1,015
Views
2
CrossRef citations to date
0
Altmetric
Review

Epithelial–Mesenchymal Transition in Development and Cancer

&
Pages 1129-1143 | Published online: 26 Oct 2009

Bibliography

  • Solnica-Krezel L : Conserved patterns of cell movements during vertebrate gastrulation.Curr. Biol.15(6), R213–R228 (2005).
  • Mercado-Pimentel ME , RunyanRB: Multiple transforming growth factor-β isoforms and receptors function during epithelial–mesenchymal cell transformation in the embryonic heart.Cells Tissues Organs185(1–3), 146–156 (2007).
  • Nawshad A , LaGambaD, HayED: Transforming growth factor β (TGFβ) signalling in palatal growth, apoptosis and epithelial mesenchymal transformation (EMT).Arch. Oral Biol.49(9), 675–689 (2004).
  • Tucker RP : Neural crest cells: a model for invasive behavior.Int. J. Biochem. Cell Biol.36(2), 173–177 (2004).
  • Shook D , KellerR: Mechanisms, mechanics and function of epithelial–mesenchymal transitions in early development.Mech. Dev.120(11), 1351–1383 (2003).
  • Kalluri R , NeilsonEG: Epithelial–mesenchymal transition and its implications for fibrosis.J. Clin. Invest.112(12), 1776–1784 (2003).
  • Thiery JP : Epithelial–mesenchymal transitions in tumor progression.Nat. Rev. Cancer2(6), 442–454 (2002).
  • Olmeda D , MontesA, Moreno-BuenoG, FloresJM, PortilloF, CanoA: Snai1 and Snai2 collaborate on tumor growth and metastasis properties of mouse skin carcinoma cell lines.Oncogene27(34), 4690–4701 (2008).
  • Yang J , ManiSA, DonaherJLet al.: Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis.Cell117(7), 927–939 (2004).
  • Micalizzi DS , ChristensenKL, JedlickaPet al.: The Six1 homeoprotein induces human mammary carcinoma cells to undergo epithelial–mesenchymal transition and metastasis in mice through TGF-β signaling.J. Clin. Invest.119(9), 2678–2690 (2009).
  • Self M , LagutinOV, BowlingBet al.: Six2 is required for suppression of nephrogenesis and progenitor renewal in the developing kidney.EMBO J.25(21), 5214–5228 (2006).
  • Jakowlew SB : Transforming growth factor-β in cancer and metastasis.Cancer Metastasis Rev.25(3), 435–457 (2006).
  • Brabletz T , HlubekF, SpadernaSet al.: Invasion and metastasis in colorectal cancer: epithelial–mesenchymal transition, mesenchymal-epithelial transition, stem cells and β-catenin.Cells Tissues Organs179(1–2), 56–65 (2005).
  • Yang J , WeinbergRA: Epithelial–mesenchymal transition: at the crossroads of development and tumor metastasis.Dev. Cell14(6), 818–829 (2008).
  • Moustakas A , HeldinCH: Signaling networks guiding epithelial–mesenchymal transitions during embryogenesis and cancer progression.Cancer Sci.98(10), 1512–1520 (2007).
  • Muller HA : Of mice, frogs and flies: generation of membrane asymmetries in early development.Dev. Growth Differ.43(4), 327–342 (2001).
  • Hay ED : The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it.Dev. Dyn.233(3), 706–720 (2005).
  • Nakaya Y , SukowatiEW, WuY, ShengG: RhoA and microtubule dynamics control cell-basement membrane interaction in EMT during gastrulation.Nat. Cell Biol.10(7), 765–775 (2008).
  • Romano LA , RunyanRB: Slug is an essential target of TGFβ2 signaling in the developing chicken heart.Dev. Biol.223(1), 91–102 (2000).
  • Carver EA , JiangR, LanY, OramKF, GridleyT: The mouse snail gene encodes a key regulator of the epithelial–mesenchymal transition.Mol. Cell. Biol.21(23), 8184–8188 (2001).
  • Yu W , KamaraH, SvobodaKK: The role of twist during palate development.Dev. Dyn.237(10), 2716–2725 (2008).
  • Nawshad A , HayED: TGFβ3 signaling activates transcription of the LEF1 gene to induce epithelial mesenchymal transformation during mouse palate development.J. Cell Biol.163(6), 1291–1301 (2003).
  • Morkel M , HuelskenJ, WakamiyaMet al.: β-catenin regulates Cripto- and Wnt3-dependent gene expression programs in mouse axis and mesoderm formation.Development130(25), 6283–6294 (2003).
  • Baum B , SettlemanJ, QuinlanMP: Transitions between epithelial and mesenchymal states in development and disease.Semin. Cell Dev. Biol.19(3), 294–308 (2008).
  • Martinez-Alvarez C , BlancoMJ, PerezRet al.: Snail family members and cell survival in physiological and pathological cleft palates.Dev. Biol.265(1), 207–218 (2004).
  • Azhar M , Schultz JelJ, GruppIet al.: Transforming growth factor β in cardiovascular development and function.Cytokine Growth Factor Rev.14(5), 391–407 (2003).
  • Savagner P , KusewittDF, CarverEAet al.: Developmental transcription factor slug is required for effective re-epithelialization by adult keratinocytes.J. Cell Physiol.202(3), 858–866 (2005).
  • Guarino M , RubinoB, BallabioG: The role of epithelial–mesenchymal transition in cancer pathology.Pathology39(3), 305–318 (2007).
  • Gavert N , Ben-Ze’evA: Epithelial–mesenchymal transition and the invasive potential of tumors.Trends Mol. Med.14(5), 199–209 (2008).
  • Trimboli AJ , FukinoK, de BruinAet al.: Direct evidence for epithelial–mesenchymal transitions in breast cancer.Cancer Res.68(3), 937–945 (2008).
  • Massague J : TGFβ in cancer.Cell.134(2), 215–230 (2008).
  • Crawford SE , StellmachV, Murphy-UllrichJEet al.: Thrombospondin-1 is a major activator of TGF-β1 in vivo.Cell93(7), 1159–1170 (1998).
  • Massague J , SeoaneJ, WottonD: Smad transcription factors.Genes Dev.19(23), 2783–2810 (2005).
  • Blobe GC , SchiemannWP, LodishHF: Role of transforming growth factor β in human disease.N. Engl. J. Med.342(18), 1350–1358 (2000).
  • Ravitz MJ , WennerCE: Cyclin-dependent kinase regulation during G1 phase and cell cycle regulation by TGF-β.Adv. Cancer Res.71165–207 (1997).
  • Bartram U , MolinDG, WisseLJet al.: Double-outlet right ventricle and overriding tricuspid valve reflect disturbances of looping, myocardialization, endocardial cushion differentiation, and apoptosis in TGF-β(2)-knockout mice.Circulation103(22), 2745–2752 (2001).
  • Sridurongrit S , LarssonJ, SchwartzR, Ruiz-LozanoP, KaartinenV: Signaling via the TGF-β type I receptor Alk5 in heart development.Dev. Biol.322(1), 208–218 (2008).
  • Miettinen PJ , EbnerR, LopezAR, DerynckR: TGF-β induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors.J. Cell Biol.127(6 Pt 2), 2021–2036 (1994).
  • Oft M , HeiderKH, BeugH: TGFβ signaling is necessary for carcinoma cell invasiveness and metastasis.Curr. Biol.8(23), 1243–1252 (1998).
  • Zavadil J , BottingerEP: TGF-β and epithelial-to-mesenchymal transitions.Oncogene24(37), 5764–5774 (2005).
  • Ozdamar B , BoseR, Barrios-RodilesM, WangHR, ZhangY, WranaJL: Regulation of the polarity protein Par6 by TGFβ receptors controls epithelial cell plasticity.Science307(5715), 1603–1609 (2005).
  • Peinado H , QuintanillaM, CanoA: Transforming growth factor β-1 induces snail transcription factor in epithelial cell lines: mechanisms for epithelial mesenchymal transitions.J. Biol. Chem.278(23), 21113–21123 (2003).
  • Bhowmick NA , GhiassiM, BakinAet al.: Transforming growth factor-β1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism.Mol. Biol. Cell.12(1), 27–36 (2001).
  • Gregory PA , BertAG, PatersonELet al.: The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1.Nat. Cell Biol.10(5), 593–601 (2008).
  • Kong W , YangH, HeLet al.: MicroRNA-155 is regulated by the transforming growth factor β/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA.Mol. Cell. Biol.28(22), 6773–6784 (2008).
  • Stefani G , SlackFJ: Small noncoding RNAs in animal development.Nat. Rev. Mol. Cell Biol.9(3), 219–230 (2008).
  • Hannon GJ , BeachD: p15INK4B is a potential effector of TGF-β-induced cell cycle arrest.Nature371(6494), 257–261 (1994).
  • Reynisdottir I , PolyakK, IavaroneA, MassagueJ: Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-β.Genes Dev.9(15), 1831–1845 (1995).
  • Cui W , FowlisDJ, BrysonSet al.: TGFβ1 inhibits the formation of benign skin tumors, but enhances progression to invasive spindle carcinomas in transgenic mice.Cell86(4), 531–542 (1996).
  • Chen CR , KangY, MassagueJ: Defective repression of c-myc in breast cancer cells: a loss at the core of the transforming growth factor β growth arrest program.Proc. Natl Acad. Sci. USA98(3), 992–999 (2001).
  • Baldwin RL , TranH, KarlanBY: Loss of c-myc repression coincides with ovarian cancer resistance to transforming growth factor β growth arrest independent of transforming growth factor β/Smad signaling.Cancer Res.63(6), 1413–1419 (2003).
  • Janda E , LehmannK, KillischIet al.: Ras and TGF[β] cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways.J. Cell Biol.156(2), 299–313 (2002).
  • Rees JR , OnwuegbusiBA, SaveVE, AldersonD, FitzgeraldRC: In vivo and in vitro evidence for transforming growth factor-β1-mediated epithelial to mesenchymal transition in esophageal adenocarcinoma.Cancer Res.66(19), 9583–9590 (2006).
  • Vasko V , EspinosaAV, ScoutenWet al.: Gene expression and functional evidence of epithelial-to-mesenchymal transition in papillary thyroid carcinoma invasion.Proc. Natl Acad. Sci. USA104(8), 2803–2808 (2007).
  • Liu X : Inflammatory cytokines augments TGF-β1-induced epithelial–mesenchymal transition in A549 cells by up-regulating TβR-I.Cell Motil. Cytoskeleton65(12), 935–944 (2008).
  • Soufla G , SifakisS, BaritakiS, ZafiropoulosA, KoumantakisE, SpandidosDA: VEGF, FGF2, TGFB1 and TGFBR1 mRNA expression levels correlate with the malignant transformation of the uterine cervix.Cancer Lett.221(1), 105–118 (2005).
  • Kjellman C , OlofssonSP, HanssonOet al.: Expression of TGF-β isoforms, TGF-β receptors, and SMAD molecules at different stages of human glioma.Int. J. Cancer89(3), 251–258 (2000).
  • Takanami I , TanakaF, HashizumeT, KodairaS: Roles of the transforming growth factor β 1 and its type I and II receptors in the development of a pulmonary adenocarcinoma: results of an immunohistochemical study.J. Surg. Oncol.64(4), 262–267 (1997).
  • Ghellal A , LiC, HayesM, ByrneG, BundredN, KumarS: Prognostic significance of TGF β 1 and TGF β 3 in human breast carcinoma.Anticancer Res.20(6B), 4413–4418 (2000).
  • Mu L , KatsarosD, LuLet al.: TGF-β1 genotype and phenotype in breast cancer and their associations with IGFs and patient survival.Br. J. Cancer99(8), 1357–1363 (2008).
  • Langenskiold M , HolmdahlL, FalkP, AngeneteE, IvarssonML: Increased TGF-β 1 protein expression in patients with advanced colorectal cancer.J. Surg. Oncol.97(5), 409–415 (2008).
  • Ivanovic V , Todorovic-RakovicN, DemajoMet al.: Elevated plasma levels of transforming growth factor-β 1 (TGF-β 1) in patients with advanced breast cancer: association with disease progression.Eur. J. Cancer39(4), 454–461 (2003).
  • Muraoka RS , DumontN, RitterCAet al.: Blockade of TGF-β inhibits mammary tumor cell viability, migration, and metastases.J. Clin. Invest.109(12), 1551–1559 (2002).
  • Muraoka-Cook RS , ShinI, YiJYet al.: Activated type I TGFβ receptor kinase enhances the survival of mammary epithelial cells and accelerates tumor progression.Oncogene25(24), 3408–3423 (2006).
  • Kemler R , HierholzerA, KanzlerBet al.: Stabilization of β-catenin in the mouse zygote leads to premature epithelial–mesenchymal transition in the epiblast.Development131(23), 5817–5824 (2004).
  • Liebner S , CattelinoA, GalliniRet al.: β-catenin is required for endothelial-mesenchymal transformation during heart cushion development in the mouse.J. Cell Biol.166(3), 359–367 (2004).
  • Nelson WJ , NusseR: Convergence of Wnt, β-catenin, and cadherin pathways.Science303(5663), 1483–1487 (2004).
  • Conacci-Sorrell M , SimchaI, Ben-YedidiaT, BlechmanJ, SavagnerP, Ben-Ze’evA: Autoregulation of E-cadherin expression by cadherin–cadherin interactions: the roles of β-catenin signaling, Slug, and MAPK.J. Cell Biol.163(4), 847–857 (2003).
  • Gilles C , PoletteM, MestdagtMet al.: Transactivation of vimentin by β-catenin in human breast cancer cells.Cancer Res.63(10), 2658–2664 (2003).
  • Gradl D , KuhlM, WedlichD: The Wnt/Wg signal transducer β-catenin controls fibronectin expression.Mol. Cell. Biol.19(8), 5576–5587 (1999).
  • Huber MA , KrautN, BeugH: Molecular requirements for epithelial–mesenchymal transition during tumor progression.Curr. Opin. Cell Biol.17(5), 548–558 (2005).
  • Kim K , LuZ, HayED: Direct evidence for a role of β-catenin/LEF-1 signaling pathway in induction of EMT.Cell Biol. Int.26(5), 463–476 (2002).
  • Yook JI , LiXY, OtaIet al.: A Wnt-Axin2-GSK3β cascade regulates Snail1 activity in breast cancer cells.Nat. Cell Biol.8(12), 1398–1406 (2006).
  • Wong SC , LoES, LeeKC, ChanJK, HsiaoWL: Prognostic and diagnostic significance of β-catenin nuclear immunostaining in colorectal cancer.Clin. Cancer Res.10(4), 1401–1408 (2004).
  • Cano A , Perez-MorenoMA, RodrigoIet al.: The transcription factor snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression.Nat. Cell Biol.2(2), 76–83 (2000).
  • Taneyhill LA , ColesEG, Bronner-FraserM: Snail2 directly represses cadherin6B during epithelial-to-mesenchymal transitions of the neural crest.Development134(8), 1481–1490 (2007).
  • Batlle E , SanchoE, FranciCet al.: The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumor cells.Nat. Cell Biol.2(2), 84–89 (2000).
  • Usami Y , SatakeS, NakayamaFet al.: Snail-associated epithelial–mesenchymal transition promotes oesophageal squamous cell carcinoma motility and progression.J. Pathol.215(3), 330–339 (2008).
  • Dhasarathy A , KajitaM, WadePA: The transcription factor snail mediates epithelial to mesenchymal transitions by repression of estrogen receptor-α.Mol. Endocrinol.21(12), 2907–2918 (2007).
  • Kurrey NK , KA, BapatSA: Snail and Slug are major determinants of ovarian cancer invasiveness at the transcription level.Gynecol. Oncol.97(1), 155–165 (2005).
  • Moreno-Bueno G , CubilloE, SarrioDet al.: Genetic profiling of epithelial cells expressing E-cadherin repressors reveals a distinct role for Snail, Slug, and E47 factors in epithelial–mesenchymal transition.Cancer Res.66(19), 9543–9556 (2006).
  • Savagner P , YamadaKM, ThieryJP: The zinc-finger protein slug causes desmosome dissociation, an initial and necessary step for growth factor-induced epithelial–mesenchymal transition.J. Cell Biol.137(6), 1403–1419 (1997).
  • Jorda M , OlmedaD, VinyalsAet al.: Upregulation of MMP-9 in MDCK epithelial cell line in response to expression of the Snail transcription factor.J. Cell Sci.118(Pt 15), 3371–3385 (2005).
  • de Boer TP , van VeenTA, BierhuizenMFet al.: Connexin43 repression following epithelium-to-mesenchyme transition in embryonal carcinoma cells requires Snail1 transcription factor.Differentiation75(3), 208–218 (2007).
  • Bolos V , PeinadoH, Perez-MorenoMA, FragaMF, EstellerM, CanoA: The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors.J. Cell Sci.116(Pt 3), 499–511 (2003).
  • Park SH , CheungLW, WongAS, LeungPC: Estrogen regulates Snail and Slug in the down-regulation of E-cadherin and induces metastatic potential of ovarian cancer cells through estrogen receptor α.Mol. Endocrinol.22(9), 2085–2098 (2008).
  • Fujita N , JayeDL, KajitaM, GeigermanC, MorenoCS, WadePA: MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer.Cell113(2), 207–219 (2003).
  • Blanco MJ , Moreno-BuenoG, SarrioDet al.: Correlation of Snail expression with histological grade and lymph node status in breast carcinomas.Oncogene21(20), 3241–3246 (2002).
  • Waldmann J , FeldmannG, SlaterEPet al.: Expression of the zinc-finger transcription factor Snail in adrenocortical carcinoma is associated with decreased survival.Br. J. Cancer99(11), 1900–1907 (2008).
  • Castro Alves C , RosivatzE, SchottCet al.: Slug is overexpressed in gastric carcinomas and may act synergistically with SIP1 and Snail in the down-regulation of E-cadherin.J. Pathol.211(5), 507–515 (2007).
  • Shioiri M , ShidaT, KodaKet al.: Slug expression is an independent prognostic parameter for poor survival in colorectal carcinoma patients.Br. J. Cancer94(12), 1816–1822 (2006).
  • Olmeda D , JordaM, PeinadoH, FabraA, CanoA: Snail silencing effectively suppresses tumor growth and invasiveness.Oncogene26(13), 1862–1874 (2007).
  • Moody SE , PerezD, PanTCet al.: The transcriptional repressor Snail promotes mammary tumor recurrence.Cancer Cell8(3), 197–209 (2005).
  • Vesuna F , van DiestP, ChenJH, RamanV: Twist is a transcriptional repressor of E-cadherin gene expression in breast cancer.Biochem. Biophys. Res. Commun.367(2), 235–241 (2008).
  • Cheng GZ , ChanJ, WangQ, ZhangW, SunCD, WangLH: Twist transcriptionally up-regulates AKT2 in breast cancer cells leading to increased migration, invasion, and resistance to paclitaxel.Cancer Res.67(5), 1979–1987 (2007).
  • Lee YH , AlbigAR, MaryannR, SchiemannBJ, SchiemannWP: Fibulin-5 initiates epithelial–mesenchymal transition (EMT) and enhances EMT induced by TGF-{β} in mammary epithelial cells via a MMP-dependent mechanism.Carcinogenesis29(12), 2243–2251 (2008).
  • Yang MH , WuKJ: TWIST activation by hypoxia inducible factor-1 (HIF-1 ): implications in metastasis and development.Cell Cycle7(14), 2090–2096 (2008).
  • Yang MH , WuMZ, ChiouSHet al.: Direct regulation of TWIST by HIF-1 α promotes metastasis.Nat. Cell Biol.10(3), 295–305 (2008).
  • Lo HW , HsuSC, XiaWet al.: Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial–mesenchymal transition in cancer cells via up-regulation of TWIST gene expression.Cancer Res.67(19), 9066–9076 (2007).
  • Niu RF , ZhangL, XiGMet al.: Upregulation of Twist induces angiogenesis and correlates with metastasis in hepatocellular carcinoma.J. Exp. Clin. Cancer Res.26(3), 385–394 (2007).
  • Yuen HF , KwokWK, ChanKKet al.: TWIST modulates prostate cancer cell-mediated bone cell activity and is upregulated by osteogenic induction.Carcinogenesis29(8), 1509–1518 (2008).
  • Fondrevelle ME , KantelipB, ReiterREet al.: The expression of Twist has an impact on survival in human bladder cancer and is influenced by the smoking status.Urol. Oncol.27(3), 268–276 (2008).
  • Kyo S , SakaguchiJ, OhnoSet al.: High Twist expression is involved in infiltrative endometrial cancer and affects patient survival.Hum. Pathol.37(4), 431–438 (2006).
  • Li X , OghiKA, ZhangJet al.: Eya protein phosphatase activity regulates Six1-Dach-Eya transcriptional effects in mammalian organogenesis.Nature426(6964), 247–254 (2003).
  • Oliver G , WehrR, JenkinsNAet al.: Homeobox genes and connective tissue patterning.Development121(3), 693–705 (1995).
  • Laclef C , HamardG, DemignonJ, SouilE, HoubronC, MaireP: Altered myogenesis in Six1-deficient mice.Development130(10), 2239–2252 (2003).
  • Xu PX , ZhengW, HuangL, MaireP, LaclefC, SilviusD: Six1 is required for the early organogenesis of mammalian kidney.Development130(14), 3085–3094 (2003).
  • Birchmeier C , BrohmannH: Genes that control the development of migrating muscle precursor cells.Curr. Opin. Cell Biol.12(6), 725–730 (2000).
  • Ozaki H , WatanabeY, TakahashiKet al.: Six4, a putative myogenin gene regulator, is not essential for mouse embryonal development.Mol. Cell. Biol.21(10), 3343–3350 (2001).
  • Grifone R , DemignonJ, HoubronCet al.: Six1 and Six4 homeoproteins are required for Pax3 and Mrf expression during myogenesis in the mouse embryo.Development132(9), 2235–2249 (2005).
  • McCoy EL , JedlickaP, AbbeyNet al.: Six1 expands the mouse mammary epithelial stem/progenitor cell pool and induces mammary tumors that undergo epithelial–mesenchymal transition.J. Clin. Invest.119(9) 2663–2677 (2009).
  • Ford HL , KabinguEN, BumpEA, MutterGL, PardeeAB: Abrogation of the G2 cell cycle checkpoint associated with overexpression of HSIX1: a possible mechanism of breast carcinogenesis.Proc. Natl Acad. Sci. USA95(21), 12608–12613 (1998).
  • Reichenberger KJ , ColettaRD, SchulteAP, Varella-GarciaM, FordHL: Gene amplification is a mechanism of Six1 overexpression in breast cancer.Cancer Res.65(7), 2668–2675 (2005).
  • Behbakht K , QamarL, AldridgeCSet al.: Six1 overexpression in ovarian carcinoma causes resistance to TRAIL-mediated apoptosis and is associated with poor survival.Cancer Res.67(7), 3036–3042 (2007).
  • Kloth JN , FleurenGJ, OostingJet al.: Substantial changes in gene expression of Wnt, MAPK and TNFα pathways induced by TGF-β1 in cervical cancer cell lines.Carcinogenesis26(9), 1493–1502 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.