396
Views
0
CrossRef citations to date
0
Altmetric
Review

Optical Spectroscopy: Current Advances and Future Applications in Cancer Diagnostics and Therapy

, , &
Pages 307-320 | Published online: 12 Mar 2012

References

  • Dougherty L , IsaacG, RosenMet al. High frame-rate simultaneous bilateral breast DCE–MRI. Magn. Reson. Med. 57(1), 220–225 (2007).
  • Chou C , WuM, ChangHet al. Monitoring breast cancer response to neoadjuvant systemic chemotherapy using parametric contrast-enhanced MRI: a pilot study. Acad. Radiol. 14(5), 561–573 (2007).
  • Kapse N , GohV. Functional imaging of colorectal cancer: positron emission tomography, magnetic resonance imaging, and computed tomography.Clin. Colorectal Cancer8(2), 77–87 (2009).
  • Harry V , SempleS, ParkinD, GilbertF. Use of new imaging techniques to predict tumour response to therapy.Lancet Oncol.11(1), 92–102 (2010).
  • Frangioni J . New technologies for human cancer imaging.J. Clin. Oncol.26(24), 4012–4021 (2008).
  • Kondepati V , HeiseH, BackhausJ. Recent applications of near-infrared spectroscopy in cancer diagnosis and therapy.Anal. Bioanal. Chem.390(1), 125–139 (2008).
  • Brown J , VishwanathK, PalmerG, RamanujamN. Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer.Curr. Opin Biotechnol.20(1), 119–131 (2009).
  • Palmer G , ViolaR, SchroederT, YarmolenkoP, DewhirstM, RamanujamN. Quantitative diffuse reflectance and fluorescence spectroscopy: tool to monitor tumor physiology in vivo.J. Biomed. Opt.14(2), 024010 (2009).
  • Cerussi A , HsiangD, ShahNet al. Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy. PNAS 104(10), 4014–4019 (2007).
  • Zhou C , ChoeR, ShahNet al. Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy. J. Biomed. Opt. 12(5), 051903 (2007).
  • Wagnières G , StarW, WilsonB. In vivo fluorescence spectroscopy and imaging for oncological applications.Photochem. Photobiol.68(5), 603–632 (1998).
  • Richards-Kortum R , Sevick-MuracaE. Quantitative optical spectroscopy for tissue diagnosis.Annu. Rev. Phys. Chem.47, 555–606 (1996).
  • Vishwanath K , YuanH, BarryW, DewhirstM, RamanujamN. Using optical spectroscopy to longitudinally monitor physiological changes within solid tumors.Neoplasia11(9), 889–900 (2009).
  • Nachabé R , HendriksB, DesjardinsA, van der VoortM, van der MarkM, SterenborgH. Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1,600 nm.J. Biomed. Opt.15(3), 037015 (2010).
  • He S , DunnK, EspinoPet al. Chromatin organization and nuclear microenvironments in cancer cells. J. Cell. Biochem. 104(6), 2004–2015 (2008).
  • Ramanujam N . Fluorescence spectroscopy of neoplastic and non-neoplastic tissues.Neoplasia2(1–2), 89–117 (2000).
  • Troyan S , KianzadV, Gibbs-StraussSet al. The FLARE intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in breast cancer sentinel lymph node mapping. Ann. Surg. Oncol. 16(10), 2943–2952 (2009).
  • Tanaka E , ChoiH, FujiiH, BawendiM, FrangioniJ. Image-guided oncologic surgery using invisible light: completed pre-clinical development for sentinel lymph node mapping.Ann. Surg. Oncol.13(12), 1671–1681 (2006).
  • Hanlon E , ManoharanR, KooTet al. Prospects for in vivo Raman spectroscopy. Phys. Med. Biol. 45(2), R1–R59 (2000).
  • Krafft C , SteinerG, BeleitesC, SalzerR. Disease recognition by infrared and Raman spectroscopy.J. Biophotonics2(1–2), 13–28 (2009).
  • Brancaleon L , DurkinA, TuJ, MenakerG, FallonJ, KolliasN. In vivo fluorescence spectroscopy of nonmelanoma skin cancer.Photochem. Photobiol.73(2), 178–183 (2001).
  • Rajaram N , AramilT, LeeK, ReichenbergJ, NguyenT, TunnellJ. Design and validation of a clinical instrument for spectral diagnosis of cutaneous malignancy.Appl. Opt.49(2), 142–152 (2010).
  • Gniadecka M , PhilipsenP, SigurdssonSet al. Melanoma diagnosis by Raman spectroscopy and neural networks: structure alterations in proteins and lipids in intact cancer tissue. J. Invest. Dermatol. 122(2), 443–439 (2004).
  • Choi J , ChooJ, ChungHet al. Direct observation of spectral differences between normal and basal cell carcinoma (BCC) tissues using confocal Raman microscopy. Biopolymers 77(5), 264–272 (2005).
  • Nijssen A , MaquelinK, SantosLet al. Discriminating basal cell carcinoma from perilesional skin using high wave-number Raman spectroscopy. J. Biomed. Opt. 12(3), 034004 (2007).
  • Lieber C , MajumderS, EllisD, BillheimerD, Mahadevan-JansenA. In vivo nonmelanoma skin cancer diagnosis using Raman microspectroscopy.Lasers Surg. Med.40(7), 461–467 (2008).
  • Amelink A , KaspersO, SterenborgH, van der WalJ, RoodenburgJ, WitjesM. Non-invasive measurement of the morphology and physiology of oral mucosa by use of optical spectroscopy.Oral Oncol.44(1), 65–71 (2008).
  • Mallia R , NarayananS, MadhavanJet al. Diffuse reflection spectroscopy: an alternative to autofluorescence spectroscopy in tongue cancer detection. Appl. Spectrosc. 64(4), 409–418 (2010).
  • Mallia R , ThomasS, MathewsAet al. Oxygenated hemoglobin diffuse reflectance ratio for in vivo detection of oral cancer. J. Biomed. Opt. 13(4), 041306 (2008).
  • De Veld D , SkurichinaM, WitjesM, DuinR, SterenborgH, RoodenburgJ. Autofluorescence and diffuse reflectance spectroscopy for oral oncology.Lasers Surg. Med.36(5), 356–364 (2005).
  • Schwarz R , GaoW, Redden WeberCet al. Noninvasive evaluation of oral lesions using depth-sensitive optical spectroscopy. Cancer 115(8), 1669–1679 (2009).
  • McGee S , MardirossianV, ElackattuAet al. Anatomy-based algorithms for detecting oral cancer using reflectance and fluorescence spectroscopy. Ann. Otol. Rhinol. Laryngol. 118(11), 817–826 (2009).
  • Cerussi A , ShahN, HsiangD, DurkinA, ButlerJ, TrombergB. In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy.J. Biomed. Opt.11(4), 044005 (2006).
  • Kukreti S , CerussiA, TanamaiW, HsiangD, TrombergB, GrattonE. Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy.Radiology254(1), 277–284 (2010).
  • Bigio I , BownS, BriggsGet al. Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results. J. Biomed. Opt. 5(2), 221–228 (2000).
  • Zhu C , PalmerG, BreslinT, HarterJ, RamanujamN. Diagnosis of breast cancer using diffuse reflectance spectroscopy: comparison of a Monte Carlo versus partial least squares analysis based feature extraction technique.Lasers Surg. Med.38(7), 714–724 (2006).
  • Brown J , WilkeL, GeradtsJ, KennedyS, PalmerG, RamanujamN. Quantitative optical spectroscopy: a robust tool for direct measurement of breast cancer vascular oxygenation and total hemoglobin content in vivo.Cancer Res.69(7), 2919–2926 (2009).
  • Van Veen R , AmelinkA, Menke-PluymersM, Van Der PolC, SterenborgH. Optical biopsy of breast tissue using differential path-length spectroscopy.Phys. Med. Biol.50(11), 2573–2581 (2005).
  • Nachabé R , EversD, HendriksBet al. Diagnosis of breast cancer using diffuse optical spectroscopy from 500 to 1600 nm: a comparison of classification methods. J. Biomed. Opt. 16(8), 087010 (2011).
  • Gupta P , MajumderS, UppalA. Breast cancer diagnosis using N2 laser excited autofluorescence spectroscopy.Lasers Surg. Med.21(5), 417–422 (1997).
  • Palmer G , KeelyP, BreslinT, RamanujamN. Autofluorescence spectroscopy of normal and malignant human breast cell lines.Photochem. Photobiol.78(5), 462–469 (2003).
  • Chowdary M , MahatoK, KumarKet al. Autofluorescence of breast tissues: evaluation of discriminating algorithms for diagnosis of normal, benign, and malignant conditions. Photomed. Laser Surg. 27(2), 241–252 (2009).
  • Haka A , VolynskayaZ, GardeckiJet al. In vivo margin assessment during partial mastectomy breast surgery using Raman spectroscopy. Cancer Res. 66(6), 3317–3322 (2006).
  • Haka A , VolynskayaZ, GardeckiJet al. Diagnosing breast cancer using Raman spectroscopy: prospective analysis. J. Biomed. Opt. 14(5), 054023 (2009).
  • Haka A , Shafer-PeltierK, FitzmauriceM, CroweJ, DasariR, FeldM. Diagnosing breast cancer by using Raman spectroscopy.PNAS102(35), 12371–12376 (2005).
  • Breslin T , XuF, PalmerG, ZhuC, GilchristK, RamanujamN. Autofluorescence and diffuse reflectance properties of malignant and benign breast tissues.Ann. Surg. Oncol.11(1), 65–70 (2004).
  • Volynskaya Z , HakaA, BechtelKet al. Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy. J. Biomed. Opt. 13(2), 024012 (2008).
  • Zhu C , BreslinT, HarterJ, RamanujamN. Model based and empirical spectral analysis for the diagnosis of breast cancer.Biomed. Opt. Express16(19), 14961–14978 (2008).
  • Zhu C , PalmerG, BreslinT, HarterJ, RamanujamN. Diagnosis of breast cancer using fluorescence and diffuse reflectance spectroscopy: a Monte-Carlo-model-based approach.J. Biomed. Opt.13(3), 034015 (2008).
  • Keller M , MajumderS, KelleyMet al. Autofluorescence and diffuse reflectance spectroscopy and spectral imaging for breast surgical margin analysis. Lasers Surg. Med. 42(1), 15–23 (2010).
  • Majumder S , KellerM, BoulosF, KelleyM, Mahadevan-JansenA. Comparison of autofluorescence, diffuse reflectance, and Raman spectroscopy for breast tissue discrimination.J. Biomed. Opt.13(5), 054009 (2008).
  • Cardenas-Turanzas M , FreebergJ, BenedetJet al. The clinical effectiveness of optical spectroscopy for the in vivo diagnosis of cervical intraepithelial neoplasia: where are we? Gynecol. Oncol. 107(1 Suppl. 1), S138–S146 (2007).
  • Murali Krishna C , SockalingumGD, VidyasagarMSet al. An overview on applications of optical spectroscopy in cervical cancers. J. Cancer Res. Ther. 4(1), 26–36 (2008).
  • Mourant J , BocklageT, PowersTet al. In vivo light scattering measurements for detection of precancerous conditions of the cervix. Gynecol. Oncol. 105(2), 439–445 (2007).
  • Chang V , CartwrightP, BeanS, PalmerG, BentleyR, RamanujamN. Quantitative physiology of the precancerous cervix in vivo through optical spectroscopy.Neoplasia11(4), 325–332 (2009).
  • Keller M , KanterE, LieberCet al. Detecting temporal and spatial effects of epithelial cancers with Raman spectroscopy. Dis. Markers 25(6), 323–337 (2008).
  • Bard M , AmelinkA, HegtVet al. Measurement of hypoxia-related parameters in bronchial mucosa by use of optical spectroscopy. Am. J. Respir. Crit. Care Med. 171(10), 1178–1184 (2005).
  • Bard M , AmelinkA, SkurichinaMet al. Optical spectroscopy for the classification of malignant lesions of the bronchial tree. Chest 129(4), 995–1001 (2006).
  • Fawzy Y , PetekM, TerceljM, ZengH. In vivo assessment and evaluation of lung tissue morphologic and physiological changes from non-contact endoscopic reflectance spectroscopy for improving lung cancer detection.J. Biomed. Opt.11(4), 044003 (2006).
  • Fawzy Y , ZengH. Intrinsic fluorescence spectroscopy for endoscopic detection and localization of the endobronchial cancerous lesions.J. Biomed. Opt.13(6), 064022 (2008).
  • Yamazaki H , KaminakaS, KohdaE, MukaiM, HamaguchiH. The diagnosis of lung cancer using 1064-nm excited near-infrared multichannel Raman spectroscopy.Radiat. Med.21(1), 1–6 (2003).
  • Georgakoudi I , JacobsonB, Van DamJet al. Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus. Gastroenterology 120(7), 1620–1629 (2001).
  • Lovat L , JohnsonK, MackenzieGet al. Elastic scattering spectroscopy accurately detects high grade dysplasia and cancer in Barrett’s oesophagus. Gut 55(8), 1078–1083 (2006).
  • Teh S , ZhengW, HoK, TehM, YeohK, HuangZ. Diagnostic potential of near-infrared Raman spectroscopy in the stomach: differentiating dysplasia from normal tissue.Br. J. Cancer98(2), 457–465 (2008).
  • Teh S , ZhengW, HoK, TehM, YeohK, HuangZ. Near-infrared Raman spectroscopy for early diagnosis and typing of adenocarcinoma in the stomach.Br. J. Surg.97(4), 550–557 (2010).
  • Dhar A , JohnsonK, NovelliMet al. Elastic scattering spectroscopy for the diagnosis of colonic lesions: initial results of a novel optical biopsy technique. Gastrointest. Endosc. 63(2), 257–261 (2006).
  • Wang H , JiangJ, LinC, LinJ, HuangG, YuJ. Diffuse reflectance spectroscopy detects increased hemoglobin concentration and decreased oxygenation during colon carcinogenesis from normal to malignant tumors.Biomed. Opt. Express17(4), 2805–2817 (2009).
  • Chowdary M , KumarK, ThakurKet al. Discrimination of normal and malignant mucosal tissues of the colon by Raman spectroscopy. Photomed. Laser Surg. 25(4), 269–274 (2007).
  • Buttemere C , ChariR, AndersonC, WashingtonM, Mahadevan-JansenA, LinW. In vivo assessment of thermal damage in the liver using optical spectroscopy.J. Biomed. Opt.9(5), 1018–1027 (2004).
  • Anderson C , LinW, ButtemereCet al. Real-time spectroscopic assessment of thermal damage: implications for radiofrequency ablation. J. Gastrointest. Surg. 8(6), 660–669 (2004).
  • Anderson C , LinW, BeckhamJet al. Fluorescence spectroscopy accurately detects irreversible cell damage during hepatic radiofrequency ablation. Surgery 136(3), 524–531 (2004).
  • Hsu C , RazaviM, SoS, ParachikovI, BenaronD. Liver tumor gross margin identification and ablation monitoring during liver radiofrequency treatment.J. Vasc. Interv. Radiol.16(11), 1473–1478 (2005).
  • Nachabé R , EversD, HendriksBet al. Effect of bile absorption coefficients on the estimation of liver tissue optical properties and related complications in discriminating healthy and tumorous samples. Biomed. Opt. Express 2(3), 600–614 (2011).
  • Parekh D , LinW, HerrellS. Optical spectroscopy characteristics can differentiate benign and malignant renal tissues: a potentially useful modality.J. Urol.174(5), 1754–1758 (2005).
  • Bensalah K , PeswaniD, TuncelAet al. Optical reflectance spectroscopy to differentiate benign from malignant renal tumors at surgery. Urology 73(1), 178–181 (2009).
  • Bensalah K , FleureauJ, RollandDet al. Raman spectroscopy: a novel experimental approach to evaluating renal tumours. Eur. Urol. 58(4), 602–608 (2010).
  • Wills H , KastR, StewartCet al. Diagnosis of Wilms’ tumor using near-infrared Raman spectroscopy. J. Pediatr. Surg. 44(6), 1152–1158 (2009).
  • Lieber C , KabeerM. Characterization of pediatric Wilms’ tumor using Raman and fluorescence spectroscopies.J. Pediatr. Surg.45(3), 549–554 (2010).
  • Osinsky S , ZavelevichM, VaupelP. Tumor hypoxia and malignant progression.Exp. Oncol.31(2), 80–86 (2009).
  • Vaupel P , MayerA, BriestS, HöckelM. Hypoxia in breast cancer: role of blood flow, oxygen diffusion distances, and anemia in the development of oxygen depletion.Adv. Exp. Med. Biol.566, 333–342 (2005).
  • Walker R . The complexities of breast cancer desmoplasia.Breast Cancer Res.3(3), 143–145 (2001).
  • Georgakoudi I , JacobsonB, MüllerMet al. NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes. Cancer Res. 62(3), 682–687 (2002).
  • Zhu C , BurnsideE, SisneyGet al. Fluorescence spectroscopy: an adjunct diagnostic tool to image-guided core needle biopsy of the breast. IEEE Trans. Biomed. Eng. 56(10), 2518–2528 (2009).
  • Wilke L , BrownJ, BydlonTet al. Rapid noninvasive optical imaging of tissue composition in breast tumor margins. Am. J. Surg. 198(4), 566–574 (2009).
  • Alchab L , DupuisG, BalleyguierC, MathieuM, Fontaine-AupartM, FarcyR. Towards an optical biopsy for the diagnosis of breast cancer in vivo by endogenous fluorescence spectroscopy.J. Biophotonics3(5–6), 373–384 (2010).
  • Ostrander J , McMahonC, LemSet al. Optical redox ratio differentiates breast cancer cell lines based on estrogen receptor status. Cancer Res. 70(11), 4759–4766 (2010).
  • Cerussi A , TanamaiV, MehtaR, HsiangD, ButlerJ, TrombergB. Frequent optical imaging during breast cancer neoadjuvant chemotherapy reveals dynamic tumor physiology in an individual patient.Acad. Radiol.17(8), 1031–1039 (2010).
  • Tromberg BJ , CerussiAE. Imaging breast cancer chemotherapy response with light. Commentary on Soliman et al. p. 2605.Clin. Cancer Res.16(9), 2486–2488(2010).
  • Soliman H , GunasekaraA, RycroftMet al. Functional imaging using diffuse optical spectroscopy of neoadjuvant chemotherapy response in women with locally advanced breast cancer. Clin. Cancer Res. 16(9), 2605–2614 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.