the tight junction protein occludin via activation of the zinc-finger transcription factor slug.Oncogene26(8), 1222–1230 (2007).
  • Kurrey NK , KA, BapatSA: Snail and slug are major determinants of ovarian cancer invasiveness at the transcription level.Gynecol. Oncol.97(1), 155–165 (2005).
  • Kominsky SL , ArganiP, KorzDet al.: Loss of the tight junction protein claudin-7 correlates with histological grade in both ductal carcinoma in situ and invasive ductal carcinoma of the breast.Oncogene22(13), 2021–2033 (2003).
  • Usami Y , SatakeS, NakayamaFet al.: Snail-associated epithelial–mesenchymal transition promotes oesophageal squamous cell carcinoma motility and progression.J. Pathol.215(3), 330–339 (2008).
  • Guarino M , RubinoB, BallabioG: The role of epithelial–mesenchymal transition in cancer pathology.Pathology39(3), 305–318 (2007).
  • Carpenter PM , Wang-RodriguezJ, ChanOT, WilczynskiSP: Laminin 5 expression in metaplastic breast carcinomas.Am. J. Surg. Pathol.32(3), 345–353 (2008).
  • Maschler S , WirlG, SpringHet al.: Tumor cell invasiveness correlates with changes in integrin expression and localization.Oncogene24(12), 2032–2041 (2005).
  • Takkunen M , AinolaM, VainionpaaNet al.: Epithelial–mesenchymal transition downregulates laminin α5 chain and upregulates laminin α4 chain in oral squamous carcinoma cells.Histochem. Cell Biol.130(3), 509–525 (2008).
  • Udayakumar TS , ChenML, BairELet al.: Membrane type-1-matrix metalloproteinase expressed by prostate carcinoma cells cleaves human laminin-5 β3 chain and induces cell migration.Cancer Res.63(9), 2292–2299 (2003).
  • Chaffer CL , BrennanJP, SlavinJL, BlickT, ThompsonEW, WilliamsED: Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis: role of fibroblast growth factor receptor-2.Cancer Res.66(23), 11271–11278 (2006).
  • Lee JM , DedharS, KalluriR, ThompsonEW: The epithelial–mesenchymal transition: new insights in signaling, development, and disease.J. Cell Biol.172(7), 973–981 (2006).
  • Brabletz T , HlubekF, SpadernaSet al.: Invasion and metastasis in colorectal cancer: epithelial–mesenchymal transition, mesenchymal-epithelial transition, stem cells and β-catenin.Cells Tissues Organs179(1–2), 56–65 (2005).
  • Thompson EW , NewgreenDF, TarinD: Carcinoma invasion and metastasis: a role for epithelial-mesenchymal transition?Cancer Res.65(14), 5991–5995; discussion 5995 (2005).
  • Tarin D , ThompsonEW, NewgreenDF: The fallacy of epithelial mesenchymal transition in neoplasia.Cancer Res.65(14), 5996–6000; discussion 6000–5991 (2005).
  • Christiansen JJ , RajasekaranAK: Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis.Cancer Res.66(17), 8319–8326 (2006).
  • Yauch RL , JanuarioT, EberhardDAet al.: Epithelial versus mesenchymal phenotype determines in vitro sensitivity and predicts clinical activity of erlotinib in lung cancer patients.Clin. Cancer Res.11(24 Pt 1), 8686–8698 (2005).
  • Van ‘T Veer LJ , DaiH, Van De VijverMJet al.: Gene expression profiling predicts clinical outcome of breast cancer.Nature415(6871), 530–536 (2002).
  • Ma XJ , WangZ, RyanPDet al.: A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen.Cancer Cell5(6), 607–616 (2004).
  • Strizzi L , BiancoC, NormannoNet al.: Epithelial mesenchymal transition is a characteristic of hyperplasias and tumors in mammary gland from mmtv-cripto-1 transgenic mice.J. Cell Physiol.201(2), 266–276 (2004).
  • Landesman-Bollag E , Romieu-MourezR, SongDH, SonensheinGE, CardiffRD, SeldinDC: Protein kinase ck2 in mammary gland tumorigenesis.Oncogene20(25), 3247–3257 (2001).
  • Damonte P , GreggJP, BorowskyAD, KeisterBA, CardiffRD: Emt tumorigenesis in the mouse mammary gland.Lab. Invest.87(12), 1218–1226 (2007).
  • Cardiff RD : Epithelial to mesenchymal transition tumors: Fallacious or snail’s pace?Clin. Cancer Res.11(24 Pt 1), 8534–8537 (2005).
  • Borowsky AD , NambaR, YoungLJet al.: Syngeneic mouse mammary carcinoma cell lines: Two closely related cell lines with divergent metastatic behavior.Clin. Exp. Metastasis22(1), 47–59 (2005).
  • Radaelli E , ArnoldA, PapanikolaouAet al.: Mammary tumor phenotypes in wild-type aging female fvb/n mice with pituitary prolactinomas.Vet. Pathol.46(4), 736–745 (2009).
  • Pedram A , RazandiM, WallaceDC, LevinER: Functional estrogen receptors in the mitochondria of breast cancer cells.Mol. Biol. Cell17(5), 2125–2137 (2006).
  • Yang Z , BarnesCJ, KumarR: Human epidermal growth factor receptor 2 status modulates subcellular localization of and interaction with estrogen receptor a in breast cancer cells.Clin. Cancer Res.10(11), 3621–3628 (2004).
  • Mishra SK , TalukderAH, GururajAEet al.: Upstream determinants of estrogen receptor-α regulation of metastatic tumor antigen 3 pathway.J. Biol. Chem.279(31), 32709–32715 (2004).
  • Kumar R , WangRA, Bagheri-YarmandR: Emerging roles of mta family members in human cancers.Semin. Oncol.30(5 Suppl. 16), 30–37 (2003).
  • Blanco MJ , Moreno-BuenoG, SarrioDet al.: Correlation of snail expression with histological grade and lymph node status in breast carcinomas.Oncogene21(20), 3241–3246 (2002).
  • Jessen KA , LiuSY, TepperCGet al.: Molecular analysis of metastasis in a polyomavirus middle t mouse model: the role of osteopontin.Breast Cancer Res.6(3), R157–R169 (2004).
  • Cardiff RD , LederA, KuoA, PattengalePK, LederP: Multiple tumor types appear in a transgenic mouse with the ras oncogene.Am. J. Pathol.142(4), 1199–1207 (1993).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.