375
Views
0
CrossRef citations to date
0
Altmetric
Review

Why Target PIM1 for Cancer Diagnosis and Treatment?

, , &
Pages 1461-1478 | Published online: 04 Oct 2010

Bibliography

  • Qian KC , WangL, HickeyERet al.: Structural basis of constitutive activity and a unique nucleotide binding mode of human Pim-1 kinase.J. Biol. Chem.280, 6130–6137 (2005).
  • Cuypers HT , SeltenG, QuintWet al.: Murine leukemia virus-induced T-cell lymphomagenesis: integration of proviruses in a distinct chromosomal region.Cell37, 141–150 (1984).
  • Wingett D , ReevesR, MagnusonNS: Characterization of the testes-specific PIM-1 transcript in rat.Nucleic Acids Res.20, 3183–3189 (1992).
  • van Lohuizen M , VerbeekS, KrimpenfortPet al.: Predisposition to lymphomagenesis in pim-1 transgenic mice: cooperation with c-myc and N-myc in murine leukemia virus-induced tumors.Cell56, 673–682 (1989).
  • Verbeek S , van LohuizenM, DomenJ, KraalG, BernsA: Mice bearing the E mu-myc and E mu-pim-1 transgenes develop pre-B-cell leukemia prenatally.Mol. Cell Biol.11, 1176–1179 (1991).
  • Wang J , KimJ, RohMet al.: Pim1 kinase synergizes with c-MYC to induce advanced prostate carcinoma.Oncogene29, 2477–2487(2010).
  • Dhanasekaran SM , BarretteTR, GhoshDet al.: Delineation of prognostic biomarkers in prostate cancer.Nature412, 822–826 (2001).
  • Valdman A , FangX, PangST, EkmanP, EgevadL: Pim-1 expression in prostatic intraepithelial neoplasia and human prostate cancer.Prostate60, 367–371 (2004).
  • Ellwood-Yen K , GraeberTG, WongvipatJet al.: Myc-driven murine prostate cancer shares molecular features with human prostate tumors.Cancer Cell, 4, 223–238 (2003).
  • Roh M , SongC, KimJ, AbdulkadirSA: Chromosomal instability induced by Pim-1 is passage-dependent and associated with dysregulation of cyclin B1.J. Biol. Chem.280, 40568–40577 (2005).
  • Roh M , FrancoOE, HaywardSW, van der MeerR, AbdulkadirSA: A role for polyploidy in the tumorigenicity of Pim-1-expressing human prostate and mammary epithelial cells.PLoS One3, E2572 (2008).
  • Kim J , RohM, AbdulkadirSA: Pim1 promotes human prostate cancer cell tumorigenicity and c-MYC transcriptional activity.BMC Cancer10, 248 (2010).
  • Zhang Y , WangZ, LiX, MagnusonNS: Pim kinase-dependent inhibition of c-Myc degradation.Oncogene27, 4809–4819 (2008).
  • Zippo A , De RobertisA, SerafiniR, OlivieroS: PIM1-dependent phosphorylation of histone H3 at serine 10 is required for MYC-dependent transcriptional activation and oncogenic transformation.Nat. Cell Biol.9, 932–944 (2007).
  • Laird PW , van der LugtNM, ClarkeAet al.: In vivo analysis of Pim-1 deficiency.Nucleic Acids Res.21, 4750–4755 (1993).
  • van der Lugt NM , DomenJ, VerhoevenEet al.: Proviral tagging in E mu-myc transgenic mice lacking the Pim-1 proto-oncogene leads to compensatory activation of Pim-2.EMBO J.14, 2536–2544 (1995).
  • Domen J , van der LugtNM, LairdPW, SarisCJ, BernsA: Analysis of Pim-1 function in mutant mice.Leukemia, 7(Suppl. 2), S108–S112 (1993).
  • Fox CJ , HammermanPS, CinalliRMet al.: The serine/threonine kinase Pim-2 is a transcriptionally regulated apoptotic inhibitor.Genes Dev., 17, 1841–1854 (2003).
  • Toker A : Signaling through protein kinase C.Front. Biosci.3, D1134–D1147 (1998).
  • Feliciello A , GottesmanME, AvvedimentoEV: The biological functions of A-kinase anchor proteins.J. Mol. Biol.308, 99–114 (2001).
  • Alessi DR , DeakM, CasamayorAet al.: 3-Phosphoinositide-dependent protein kinase-1 (PDK1): structural and functional homology with the Drosophila DSTPK61 kinase.Curr. Biol.7, 776–789 (1997).
  • Stokoe D , StephensLR, CopelandTet al.: Dual role of phosphatidylinositol-3,4,5-trisphosphate in the activation of protein kinase B.Science277, 567–570 (1997).
  • Filippa N , SableCL, HemmingsBA, Van ObberghenE: Effect of phosphoinositide-dependent kinase 1 on protein kinase B translocation and its subsequent activation.Mol. Cell Biol.20, 5712–5721 (2000).
  • Bachmann M , MoroyT: The serine/threonine kinase Pim-1.Int. J. Biochem. Cell Biol.37, 726–730 (2005).
  • Domen J , van der LugtNM, ActonD, LairdPW, LindersK, BernsA: Pim-1 levels determine the size of early B lymphoid compartments in bone marrow.J. Exp. Med.178, 1665–1673 (1993).
  • Mochizuki T , KitanakaC, NoguchiK, MuramatsuT, AsaiA, KuchinoY: Physical and functional interactions between Pim-1 kinase and Cdc25A phosphatase. Implications for the Pim-1-mediated activation of the c-Myc signaling pathway.J. Biol. Chem.274, 18659–18666 (1999).
  • Wang Z , BhattacharyaN, MixterPF, WeiW, SedivyJ, MagnusonNS: Phosphorylation of the cell cycle inhibitor p21Cip1/WAF1 by Pim-1 kinase.Biochim. Biophys. Acta1593, 45–55 (2002).
  • Morishita D , KatayamaR, SekimizuK, TsuruoT, FujitaN: Pim kinases promote cell cycle progression by phosphorylating and down-regulating p27Kip1 at the transcriptional and posttranscriptional levels.Cancer Res.68, 5076–5085 (2008).
  • Domen J , van der LugtNM, LairdPWet al.: Impaired interleukin-3 response in Pim-1-deficient bone marrow-derived mast cells.Blood82, 1445–1452 (1993).
  • Lilly M , KraftA: Enforced expression of the Mr 33,000 Pim-1 kinase enhances factor-independent survival and inhibits apoptosis in murine myeloid cells.Cancer Res.57, 5348–5355 (1997).
  • Lilly M , SandholmJ, CooperJJ, KoskinenPJ, KraftA: The PIM-1 serine kinase prolongs survival and inhibits apoptosis-related mitochondrial dysfunction in part through a bcl-2-dependent pathway.Oncogene18, 4022–4031 (1999).
  • Mikkers H , NawijnM, AllenJet al.: Mice deficient for all PIM kinases display reduced body size and impaired responses to hematopoietic growth factors.Mol. Cell Biol.24, 6104–6115 (2004).
  • Wang Z , BhattacharyaN, WeaverMet al.: Pim-1: a serine/threonine kinase with a role in cell survival, proliferation, differentiation and tumorigenesis.J. Vet. Sci.2, 167–179 (2001).
  • Amaravadi R , ThompsonCB: The survival kinases Akt and Pim as potential pharmacological targets.J. Clin. Invest, 115, 2618–2624 (2005).
  • Moroy T , GrzeschiczekA, PetzoldS, HartmannKU: Expression of a Pim-1 transgene accelerates lymphoproliferation and inhibits apoptosis in lpr/lpr mice.Proc. Natl Acad. Sci. USA90, 10734–10738 (1993).
  • Rahman Z , YoshikawaH, NakajimaY, TasakaK: Down-regulation of Pim-1 and Bcl-2 is accompanied with apoptosis of interleukin-6-depleted mouse B-cell hybridoma 7TD1 cells.Immunol. Lett.75, 199–208 (2001).
  • Vaux DL , CoryS, AdamsJM: Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells.Nature335, 440–442 (1988).
  • Hockenbery D , NunezG, MillimanC, SchreiberRD, KorsmeyerSJ: Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death.Nature348, 334–336 (1990).
  • Miyashita T , ReedJC: Bcl-2 oncoprotein blocks chemotherapy-induced apoptosis in a human leukemia cell line.Blood81, 151–157 (1993).
  • Aho TL , SandholmJ, PeltolaKJ, MankonenHP, LillyM, KoskinenPJ: Pim-1 kinase promotes inactivation of the pro-apoptotic Bad protein by phosphorylating it on the Ser112 gatekeeper site.FEBS Lett.571, 43–49 (2004).
  • Zhou XM , LiuY, PayneG, LutzRJ, ChittendenT: Growth factors inactivate the cell death promoter BAD by phosphorylation of its BH3 domain on Ser155.J. Biol. Chem.275, 25046–25051 (2000).
  • Hirai I , WangHG: Survival-factor-induced phosphorylation of Bad results in its dissociation from Bcl-x(L) but not Bcl-2.Biochem. J.359, 345–352 (2001).
  • Chao DT , LinetteGP, BoiseLH, WhiteLS, ThompsonCB, KorsmeyerSJ: Bcl-XL and Bcl-2 repress a common pathway of cell death.J. Exp. Med.182, 821–828 (1995).
  • Yang E , ZhaJ, JockelJ, BoiseLH, ThompsonCB, KorsmeyerSJ: Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death.Cell80, 285–291 (1995).
  • Campbell PJ , GreenAR: The myeloproliferative disorders.N. Engl. J. Med.355, 2452–2466 (2006).
  • Delhommeau F , PisaniDF, JamesC, CasadevallN, ConstantinescuS, VainchenkerW: Oncogenic mechanisms in myeloproliferative disorders.Cell Mol. Life Sci., 63, 2939–2953 (2006).
  • Rane SG , ReddyEP: Janus kinases: components of multiple signaling pathways.Oncogene19, 5662–5679 (2000).
  • Kisseleva T , BhattacharyaS, BraunsteinJ, SchindlerCW: Signaling through the JAK/STAT pathway, recent advances and future challenges.Gene285, 1–24 (2002).
  • Didichenko SA , SpieglN, BrunnerT, DahindenCA: IL-3 induces a Pim1-dependent antiapoptotic pathway in primary human basophils.Blood112, 3949–3958 (2008).
  • Gozgit JM , BebernitzG, PatilPet al.: Effects of the JAK2 inhibitor, AZ960, on Pim/BAD/BCL-xL survival signaling in the human JAK2 V617F cell line SET-2.J. Biol. Chem.283, 32334–32343 (2008).
  • Mizuno K , ShiroganeT, ShinoharaA, IwamatsuA, HibiM, HiranoT: Regulation of Pim-1 by Hsp90.Biochem. Biophys. Res. Commun.281, 663–669 (2001).
  • Shay KP , WangZ, XingPX, McKenzieIF, MagnusonNS: Pim-1 kinase stability is regulated by heat shock proteins and the ubiquitin-proteasome pathway.Mol. Cancer Res.3, 170–181 (2005).
  • Andina N , DidichenkoS, Schmidt-MendeJ, DahindenCA, SimonHU: Proviral integration site for Moloney murine leukemia virus 1, but not phosphatidylinositol-3 kinase, is essential in the antiapoptotic signaling cascade initiated by IL-5 in eosinophils.J. Allergy Clin. Immunol.123, 603–611 (2009).
  • Sathyanarayana P , DevA, FangJet al.: EPO receptor circuits for primary erythroblast survival.Blood111, 5390–5399 (2008).
  • Yao Q , NishiuchiR, KitamuraT, KerseyJH: Human leukemias with mutated FLT3 kinase are synergistically sensitive to FLT3 and Hsp90 inhibitors: the key role of the STAT5 signal transduction pathway.Leukemia19, 1605–1612 (2005).
  • Kim KT , BairdK, AhnJYet al.: Pim-1 is up-regulated by constitutively activated FLT3 and plays a role in FLT3-mediated cell survival.Blood105, 1759–1767 (2005).
  • Xie Y , BurcuM, BaerMR: The serine/threonine kinase Pim-1 stabilizes 130 kilodalton FLT3 and promotes aberrant signaling through STAT5 in acute myeloid leukemia cells with FLT3 internal tandem duplication: synergistic apoptosis induction by Pim-1 and FLT3 inhibitors. Presented at:51st ASH Annual Meeting and Exposition. New Orleans, LA, USA, 5–8 December 2009.
  • Nieborowska-Skorska M , HoserG, KossevP, WasikMA, SkorskiT: Complementary functions of the antiapoptotic protein A1 and serine/threonine kinase pim-1 in the BCR/ABL-mediated leukemogenesis.Blood99, 4531–4539 (2002).
  • Klejman A , SchreinerSJ, Nieborowska‑SkorskaMet al.: The Src family kinase Hck couples BCR/ABL to STAT5 activation in myeloid leukemia cells.EMBO J.21, 5766–5774 (2002).
  • Chen JL , LimnanderA, RothmanPB: Pim-1 and Pim-2 kinases are required for efficient pre-B-cell transformation by v-Abl oncogene.Blood111, 1677–1685 (2008).
  • Druker BJ , TamuraS, BuchdungerEet al.: Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells.Nat. Med.2, 561–566 (1996).
  • Xie Y , XuK, DaiBet al.: The 44 kDa Pim-1 kinase directly interacts with tyrosine kinase Etk/BMX and protects human prostate cancer cells from apoptosis induced by chemotherapeutic drugs.Oncogene, 25, 70–78 (1996).
  • Xie Y , XuK, LinnDEet al.: The 44-kDa Pim-1 kinase phosphorylates BCRP/ABCG2 and thereby promotes its multimerization and drug-resistant activity in human prostate cancer cells.J. Biol. Chem.283, 3349–3356 (2008).
  • Fox CJ , HammermanPS, ThompsonCB: The Pim kinases control rapamycin-resistant T cell survival and activation.J. Exp. Med.201, 259–266 (2005).
  • Welsh SJ , KohMY, PowisG: The hypoxic inducible stress response as a target for cancer drug discovery.Semin. Oncol.33, 486–497 (2006).
  • Dairkee SH , NicolauM, SayeedAet al.: Oxidative stress pathways highlighted in tumor cell immortalization: association with breast cancer outcome.Oncogene26, 6269–6279 (2007).
  • Chen J , KobayashiM, DarmaninSet al.: Hypoxia-mediated up-regulation of Pim-1 contributes to solid tumor formation.Am. J. Pathol.175, 400–411 (2009).
  • Reiser-Erkan C , ErkanM, PanZet al.: Hypoxia-inducible proto-oncogene Pim-1 is a prognostic marker in pancreatic ductal adenocarcinoma.Cancer Biol. Ther.7, 1352–1359 (2008).
  • Zemskova M , SahakianE, BashkirovaS, LillyM: The PIM1 kinase is a critical component of a survival pathway activated by docetaxel and promotes survival of docetaxel-treated prostate cancer cells.J. Biol. Chem.283, 20635–20644 (2008).
  • Hammerman PS , FoxCJ, CinalliRMet al.: Lymphocyte transformation by Pim-2 is dependent on nuclear factor-κB activation.Cancer Res.64, 8341–8348 (2004).
  • Lin HL , LiuTY, ChauGY, LuiWY, ChiCW: Comparison of 2-methoxyestradiol-induced, docetaxel-induced, and paclitaxel-induced apoptosis in hepatoma cells and its correlation with reactive oxygen species.Cancer89, 983–994 (2000).
  • Hinz M , LoserP, MathasS, KrappmannD, DorkenB, ScheidereitC: Constitutive NF-κB maintains high expression of a characteristic gene network, including CD40, CD86, and a set of antiapoptotic genes in Hodgkin/Reed-Sternberg cells.Blood97, 2798–2807 (2001).
  • Chen Z , SeimiyaH, NaitoMet al.: ASK1 mediates apoptotic cell death induced by genotoxic stress.Oncogene18, 173–180 (1999).
  • Gu JJ , WangZ, ReevesR, MagnusonNS: PIM1 phosphorylates and negatively regulates ASK1-mediated apoptosis.Oncogene28, 4261–4271 (2009).
  • Burgering BM , KopsGJ: Cell cycle and death control: long live Forkheads.Trends Biochem. Sci.27, 352–360 (2002).
  • Plas DR , ThompsonCB: Akt activation promotes degradation of tuberin and FoxO3a via the proteasome.J. Biol. Chem.278, 12361–12366 (2003).
  • Yang JY , ZongCS, XiaWet al.: ERK promotes tumorigenesis by inhibiting FoxO3a via MDM2-mediated degradation.Nat. Cell Biol.10, 138–148 (2008).
  • Michael D , OrenM: The p53-Mdm2 module and the ubiquitin system.Semin. Cancer Biol.13, 49–58 (2003).
  • Hogan C , HutchisonC, MarcarLet al.: Elevated levels of oncogenic protein kinase Pim-1 induce the p53 pathway in cultured cells and correlate with increased Mdm2 in mantle cell lymphoma.J. Biol. Chem.283, 18012–18023 (2008).
  • Bueso-Ramos CE , ManshouriT, HaidarMA, HuhYO, KeatingMJ, AlbitarM: Multiple patterns of MDM-2 deregulation in human leukemias: implications in leukemogenesis and prognosis.Leuk. Lymphoma17, 13–18 (1995).
  • Finnegan MC , GoepelJR, RoydsJ, HancockBW, GoynsMH: Elevated levels of MDM-2 and p53 expression are associated with high grade non-Hodgkin’s lymphomas.Cancer Lett.86, 215–221 (1994).
  • Murray SA , YangS, DemiccoEet al.: Increased expression of MDM2, cyclin D1, and p27Kip1 in carcinogen-induced rat mammary tumors.J. Cell Biochem.95, 875–884 (2005).
  • Dworakowska D , JassemE, JassemJet al.: MDM2 gene amplification: a new independent factor of adverse prognosis in non-small cell lung cancer (NSCLC).Lung Cancer43, 285–295 (2004).
  • Kondo I , IidaS, TakagiY, SugiharaK: MDM2 mRNA expression in the p53 pathway may predict the potential of invasion and liver metastasis in colorectal cancer.Dis. Colon Rectum51, 1395–1402 (2008).
  • Jeczen R , SkomraD, CybulskiMet al.: P53/MDM2 overexpression in metastatic endometrial cancer: correlation with clinicopathological features and patient outcome.Clin. Exp. Metastasis24, 503–511 (2007).
  • Quesnel B , PreudhommeC, OscierDet al.: Over-expression of the MDM2 gene is found in some cases of haematological malignancies.Br. J. Haematol.88, 415–418 (1994).
  • Iwakuma T , LozanoG: MDM2, an introduction.Mol. Cancer Res.1, 993–1000 (2003).
  • Dautry F , WeilD, YuJ, Dautry-VarsatA: Regulation of pim and myb mRNA accumulation by interleukin 2 and interleukin 3 in murine hematopoietic cell lines.J. Biol. Chem.263, 17615–17620 (1988).
  • Wingett D , ReevesR, MagnusonNS: Stability changes in pim-1 proto-oncogene mRNA after mitogen stimulation of normal lymphocytes.J. Immunol.147, 3653–3659 (1991).
  • Buckley AR , BuckleyDJ, LeffMA, HooverDS, MagnusonNS: Rapid induction of pim-1 expression by prolactin and interleukin-2 in rat Nb2 lymphoma cells.Endocrinology136, 5252–5259 (1995).
  • Krishnan N , PanH, BuckleyDJ, BuckleyA: Prolactin-regulated pim-1 transcription: identification of critical promoter elements and Akt signaling.Endocrine20, 123–130 (2003).
  • Liang H , HittelmanW, NagarajanL: Ubiquitous expression and cell cycle regulation of the protein kinase PIM-1.Arch. Biochem. Biophys.330, 259–265 (1996).
  • Miura O , MiuraY, NakamuraNet al.: Induction of tyrosine phosphorylation of Vav and expression of Pim-1 correlates with Jak2-mediated growth signaling from the erythropoietin receptor.Blood84, 4135–4141 (1994).
  • Shirogane T , FukadaT, MullerJM, ShimaDT, HibiM, HiranoT: Synergistic roles for Pim-1 and c-Myc in STAT3-mediated cell cycle progression and antiapoptosis.Immunity.11, 709–719 (1999).
  • Wingett D , LongA, KelleherD, MagnusonNS: pim-1 proto-oncogene expression in anti-CD3-mediated T cell activation is associated with protein kinase C activation and is independent of Raf-1.J. Immunol.156, 549–557 (1996).
  • Siegel JN , KlausnerRD, RappUR, SamelsonLE: T cell antigen receptor engagement stimulates c-raf phosphorylation and induces c-raf-associated kinase activity via a protein kinase C-dependent pathway.J. Biol. Chem.265, 18472–18480 (1990).
  • Altman A , IsakovN, BaierG: Protein kinase Cq: a new essential superstar on the T-cell stage.Immunol. Today21, 567–573 (2000).
  • Trushin SA , PenningtonKN, CarmonaEMet al.: Protein kinase Cα (PKCα) acts upstream of PKCθ to activate IκB kinase and NF-κB in T lymphocytes.Mol. Cell Biol.23, 7068–7081 (2003).
  • Zhu N , RamirezLM, LeeRL, MagnusonNS, BishopGA, GoldMR: CD40 signaling in B cells regulates the expression of the Pim-1 kinase via the NF-κ B pathway.J. Immunol.168, 744–754 (2002).
  • Bachmann M , HennemannH, XingPX, HoffmannI, MoroyT: The oncogenic serine/threonine kinase Pim-1 phosphorylates and inhibits the activity of Cdc25C-associated kinase 1 (C-TAK1): a novel role for Pim-1 at the G2/M cell cycle checkpoint.J. Biol. Chem.279, 48319–48328 (2004).
  • Bachmann M , KosanC, XingPX, MontenarhM, HoffmannI, MoroyT: The oncogenic serine/threonine kinase Pim-1 directly phosphorylates and activates the G2/M specific phosphatase Cdc25C.Int. J. Biochem. Cell Biol.38, 430–443 (2006).
  • Zhang Y , WangZ, MagnusonNS: Pim-1 kinase-dependent phosphorylation of p21Cip1/WAF1 regulates its stability and cellular localization in H1299 cells.Mol. Cancer Res.5, 909–922 (2007).
  • Maga G , HubscherU: Proliferating cell nuclear antigen (PCNA): a dancer with many partners.J. Cell Sci.116, 3051–3060 (2003).
  • Prives C , GottifrediV: The p21 and PCNA partnership: a new twist for an old plot.Cell Cycle7, 3840–3846 (2008).
  • Bhattacharya N , WangZ, DavittC, McKenzieIF, XingPX, MagnusonNS: Pim-1 associates with protein complexes necessary for mitosis.Chromosoma111, 80–95 (2002).
  • Koike N , MaitaH, TairaT, ArigaH, Iguchi-ArigaSM: Identification of heterochromatin protein 1 (HP1) as a phosphorylation target by Pim-1 kinase and the effect of phosphorylation on the transcriptional repression function of HP1(1).FEBS Lett.467, 17–21 (2000).
  • Horsley D , HutchingsA, ButcherGW, SinghPB: M32, a murine homologue of Drosophila heterochromatin protein 1 (HP1), localises to euchromatin within interphase nuclei and is largely excluded from constitutive heterochromatin.Cytogenet. Cell Genet.73, 308–311 (1996).
  • Roh M , GaryB, SongCet al.: Overexpression of the oncogenic kinase Pim-1 leads to genomic instability.Cancer Res.63, 8079–8084 (2003).
  • Roh M , SongC, KimJ, AbdulkadirSA: Chromosomal instability induced by Pim-1 is passage-dependent and associated with dysregulation of cyclin B1.J. Biol. Chem.280, 40568–40577 (2005).
  • Roh M , FrancoOE, HaywardSW, van der MeerR, AbdulkadirSA: A role for polyploidy in the tumorigenicity of Pim-1-expressing human prostate and mammary epithelial cells.PLoS One3, E2572 (2008).
  • Jung YJ , ChaeHC, SeohJYet al.: Pim-1 induced polyploidy but did not affect megakaryocytic differentiation of K562 cells and CD34+ cells from cord blood.Eur. J. Haematol.78, 131–138 (2007).
  • Eichmann A , YuanL, BreantC, AlitaloK, KoskinenPJ: Developmental expression of pim kinases suggests functions also outside of the hematopoietic system.Oncogene19, 1215–1224 (2000).
  • Wang Z , ZhangY, GuJJ, DavittC, ReevesR, MagnusonNS: Pim-2 phosphorylation of p21(Cip1/WAF1) enhances its stability and inhibits cell proliferation in HCT116 cells.Int. J. Biochem. Cell Biol.42, 1030–1038 (2010).
  • Chen WW , ChanDC, DonaldC, LillyMB, KraftAS: Pim family kinases enhance tumor growth of prostate cancer cells.Mol. Cancer Res.3, 443–451 (2005).
  • Thompson J , PeltolaKJ, KoskinenPJ, JanneOA, PalvimoJJ: Attenuation of androgen receptor-dependent transcription by the serine/threonine kinase Pim-1.Lab. Invest.83, 1301–1309 (2003).
  • van der Poel HG , ZevenhovenJ, BergmanAM: Pim1 regulates androgen-dependent survival signaling in prostate cancer cells.Urol. Int.84, 212–220 (2010).
  • Hilton DJ , RichardsonRT, AlexanderWSet al.: Twenty proteins containing a C-terminal SOCS box form five structural classes.Proc. Natl Acad. Sci. USA95, 114–119 (1998).
  • Lilly M , LeT, HollandP, HendricksonSL: Sustained expression of the pim-1 kinase is specifically induced in myeloid cells by cytokines whose receptors are structurally related.Oncogene7, 727–732 (1992).
  • Mui AL , WakaoH, KinoshitaT, KitamuraT, MiyajimaA: Suppression of interleukin-3-induced gene expression by a C-terminal truncated Stat5: role of Stat5 in proliferation.EMBO J.15, 2425–2433 (1996).
  • Chen XP , LosmanJA, CowanSet al.: Pim serine/threonine kinases regulate the stability of Socs-1 protein.Proc. Natl Acad. Sci. USA99, 2175–2180 (2002).
  • Peltola KJ , PaukkuK, AhoTL, RuuskaM, SilvennoinenO, KoskinenPJ: Pim-1 kinase inhibits STAT5-dependent transcription via its interactions with SOCS1 and SOCS3.Blood103, 3744–3750 (2004).
  • Shah N , PangB, YeohKGet al.: Potential roles for the PIM1 kinase in human cancer – a molecular and therapeutic appraisal.Eur. J. Cancer44, 2144–2151 (2008).
  • Brault L , GasserC, BracherF, HuberK, KnappS, SchwallerJ: PIM serine/threonine kinases in pathogenesis and therapy of hematological malignancies and solid cancers.Haematologica DOI: 10.3324/haematol.2009.017079 (2010) (Epub ahead of print).
  • Chen CN , LinJJ, ChenJJet al.: Gene expression profile predicts patient survival of gastric cancer after surgical resection.J. Clin. Oncol.23, 7286–7295 (2005).
  • Cibull TL , JonesTD, LiLet al.: Overexpression of Pim-1 during progression of prostatic adenocarcinoma.J. Clin. Pathol.59, 285–288 (2006).
  • Xu Y , ZhangT, TangHet al.: Overexpression of PIM-1 is a potential biomarker in prostate carcinoma.J. Surg. Oncol.92, 326–330 (2005).
  • He HC , BiXC, ZhengZWet al.: Real-time quantitative RT-PCR assessment of PIM-1 and hK2 mRNA expression in benign prostate hyperplasia and prostate cancer.Med. Oncol.26, 303–308 (2009).
  • Buchholz M , BraunM, HeidenblutAet al.: Transcriptome analysis of microdissected pancreatic intraepithelial neoplastic lesions.Oncogene24, 6626–6636 (2005).
  • Beier UH , WeiseJB, LaudienM, SauerweinH, GoroghT: Overexpression of Pim-1 in head and neck squamous cell carcinomas.Int. J. Oncol.30, 1381–1387 (2007).
  • Peltola K , HollmenM, MaulaSMet al.: Pim-1 kinase expression predicts radiation response in squamocellular carcinoma of head and neck and is under the control of epidermal growth factor receptor.Neoplasia11, 629–636 (2009).
  • Choi JY , ChoSI, DoNY, KangCY, LimSC: Clinical significance of the expression of galectin-3 and Pim-1 in laryngeal squamous cell carcinoma.J. Otolaryngol. Head Neck Surg.39, 28–34 (2010).
  • Warnecke-Eberz U , BollschweilerE, DrebberUet al.: Prognostic impact of protein overexpression of the proto-oncogene PIM-1 in gastric cancer.AntiCancer Res.29, 4451–4455 (2009).
  • Sepulveda AR , TaoH, CarloniE, SepulvedaJ, GrahamDY, PetersonLE: Screening of gene expression profiles in gastric epithelial cells induced by Helicobacter pylori using microarray analysis.Aliment. Pharmacol. Ther.16(Suppl. 2), 145–157 (2002).
  • Chang YT , WuMS, ChangYJet al.: Distinct gene expression profiles in gastric epithelial cells induced by different clinical isolates of Helicobacter pylori – implication of bacteria and host interaction in gastric carcinogenesis.Hepatogastroenterology53, 484–490 (2006).
  • Hoefnagel JJ , DijkmanR, BassoKet al.: Distinct types of primary cutaneous large B-cell lymphoma identified by gene expression profiling.Blood105, 3671–3678 (2005).
  • His ED , JungSH, LaiRet al.: Ki67 and PIM1 expression predict outcome in mantle cell lymphoma treated with high dose therapy, stem cell transplantation and rituximab: a Cancer and Leukemia Group B 59909 correlative science study.Leuk. Lymphoma49, 2081–2090 (2008).
  • Smith RA , CokkinidesV, BrooksD, SaslowD, BrawleyOW: Cancer screening in the United States, 2010: a review of current American Cancer Society guidelines and issues in cancer screening.CA Cancer J. Clin.60, 99–119 (2010).
  • Babel I , BarderasR, Diaz-UriarteR, Martinez-TorrecuadradaJL, Sanchez‑CarbayoM, CasalJI: Identification of tumor-associated autoantigens for the diagnosis of colorectal cancer in serum using high density protein microarrays.Mol. Cell Proteomics.8, 2382–2395 (2009).
  • Jacobs MD , BlackJ, FuterOet al.: Pim-1 ligand-bound structures reveal the mechanism of serine/threonine kinase inhibition by LY294002.J. Biol. Chem.280, 13728–13734 (2005).
  • Kumar A , MandiyanV, SuzukiYet al.: Crystal structures of proto-oncogene kinase Pim1: a target of aberrant somatic hypermutations in diffuse large cell lymphoma.J. Mol. Biol.348, 183–193 (2005).
  • Bullock AN , DebreczeniJE, FedorovOY, NelsonA, MarsdenBD, KnappS: Structural basis of inhibitor specificity of the human protooncogene proviral insertion site in moloney murine leukemia virus (PIM-1) kinase.J. Med. Chem.48, 7604–7614 (2005).
  • Debreczeni JE , BullockAN, AtillaGEet al.: Ruthenium half-sandwich complexes bound to protein kinase Pim-1.Angew. Chem. Int. Ed. Engl.45, 1580–1585 (2006).
  • Bregman H , MeggersE: Ruthenium half-sandwich complexes as protein kinase inhibitors: an N-succinimidyl ester for rapid derivatizations of the cyclopentadienyl moiety.Org. Lett.8, 5465–5468 (2006).
  • Pogacic V , BullockAN, FedorovOet al.: Structural analysis identifies imidazo[1,2-b]pyridazines as PIM kinase inhibitors with in vitro antileukemic activity.Cancer Res.67, 6916–6924 (2007).
  • Cheney IW , YanS, ApplebyTet al.: Identification and structure-activity relationships of substituted pyridones as inhibitors of Pim-1 kinase.Bioorg. Med. Chem. Lett.17, 1679–1683 (2007).
  • Holder S , LillyM, BrownML: Comparative molecular field analysis of flavonoid inhibitors of the PIM-1 kinase.Bioorg. Med. Chem.15, 6463–6473 (2007).
  • Holder S , ZemskovaM, ZhangCet al.: Characterization of a potent and selective small-molecule inhibitor of the PIM1 kinase.Mol. Cancer Ther.6, 163–172 (2007).
  • Pierce AC , JacobsM, Stuver-MoodyC: Docking study yields four novel inhibitors of the protooncogene Pim-1 kinase.J. Med. Chem.51, 1972–1975 (2008).
  • Tong Y , StewartKD, ThomasSet al.: Isoxazolo[3,4-b]quinoline-3,4(1H,9H)-diones as unique, potent and selective inhibitors for Pim-1 and Pim-2 kinases: chemistry, biological activities, and molecular modeling.Bioorg. Med. Chem. Lett.18, 5206–5208 (2008).
  • Xia Z , KnaakC, MaJet al.: Synthesis and evaluation of novel inhibitors of Pim-1 and Pim-2 protein kinases.J. Med. Chem.52, 74–86 (2009).
  • Qian K , WangL, CywinCLet al.: Hit to lead account of the discovery of a new class of inhibitors of Pim kinases and crystallographic studies revealing an unusual kinase binding mode.J. Med. Chem.52, 1814–1827 (2009).
  • Tao ZF , HasvoldLA, LeversonJDet al.: Discovery of 3H-benzo[4,5]thieno[3,2-d]pyrimidin-4-ones as potent, highly selective, and orally bioavailable inhibitors of the human protooncogene proviral insertion site in moloney murine leukemia virus (PIM) kinases.J. Med. Chem.52, 6621–6636 (2009).
  • Akue-Gedu R , RossignolE, AzzaroSet al.: Synthesis, kinase inhibitory potencies, and in vitro antiproliferative evaluation of new Pim kinase inhibitors.J. Med. Chem.52, 6369–6381 (2009).
  • Mumenthaler SM , NgPY, HodgeAet al.: Pharmacologic inhibition of Pim kinases alters prostate cancer cell growth and resensitizes chemoresistant cells to taxanes.Mol. Cancer Ther.8, 2882–2893 (2009).
  • Fiskus WC , BucklyKM, RaoRet al.: Synergistic activity of co-treatment with PIM1 kinase inhibitor SGI-1776 and histone deacetylase inhibitor panobinostat or heat shock protein 90 inhibitor AUY922 against human CML and myeloproliferative neoplasm (MPN) cells. Presented at:51st ASH Annual Meeting and Exposition. New Orleans, LA, USA, 5–8 December 2009.
  • Xie Y , XuK, DaiBet al.: The 44 kDa Pim-1 kinase directly interacts with tyrosine kinase Etk/BMX and protects human prostate cancer cells from apoptosis induced by chemotherapeutic drugs.Oncogene25, 70–78 (2006).
  • Xie Y , XuK, LinnDEet al.: The 44-kDa Pim-1 kinase phosphorylates BCRP/ABCG2 and thereby promotes its multimerization and drug-resistant activity in human prostate cancer cells.J. Biol. Chem.283, 3349–3356 (2008).
  • Kage K , TsukaharaS, SugiyamaTet al.: Dominant-negative inhibition of breast cancer resistance protein as drug efflux pump through the inhibition of S-S dependent homodimerization.Int. J. Cancer97, 626–630 (2002).
  • Hu XF , LiJ, VandervalkS, WangZ, MagnusonNS, XingPX: PIM-1-specific mAb suppresses human and mouse tumor growth by decreasing PIM-1 levels, reducing Akt phosphorylation, and activating apoptosis.J. Clin. Invest.119, 362–375 (2009).
  • Li J , HuXF, LovelandBE, XingPX: Pim-1 expression and monoclonal antibody targeting in human leukemia cell lines.Exp. Hematol.37, 1284–1294 (2009).
  • Peng C , KnebelA, MorriceNAet al.: Pim kinase substrate identification and specificity.J. Biochem.141, 353–362 (2007).
  • Palaty CK , Clark-LewisI, LeungD, PelechSL: Phosphorylation site substrate specificity determinants for the Pim-1 protooncogene-encoded protein kinase.Biochem. Cell Biol.75, 153–162 (1997).
  • Friedmann M , NissenMS, HooverDS, ReevesR, MagnusonNS: Characterization of the proto-oncogene pim-1: kinase activity and substrate recognition sequence.Arch. Biochem. Biophys.298, 594–601 (1992).
  • Nishikawa K , TokerA, JohannesFJ, SongyangZ, CantleyLC: Determination of the specific substrate sequence motifs of protein kinase C isozymes.J. Biol. Chem.272, 952–960 (1997).
  • Walker KS , DeakM, PatersonA, HudsonK, CohenP, AlessiDR: Activation of protein kinase B β and γ isoforms by insulin in vivo and by 3-phosphoinositide-dependent protein kinase-1 in vitro: comparison with protein kinase B α.Biochem. J.331(Pt 1), 299–308 (1998).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.