145
Views
0
CrossRef citations to date
0
Altmetric
Review

High-Throughput Screening Strategies for Targeted Identification of Therapeutic Compounds in Colorectal Cancer

&
Pages 259-272 | Published online: 12 Mar 2012

References

  • Macarron R , BanksMN, BojanicDet al. Impact of high-throughput screening in biomedical research. Nat. Rev. Drug Discov. 10(3), 188–195 (2011).
  • Macarron R , HertzbergRP. Design and implementation of high throughput screening assays.Mol. Biotechnol.47(3), 270–285 (2011).
  • Fearon ER . Molecular genetics of colorectal cancer.Annu. Rev. Pathol.6, 479–507 (2011).
  • Bamford S , DawsonE, ForbesSet al. The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. Br. J. Cancer 91(2), 355–358 (2004).
  • Logan CY , NusseR. The Wnt signaling pathway in development and disease.Annu. Rev. Cell Dev. Biol.20, 781–810 (2004).
  • Liu C , LiY, SemenovMet al. Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108(6), 837–847 (2002).
  • Mao J , WangJ, LiuBet al. Low-density lipoprotein receptor-related protein-5 binds to axin and regulates the canonical Wnt signaling pathway. Mol. Cell 7(4), 801–809 (2001).
  • Schweizer L , VarmusH. Wnt/Wingless signaling through beta-catenin requires the function of both LRP/Arrow and frizzled classes of receptors.BMC Cell Biol.4, 4 (2003).
  • Gregorieff A , PintoD, BegthelH, DestreeO, KielmanM, CleversH. Expression pattern of Wnt signaling components in the adult intestine.Gastroenterology129(2), 626–638 (2005).
  • Brabletz S , SchmalhoferO, BrabletzT. Gastrointestinal stem cells in development and cancer.J. Pathol.217(2), 307–317 (2009).
  • Haegebarth A , CleversH. Wnt signaling, lgr5, and stem cells in the intestine and skin.Am. J. Pathol.174(3), 715–721 (2009).
  • Vermeulen L , de SousaEM, van der HeijdenMet al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat. Cell Biol. 12(5), 468–476 (2010).
  • Barker N , CleversH. Mining the Wnt pathway for cancer therapeutics.Nat. Rev. Drug Discov.5(12), 997–1014 (2006).
  • Segditsas S , TomlinsonI. Colorectal cancer and genetic alterations in the Wnt pathway.Oncogene25(57), 7531–7537 (2006).
  • Chen B , DodgeME, TangWet al. Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nat. Chem. Biol. 5(2), 100–107 (2009).
  • Huang SM , MishinaYM, LiuSet al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461(7264), 614–620 (2009).
  • Thorne CA , HansonAJ, SchneiderJet al. Small-molecule inhibition of Wnt signaling through activation of casein kinase 1α. Nat. Chem. Biol. 6(11), 829–836 (2010).
  • Ewan K , PajakB, StubbsMet al. A useful approach to identify novel small-molecule inhibitors of Wnt-dependent transcription. Cancer Res. 70(14), 5963–5973 (2010).
  • Lepourcelet M , ChenYN, FranceDSet al. Small-molecule antagonists of the oncogenic Tcf/beta-catenin protein complex. Cancer Cell 5(1), 91–102 (2004).
  • Emami KH , NguyenC, MaHet al. A small molecule inhibitor of beta-catenin/CREB-binding protein transcription [corrected]. Proc. Natl Acad. Sci. USA 101(34), 12682–12687 (2004).
  • Gonsalves FC , KleinK, CarsonBBet al. An RNAi-based chemical genetic screen identifies three small-molecule inhibitors of the Wnt/wingless signaling pathway. Proc. Natl Acad. Sci. USA 108(15), 5954–5963 (2011).
  • Baum B , GeorgiouM. Dynamics of adherens junctions in epithelial establishment, maintenance, and remodeling.J. Cell Biol.192(6), 907–917 (2011).
  • Dasgupta R , KaykasA, MoonRT, PerrimonN. Functional genomic analysis of the Wnt-wingless signaling pathway.Science308(5723), 826–833 (2005).
  • Boye K , MaelandsmoGM. S100A4 and metastasis: a small actor playing many roles.Am. J. Pathol.176(2), 528–535 (2010).
  • Stein U , BurockS, HerrmannPet al. Diagnostic and prognostic value of metastasis inducer S100A4 transcripts in plasma of colon, rectal, and gastric cancer patients. J. Mol. Diagn. 13(2), 189–198 (2011).
  • Sack U , SteinU. Wnt up your mind – intervention strategies for S100A4-induced metastasis in colon cancer.Gen. Physiol. Biophys.28(Spec No Focus), F55–F64 (2009).
  • Sack U , WaltherW, ScudieroDet al. S100A4-induced cell motility and metastasis is restricted by the Wnt/beta-catenin pathway inhibitor calcimycin in colon cancer cells. Mol. Biol. Cell 22(18), 3344–3354 (2011).
  • Sack U , WaltherW, ScudieroDet al. Novel effect of antihelminthic niclosamide on S100A4-mediated metastatic progression in colon cancer. J. Natl Cancer Inst. 103(13), 1018–1036 (2011).
  • Krasinskas AM . EGFR signaling in colorectal carcinoma.Patholog. Res. Int.2011, 932932 (2011).
  • Castellano E , DownwardJ. RAS interaction with PI3K: more than just another effector pathway.Genes Cancer2(3), 261–274 (2011).
  • Zhang W , LiuHT. MAPK signal pathways in the regulation of cell proliferation in mammalian cells.Cell Res.12(1), 9–18 (2002).
  • De Roock W , De VriendtV, NormannoN, CiardielloF, TejparS. KRAS , BRAF, PIK3CA, and PTEN mutations: implications for targeted therapies in metastatic colorectal cancer.Lancet Oncol.12(6), 594–603 (2011).
  • Torrance CJ , AgrawalV, VogelsteinB, KinzlerKW. Use of isogenic human cancer cells for high-throughput screening and drug discovery.Nature Biotechnol.19(10), 940–945 (2001).
  • Mallon R , FeldbergL, KimSet al. Identification of 4-anilino-3-quinolinecarbonitrile inhibitors of mitogen-activated protein/extracellular signal-regulated kinase 1 kinase. Mol. Cancer Ther. 3(6), 755–762 (2004).
  • McConnell BB , GhalebAM, NandanMO, YangVW. The diverse functions of Kruppel-like factors 4 and 5 in epithelial biology and pathobiology.Bioessays29(6), 549–557 (2007).
  • McConnell BB , YangVW. Mammalian Kruppel-like factors in health and diseases.Physiol. Rev.90(4), 1337–1381 (2010).
  • Bialkowska AB , CrispM, BannisterTet al. Identification of small-molecule inhibitors of the colorectal cancer oncogene Kruppel-like factor 5 expression by ultrahigh-throughput screening. Mol. Cancer Ther. 10(11), 2043–2051 (2011).
  • Samuels Y , WaldmanT. Oncogenic mutations of PIK3CA in human cancers.Curr. Top. Microbiol. Immunol.347, 21–41 (2010).
  • Zhang J , RobertsTM, ShivdasaniRA. Targeting PI3K signaling as a therapeutic approach for colorectal cancer.Gastroenterology141(1), 50–61 (2011).
  • Vanhaesebroeck B , AlessiDR. The PI3K–PDK1 connection: more than just a road to PKB.Biochem. J.346(Pt 3), 561–576 (2000).
  • Maehama T , DixonJE. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate.J. Biol. Chem.273(22), 13375–13378 (1998).
  • Salmena L , CarracedoA, PandolfiPP. Tenets of PTEN tumor suppression.Cell133(3), 403–414 (2008).
  • Nosho K , KawasakiT, OhnishiMet al. PIK3CA mutation in colorectal cancer: relationship with genetic and epigenetic alterations. Neoplasia 10(6), 534–541 (2008).
  • Simi L , PratesiN, VignoliMet al. High-resolution melting analysis for rapid detection of KRAS, BRAF, and PIK3CA gene mutations in colorectal cancer. Am. J. Clin. Pathol. 130(2), 247–253 (2008).
  • Goel A , ArnoldCN, NiedzwieckiDet al. Frequent inactivation of PTEN by promoter hypermethylation in microsatellite instability-high sporadic colorectal cancers. Cancer Res. 64(9), 3014–3021 (2004).
  • Li HF , KeetonA, VitoloMet al. A high-throughput screen with isogenic PTEN+/+ and PTEN-/- cells identifies CID1340132 as a novel compound that induces apoptosis in PTEN and PIK3CA mutant human cancer cells. J. Biomol. Screen. 16(4), 383–393 (2011).
  • He G , SiddikZH, HuangZet al. Induction of p21 by p53 following DNA damage inhibits both Cdk4 and Cdk2 activities. Oncogene 24(18), 2929–2943 (2005).
  • Suzuki K , MatsubaraH. Recent advances in p53 research and cancer treatment.J. Biomed. Biotechnol.2011, 978312 (2011).
  • Hemann MT , LoweSW. The p53–Bcl-2 connection.Cell Death Differ.13(8), 1256–1259 (2006).
  • Iacopetta B . TP53 mutation in colorectal cancer.Hum. Mutat.21(3), 271–276 (2003).
  • Rivlin N , BroshR, OrenM, RotterV. Mutations in the p53 tumor suppressor gene: important milestones at the various steps of tumorigenesis.Genes Cancer2(4), 466–474 (2011).
  • Wang W , KimSH, El-DeiryWS. Small-molecule modulators of p53 family signaling and antitumor effects in p53-deficient human colon tumor xenografts.Proc. Natl Acad. Sci. USA103(29), 11003–11008 (2006).
  • Golubovskaya VM , FinchR, KwehFet al. p53 regulates FAK expression in human tumor cells. Mol. Carcinogen. 47(5), 373–382 (2008).
  • Golubovskaya VM , CanceW. Focal adhesion kinase and p53 signal transduction pathways in cancer.Front. Biosci.15, 901–912 (2010).
  • Golubovskaya VM , FigelS, HoBTet al. Novel small molecule drugs targeting the main autophosphorylation site (Y397) of focal adhesion kinase are effective colon cancer therapeutics. Presented at: The American Association for Cancer Research Special Conference: Colorectal Cancer: Biology to Therapy. Philadelphia, PA, USA, 27–30 October, 2010.
  • Lee JM , DedharS, KalluriR, ThompsonEW. The epithelial–mesenchymal transition: new insights in signaling, development, and disease.J. Cell Biol.172(7), 973–981 (2006).
  • Tsanou E , PeschosD, BatistatouA, CharalabopoulosA, CharalabopoulosK. The E-cadherin adhesion molecule and colorectal cancer. A global literature approach.Anticancer Res.28(6A), 3815–3826 (2008).
  • Wheeler JM , KimHC, EfstathiouJA, IlyasM, MortensenNJ, BodmerWF. Hypermethylation of the promoter region of the E-cadherin gene (CDH1) in sporadic and ulcerative colitis associated colorectal cancer.Gut48(3), 367–371 (2001).
  • Stoops SL , PearsonAS, WeaverCet al. Identification and optimization of small molecules that restore E-cadherin expression and reduce invasion in colorectal carcinoma cells. ACS Chem. Biol. 6(5), 452–465 (2011).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.