455
Views
1
CrossRef citations to date
0
Altmetric
Review

Endocrine Resistance in Breast Cancer: Molecular Pathways and Rational Development of Targeted Therapies

&
Pages 273-292 | Published online: 12 Mar 2012

References

  • Frasor J , StossiF, DanesJM, KommB, LyttleCR, KatzenellenbogenBS. Selective estrogen receptor modulators: discrimination of agonistic versus antagonistic activities by gene expression profiling in breast cancer cells.Cancer Res.64(4), 1522–1533 (2004).
  • Nemere I , PietrasRJ, BlackmorePF. Membrane receptors for steroid hormones: signal transduction and physiological significance.J. Cell. Biochem.88(3), 438–445 (2003).
  • Osborne CK , SchiffR. Estrogen-receptor biology: continuing progress and therapeutic implications.J. Clin. Oncol.23(8), 1616–1622 (2005).
  • Acconcia F , KumarR. Signaling regulation of genomic and nongenomic functions of estrogen receptors.Cancer Lett.238(1), 1–14 (2006).
  • Klinge CM . Estrogen receptor interaction with estrogen response elements.Nucleic Acids Res.29(14), 2905–2919 (2001).
  • Kushner PJ , AgardDA, GreeneGLet al. Estrogen receptor pathways to AP-1. J. Steroid Biochem. Mol. Biol. 74(5), 311–317 (2000).
  • Bjornstrom L , SjobergM. Mechanisms of estrogen receptor signaling: convergence of genomic and nongenomic actions on target genes.Mol. Endocrinol.19(4), 833–842 (2005).
  • Kato S , EndohH, MasuhiroYet al. Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 270(5241), 1491–1494 (1995).
  • Schiff R , MassarwehS, ShouJ, OsborneCK. Breast cancer endocrine resistance: how growth factor signaling and estrogen receptor coregulators modulate response.Clin. Cancer Res.9(1 Pt 2), S447–S454 (2003).
  • Schiff R , MassarwehSA, ShouJ, BharwaniL, MohsinSK, OsborneCK. Cross-talk between estrogen receptor and growth factor pathways as a molecular target for overcoming endocrine resistance.Clin. Cancer Res.10(1 Pt 2), 331S–336S (2004).
  • Shou J , MassarwehS, OsborneCKet al. Mechanisms of tamoxifen resistance: increased estrogen receptor–HER2/neu cross-talk in ER/HER2-positive breast cancer. J. Natl Cancer Inst. 96(12), 926–935 (2004).
  • Wu RC , SmithCL, O’MalleyBW. Transcriptional regulation by steroid receptor coactivator phosphorylation.Endocr. Rev.26(3), 393–399 (2005).
  • Bunone G , BriandPA, MiksicekRJ, PicardD. Activation of the unliganded estrogen receptor by EGF involves the MAP kinase pathway and direct phosphorylation.EMBO J.15(9), 2174–2183 (1996).
  • Musgrove EA , SutherlandRL. Biological determinants of endocrine resistance in breast cancer.Nat. Rev. Cancer9(9), 631–643 (2009).
  • Osborne CK , SchiffR. Mechanisms of endocrine resistance in breast cancer.Annu. Rev. Med.62, 233–247 (2011).
  • Saxena R , DwivediA. ErbB family receptor inhibitors as therapeutic agents in breast cancer: current status and future clinical perspective.Med. Res. Rev. doi:0.1002/med.20209 (2010) (Epub ahead of print).
  • Salomon DS , BrandtR, CiardielloF, NormannoN. Epidermal growth factor-related peptides and their receptors in human malignancies.Crit. Rev. Oncol. Hematol.19(3), 183–232 (1995).
  • Shi F , TelescoSE, LiuY, RadhakrishnanR, LemmonMA. ErbB3/HER3 intracellular domain is competent to bind ATP and catalyze autophosphorylation.Proc. Natl Acad. Sci. USA107(17), 7692–7697 (2010).
  • Olayioye MA , NeveRM, LaneHA, HynesNE. The ErbB signaling network: receptor heterodimerization in development and cancer.EMBO J.19(13), 3159–3167 (2000).
  • Witsch E , SelaM, YardenY. Roles for growth factors in cancer progression.Physiology (Bethesda)25(2), 85–101 (2010).
  • Lee-Hoeflich ST , CrockerL, YaoEet al. A central role for HER3 in HER2-amplified breast cancer: implications for targeted therapy. Cancer Res. 68(14), 5878–5887 (2008).
  • Atlas E , CardilloM, MehmiI, ZahedkargaranH, TangC, LupuR. Heregulin is sufficient for the promotion of tumorigenicity and metastasis of breast cancer cells in vivo.Mol. Cancer Res.1(3), 165–175 (2003).
  • Rokicki J , DasPM, GiltnaneJMet al. The ERalpha coactivator, HER4/4ICD, regulates progesterone receptor expression in normal and malignant breast epithelium. Mol. Cancer 9, 150 (2010).
  • Baselga J , CortesJ, KimSBet al. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N. Engl. J. Med. 366(2), 109–119 (2012).
  • Blackwell KL , BursteinHJ, StornioloAMet al. Randomized study of lapatinib alone or in combination with trastuzumab in women with ErbB2-positive, trastuzumab-refractory metastatic breast cancer. J. Clin. Oncol. 28(7), 1124–1130 (2010).
  • Allen LF , EisemanIA, FryDW, LenehanPF. CI-1033, an irreversible pan-ErbB receptor inhibitor and its potential application for the treatment of breast cancer.Semin. Oncol.30(5 Suppl. 16), 65–78 (2003).
  • Slichenmyer WJ , ElliottWL, FryDW. CI-1033, a pan-ErbB tyrosine kinase inhibitor.Semin. Oncol.28(5 Suppl. 16), 80–85 (2001).
  • Dowsett M . Overexpression of HER-2 as a resistance mechanism to hormonal therapy for breast cancer.Endocr. Relat. Cancer8(3), 191–195 (2001).
  • Kurokawa H , LenferinkAE, SimpsonJFet al. Inhibition of HER2/neu (ErbB-2) and mitogen-activated protein kinases enhances tamoxifen action against HER2-overexpressing, tamoxifen-resistant breast cancer cells. Cancer Res. 60(20), 5887–5894 (2000).
  • Pietras RJ , ArboledaJ, ReeseDMet al. HER-2 tyrosine kinase pathway targets estrogen receptor and promotes hormone-independent growth in human breast cancer cells. Oncogene 10(12), 2435–2446 (1995).
  • Lee H , JiangF, WangQet al. MEKK1 activation of human estrogen receptor alpha and stimulation of the agonistic activity of 4-hydroxytamoxifen in endometrial and ovarian cancer cells. Mol. Endocrinol. 14(11), 1882–1896 (2000).
  • Park SS , KimSW. Activated AKT signaling pathway in invasive ductal carcinoma of the breast: correlation with HER2 overexpression.Oncol. Rep.18(1), 139–143 (2007).
  • Tokunaga E , KimuraY, MashinoKet al. Activation of PI3K/AKT signaling and hormone resistance in breast cancer. Breast Cancer 13(2), 137–144 (2006).
  • Ellis M . Overcoming endocrine therapy resistance by signal transduction inhibition.Oncologist9(Suppl. 3), 20–26 (2004).
  • Ellis MJ , TaoY, YoungOet al. Estrogen-independent proliferation is present in estrogen-receptor HER2-positive primary breast cancer after neoadjuvant letrozole. J. Clin. Oncol. 24(19), 3019–3025 (2006).
  • Coates AS , KeshaviahA, ThurlimannBet al. Five years of letrozole compared with tamoxifen as initial adjuvant therapy for postmenopausal women with endocrine-responsive early breast cancer: update of study BIG 1–98. J. Clin. Oncol. 25(5), 486–492 (2007).
  • Ejlertsen B , AldridgeJ, NielsenKVet al. Prognostic and predictive role of ESR1 status for postmenopausal patients with endocrine-responsive early breast cancer in the Danish cohort of the BIG 1–98 trial. Ann. Oncol. (2011).
  • Kaufman B , MackeyJR, ClemensMRet al. Trastuzumab plus anastrozole versus anastrozole alone for the treatment of postmenopausal women with human epidermal growth factor receptor 2-positive, hormone receptor-positive metastatic breast cancer. results from the randomized Phase III TAnDEM study. J. Clin. Oncol. 27(33), 5529–5537 (2009).
  • Marcom PK , IsaacsC, HarrisLet al. The combination of letrozole and trastuzumab as first or second-line biological therapy produces durable responses in a subset of HER2 positive and ER positive advanced breast cancers. Breast Cancer Res. Treat. 102(1), 43–49 (2007).
  • Schwartzberg LS , FrancoSX, FloranceA, O’RourkeL, MaltzmanJ, JohnstonS. Lapatinib plus letrozole as first-line therapy for HER-2+ hormone receptor-positive metastatic breast cancer.Oncologist15(2), 122–129 (2010).
  • Gutierrez MC , DetreS, JohnstonSet al. Molecular changes in tamoxifen-resistant breast cancer: relationship between estrogen receptor, HER-2, and p38 mitogen-activated protein kinase. J. Clin. Oncol. 23(11), 2469–2476 (2005).
  • Sabnis G , BrodieA. Understanding resistance to endocrine agents: molecular mechanisms and potential for intervention.Clin. Breast Cancer10(1), e6–e15 (2010).
  • Hurtado A , HolmesKA, GeistlingerTRet al. Regulation of ErbB2 by oestrogen receptor–PAX2 determines response to tamoxifen. Nature 456(7222), 663–666 (2008).
  • Pancholi S , LykkesfeldtAE, HilmiCet al. ErbB2 influences the subcellular localization of the estrogen receptor in tamoxifen-resistant MCF-7 cells leading to the activation of AKT and RPS6KA2. Endocr. Relat. Cancer 15(4), 985–1002 (2008).
  • Finn RS , PressM, DringJet al. Progression-free survival (PFS) of patients with HER2-negative, estrogen-receptor (ER)-low metastatic breast cancer (MBC) with the addition of lapatinib to letrozole. Biomarker results of EGF30008. Presented at: American Society of Clinical Oncology (ASCO) 45th Annual Meeting. Orlando, FL, USA, 29 May–2 June 2009.
  • Britton DJ , HutchesonIR, KnowldenJMet al. Bidirectional cross talk between ERalpha and EGFR signalling pathways regulates tamoxifen-resistant growth. Breast Cancer Res. Treat. 96(2), 131–146 (2006).
  • Knowlden JM , HutchesonIR, JonesHEet al. Elevated levels of epidermal growth factor receptor/c-ErbB2 heterodimers mediate an autocrine growth regulatory pathway in tamoxifen-resistant MCF-7 cells. Endocrinology 144(3), 1032–1044 (2003).
  • Jeng MH , YueW, EischeidA, WangJP, SantenRJ. Role of MAP kinase in the enhanced cell proliferation of long term estrogen deprived human breast cancer cells.Breast Cancer Res. Treat.62(3), 167–175 (2000).
  • Martin LA , PancholiS, ChanCMet al. The anti-oestrogen ICI 182,780, but not tamoxifen, inhibits the growth of MCF-7 breast cancer cells refractory to long-term oestrogen deprivation through down-regulation of oestrogen receptor and IGF signalling. Endocr. Relat. Cancer 12(4), 1017–1036 (2005).
  • Massarweh S , OsborneCK, CreightonCJet al. Tamoxifen resistance in breast tumors is driven by growth factor receptor signaling with repression of classic estrogen receptor genomic function. Cancer Res. 68(3), 826–833 (2008).
  • McClelland RA , BarrowD, MaddenTAet al. Enhanced epidermal growth factor receptor signaling in MCF7 breast cancer cells after long-term culture in the presence of the pure antiestrogen ICI 182,780 (Faslodex). Endocrinology 142(7), 2776–2788 (2001).
  • Frogne T , BenjaminsenRV, Sonne-HansenKet al. Activation of ErbB3, EGFR and Erk is essential for growth of human breast cancer cell lines with acquired resistance to fulvestrant. Breast Cancer Res. Treat. 114(2), 263–275 (2009).
  • Gutierrez MC , DetreS, JohnstonSet al. Molecular changes in tamoxifen-resistant breast cancer: relationship between estrogen receptor, HER-2, and p38 mitogen-activated protein kinase. J. Clin. Oncol. 23(11), 2469–2476 (2005).
  • Gee JM , HowellA, GullickWJet al. Consensus statement. Workshop on therapeutic resistance in breast cancer: impact of growth factor signalling pathways and implications for future treatment. Endocr. Relat. Cancer 12(Suppl. 1), S1–S7 (2005).
  • Shou J , MassarwehS, OsborneCKet al. Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J. Natl Cancer Inst. 96(12), 926–935 (2004).
  • Gee JM , HarperME, HutchesonIRet al. The antiepidermal growth factor receptor agent gefitinib (ZD1839/Iressa) improves antihormone response and prevents development of resistance in breast cancer in vitro. Endocrinology 144(11), 5105–5117 (2003).
  • Arpino G , GreenSJ, AllredDCet al. HER-2 amplification, HER-1 expression, and tamoxifen response in estrogen receptor-positive metastatic breast cancer: a Southwest Oncology Group study. Clin. Cancer Res. 10(17), 5670–5676 (2004).
  • Gutteridge E , AgrawalA, NicholsonR, Leung CheungK, RobertsonJ, GeeJ. The effects of gefitinib in tamoxifen-resistant and hormone-insensitive breast cancer: a Phase II study.Int. J. Cancer126(8), 1806–1816 (2010).
  • Osborne CK , NevenP, DirixLYet al. Gefitinib or placebo in combination with tamoxifen in patients with hormone receptor-positive metastatic breast cancer: a randomized Phase II study. Clin. Cancer Res. 17(5), 1147–1159 (2011).
  • Cristofanilli M , ValeroV, MangalikAet al. Phase II, randomized trial to compare anastrozole combined with gefitinib or placebo in postmenopausal women with hormone receptor-positive metastatic breast cancer. Clin. Cancer Res. 16(6), 1904–1914 (2010).
  • Polychronis A , SinnettHD, HadjiminasDet al. Preoperative gefitinib versus gefitinib and anastrozole in postmenopausal patients with oestrogen-receptor positive and epidermal-growth-factor-receptor-positive primary breast cancer: a double-blind placebo-controlled Phase II randomised trial. Lancet Oncol. 6(6), 383–391 (2005).
  • Smith IE , WalshG, SkeneAet al. A Phase II placebo-controlled trial of neoadjuvant anastrozole alone or with gefitinib in early breast cancer. J. Clin. Oncol. 25(25), 3816–3822 (2007).
  • Guix M , Granja NdeM, MeszoelyIet al. Short preoperative treatment with erlotinib inhibits tumor cell proliferation in hormone receptor-positive breast cancers. J. Clin. Oncol. 26(6), 897–906 (2008).
  • Haddad TC , YeeD. Of mice and (wo)men: is this any way to test a new drug?J. Clin. Oncol.26(6), 830–832 (2008).
  • Haagenson KK , WuGS. The role of MAP kinases and MAP kinase phosphatase-1 in resistance to breast cancer treatment.Cancer Metastasis Rev.29(1), 143–149 (2010).
  • Inamdar GS , MadhunapantulaSV, RobertsonGP. Targeting the MAPK pathway in melanoma: why some approaches succeed and others fail.Biochem. Pharmacol.80(5), 624–637 (2010).
  • Wu RC , QinJ, YiPet al. Selective phosphorylations of the SRC-3/AIB1 coactivator integrate genomic reponses to multiple cellular signaling pathways. Mol. Cell 15(6), 937–949 (2004).
  • Font De Mora J , BrownM. AIB1 is a conduit for kinase-mediated growth factor signaling to the estrogen receptor.Mol. Cell. Biol.20(14), 5041–5047 (2000).
  • Cantley LC . The phosphoinositide 3-kinase pathway.Science296(5573), 1655–1657 (2002).
  • Sarbassov DD , GuertinDA, AliSM, SabatiniDM. Phosphorylation and regulation of AKT/PKB by the rictor–mTOR complex.Science307(5712), 1098–1101 (2005).
  • Hanada M , FengJ, HemmingsBA. Structure, regulation and function of PKB/AKT – a major therapeutic target.Biochim. Biophys. Acta1697(1–2), 3–16 (2004).
  • Carvalho S , SchmittF. Potential role of PI3K inhibitors in the treatment of breast cancer.Future Oncol.6(8), 1251–1263 (2010).
  • Vivanco I , SawyersCL. The phosphatidylinositol 3-kinase AKT pathway in human cancer.Nat. Rev. Cancer2(7), 489–501 (2002).
  • Lai YL , MauBL, ChengWH, ChenHM, ChiuHH, TzenCY. PIK3CA exon 20 mutation is independently associated with a poor prognosis in breast cancer patients.Ann. Surg. Oncol.15(4), 1064–1069 (2008).
  • Lerma E , CatasusL, GallardoAet al. Exon 20 PIK3CA mutations decreases survival in aggressive (HER-2 positive) breast carcinomas. Virchows Arch. 453(2), 133–139 (2008).
  • Maruyama N , MiyoshiY, TaguchiT, TamakiY, MondenM, NoguchiS. Clinicopathologic analysis of breast cancers with PIK3CA mutations in Japanese women.Clin. Cancer Res.13(2 Pt 1), 408–414 (2007).
  • Perez-Tenorio G , AlkhoriL, OlssonBet al. PIK3CA mutations and PTEN loss correlate with similar prognostic factors and are not mutually exclusive in breast cancer. Clin. Cancer Res. 13(12), 3577–3584 (2007).
  • Huang CH , MandelkerD, GabelliSB, AmzelLM. Insights into the oncogenic effects of PIK3CA mutations from the structure of p110alpha/p85alpha.Cell Cycle7(9), 1151–1156 (2008).
  • Huang CH , MandelkerD, Schmidt-KittlerOet al. The structure of a human p110alpha/p85alpha complex elucidates the effects of oncogenic PI3Kalpha mutations. Science 318(5857), 1744–1748 (2007).
  • Mandelker D , GabelliSB, Schmidt-KittlerOet al. A frequent kinase domain mutation that changes the interaction between PI3Kalpha and the membrane. Proc. Natl Acad. Sci. USA 106(40), 16996–17001 (2009).
  • Miled N , YanY, HonWCet al. Mechanism of two classes of cancer mutations in the phosphoinositide 3-kinase catalytic subunit. Science 317(5835), 239–242 (2007).
  • Ellis MJ , LinL, CrowderRet al. Phosphatidyl-inositol-3-kinase alpha catalytic subunit mutation and response to neoadjuvant endocrine therapy for estrogen receptor positive breast cancer. Breast Cancer Res. Treat. 119(2), 379–390 (2010).
  • Carpten JD , FaberAL, HornCet al. A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature 448(7152), 439–444 (2007).
  • Crowder RJ , PhommalyC, TaoYet al. PIK3CA and PIK3CB inhibition produce synthetic lethality when combined with estrogen deprivation in estrogen receptor-positive breast cancer. Cancer Res. 69(9), 3955–3962 (2009).
  • Wu G , XingM, MamboEet al. Somatic mutation and gain of copy number of PIK3CA in human breast cancer. Breast Cancer Res. 7(5), R609–R616 (2005).
  • Myers MP , PassI, BattyIHet al. The lipid phosphatase activity of PTEN is critical for its tumor supressor function. Proc. Natl Acad. Sci. USA 95(23), 13513–13518 (1998).
  • Sanchez CG , MaCX, CrowderRJet al. Preclinical modeling of combined phosphatidylinositol-3-kinase inhibition with endocrine therapy for estrogen receptor-positive breast cancer. Breast Cancer Res. 13(2), R21 (2011).
  • Perez-Tenorio G , StalO. Activation of AKT/PKB in breast cancer predicts a worse outcome among endocrine treated patients.Br. J. Cancer86(4), 540–545 (2002).
  • Stal O , Perez-TenorioG, AkerbergLet al. AKT kinases in breast cancer and the results of adjuvant therapy. Breast Cancer Res. 5(2), R37–R44 (2003).
  • Tokunaga E , KataokaA, KimuraYet al. The association between AKT activation and resistance to hormone therapy in metastatic breast cancer. Eur. J. Cancer 42(5), 629–635 (2006).
  • Degraffenried LA , FulcherL, FriedrichsWE, GrunwaldV, RayRB, HidalgoM. Reduced PTEN expression in breast cancer cells confers susceptibility to inhibitors of the PI3 kinase/AKT pathway.Ann. Oncol.15(10), 1510–1516 (2004).
  • Miller TW , HennessyBT, Gonzalez-AnguloAMet al. Hyperactivation of phosphatidylinositol-3 kinase promotes escape from hormone dependence in estrogen receptor-positive human breast cancer. J. Clin. Invest. 120(7), 2406–2413 (2010).
  • Ghayad SE , BiecheI, VendrellJAet al. mTOR inhibition reverses acquired endocrine therapy resistance of breast cancer cells at the cell proliferation and gene-expression levels. Cancer Sci. 99(10), 1992–2003 (2008).
  • Baselga J , CamponeM, PiccartMet al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N. Engl. J. Med. 366(6), 520–529 (2012).
  • Bachelot T , BourgierC, CropetCet al. TAMRAD: a GINECO randomized Phase II trial of everolimus in combination with tamoxifen versus tamoxifen alone in patients (pts) with hormone-receptor positive, HER2 negative metastatic breast cancer (MBC) with prior exposure to aromatase inhibitors (AI). Presented at:33rd Annual San Antonio Breast Cancer Symposium San Antonio, TX, USA, 8–12 December 2010.
  • Baselga J , SemiglazovV, Van DamPet al. Phase II randomized study of neoadjuvant everolimus plus letrozole compared with placebo plus letrozole in patients with estrogen receptor-positive breast cancer. J. Clin. Oncol. 27(16), 2630–2637 (2009).
  • Chow LWC , SunY, JassemJet al. Phase 3 study of temsirolimus with letrozole or letrozole alone in postmenopausal women with locally advanced or metastatic breast cancer. Breast Cancer Res. Treat. 100(Suppl. 1), S286 (Abstract 6091) (2006).
  • Ogita S , LorussoP. Targeting phosphatidylinositol 3 kinase (PI3K)–AKT beyond rapalogs.Target. Oncol.6(2), 103–117 (2011).
  • Papa V , GliozzoB, ClarkGMet al. Insulin-like growth factor-I receptors are overexpressed and predict a low risk in human breast cancer. Cancer Res. 53(16), 3736–3740 (1993).
  • Papa V , PezzinoV, CostantinoAet al. Elevated insulin receptor content in human breast cancer. J. Clin. Invest. 86(5), 1503–1510 (1990).
  • Pandini G , VigneriR, CostantinoAet al. Insulin and insulin-like growth factor-I (IGF-I) receptor overexpression in breast cancers leads to insulin/IGF-I hybrid receptor overexpression: evidence for a second mechanism of IGF-I signaling. Clin. Cancer Res. 5(7), 1935–1944 (1999).
  • Shimizu C , HasegawaT, TaniYet al. Expression of insulin-like growth factor 1 receptor in primary breast cancer: immunohistochemical analysis. Hum. Pathol. 35(12), 1537–1542 (2004).
  • Peruzzi F , PriscoM, DewsMet al. Multiple signaling pathways of the insulin-like growth factor 1 receptor in protection from apoptosis. Mol. Cell. Biol. 19(10), 7203–7215 (1999).
  • Sell C , RubiniM, RubinR, LiuJP, EfstratiadisA, BasergaR. Simian virus 40 large tumor antigen is unable to transform mouse embryonic fibroblasts lacking type 1 insulin-like growth factor receptor.Proc. Natl Acad. Sci. USA90(23), 11217–11221 (1993).
  • Buck E , GokhalePC, KoujakSet al. Compensatory insulin receptor (IR) activation on inhibition of insulin-like growth factor-1 receptor (IGF-1R): rationale for cotargeting IGF-1R and IR in cancer. Mol. Cancer Ther. 9(10), 2652–2664 (2010).
  • Lann D , LeroithD. The role of endocrine insulin-like growth factor-I and insulin in breast cancer.J. Mammary Gland Biol. Neoplasia13(4), 371–379 (2008).
  • Fox EM , MillerTW, BalkoJMet al. A kinome-wide screen identifies the insulin/IGF-I receptor pathway as a mechanism of escape from hormone dependence in breast cancer. Cancer Res. 71(21), 6773–6784 (2011).
  • Louvi A , AcciliD, EfstratiadisA. Growth-promoting interaction of IGF-II with the insulin receptor during mouse embryonic development.Dev. Biol.189(1), 33–48 (1997).
  • Fulzele K , DigirolamoDJ, LiuZ, XuJ, MessinaJL, ClemensTL. Disruption of the insulin-like growth factor type 1 receptor in osteoblasts enhances insulin signaling and action.J. Biol. Chem.282(35), 25649–25658 (2007).
  • Zhang H , PelzerAM, KiangDT, YeeD. Down-regulation of type I insulin-like growth factor receptor increases sensitivity of breast cancer cells to insulin.Cancer Res.67(1), 391–397 (2007).
  • Ulanet DB , LudwigDL, KahnCR, HanahanD. Insulin receptor functionally enhances multistage tumor progression and conveys intrinsic resistance to IGF-1R targeted therapy.Proc. Natl Acad. Sci. USA107(24), 10791–10798 (2010).
  • Garofalo C , ManaraMC, NicolettiGet al. Efficacy of and resistance to anti-IGF-1R therapies in Ewing’s sarcoma is dependent on insulin receptor signaling. Oncogene 30(24), 2730–2740 (2011).
  • Buck E , MulvihillM. Small molecule inhibitors of the IGF-1R/IR axis for the treatment of cancer.Expert Opin Investig. Drugs20(5), 605–621 (2011).
  • Baserga R . Customizing the targeting of IGF-1 receptor.Future Oncol.5(1), 43–50 (2009).
  • Gualberto A , PollakM. Clinical development of inhibitors of the insulin-like growth factor receptor in oncology.Curr. Drug Targets10(10), 923–936 (2009).
  • Yuen JS , MacaulayVM. Targeting the type 1 insulin-like growth factor receptor as a treatment for cancer.Expert Opin Ther. Targets12(5), 589–603 (2008).
  • Law JH , HabibiG, HuKet al. Phosphorylated insulin-like growth factor-I/insulin receptor is present in all breast cancer subtypes and is related to poor survival. Cancer Res. 68(24), 10238–10246 (2008).
  • Fagan DH , YeeD. Crosstalk between IGF1R and estrogen receptor signaling in breast cancer.J. Mammary Gland Biol. Neoplasia13(4), 423–429 (2008).
  • Weroha SJ , HaluskaP. IGF-1 receptor inhibitors in clinical trials – early lessons.J. Mammary Gland Biol. Neoplasia13(4), 471–483 (2008).
  • Surmacz E , BartucciM. Role of estrogen receptor alpha in modulating IGF-I receptor signaling and function in breast cancer.J. Exp. Clin. Cancer Res.23(3), 385–394 (2004).
  • Zha J , O’BrienC, SavageHet al. Molecular predictors of response to a humanized anti-insulin-like growth factor-I receptor monoclonal antibody in breast and colorectal cancer. Mol. Cancer Ther. 8(8), 2110–2121 (2009).
  • Foekens JA , PortengenH, JanssenM, KlijnJG. Insulin-like growth factor-1 receptors and insulin-like growth factor-1-like activity in human primary breast cancer.Cancer63(11), 2139–2147 (1989).
  • Peyrat JP , BonneterreJ, BeuscartR, DjianeJ, DemailleA. Insulin-like growth factor 1 receptors in human breast cancer and their relation to estradiol and progesterone receptors.Cancer Res.48(22), 6429–6433 (1988).
  • Sorlie T , TibshiraniR, ParkerJet al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc. Natl Acad. Sci. USA 100(14), 8418–8423 (2003).
  • Yee D , LeeAV. Crosstalk between the insulin-like growth factors and estrogens in breast cancer.J. Mammary Gland Biol. Neoplasia5(1), 107–115 (2000).
  • Hamelers IHL , SteenberghPH. Interactions between estrogen and insulin-like growth factor signaling pathways in human breast tumor cells.Endocr. Relat. Cancer10(2), 331–345 (2003).
  • Lee AV , JacksonJG, GoochJLet al. Enhancement of insulin-like growth factor signaling in human breast cancer. Estrogen regulation of insulin receptor substrate-1 expression in vitro and in vivo. Mol. Endocrinol. 13(5), 787–796 (1999).
  • Gee JM , RobertsonJF, GutteridgeEet al. Epidermal growth factor receptor/HER2/insulin-like growth factor receptor signalling and oestrogen receptor activity in clinical breast cancer. Endocr. Relat. Cancer 12(Suppl. 1), S99–S111 (2005).
  • Maor S , MayerD, YardenRIet al. Estrogen receptor regulates insulin-like growth factor-I receptor gene expression in breast tumor cells. involvement of transcription factor Sp1. J. Endocrinol. 191(3), 605–612 (2006).
  • Huynh H , YangX, PollakM. Estradiol and antiestrogens regulate a growth inhibitory insulin-like growth factor binding protein 3 autocrine loop in human breast cancer cells.J. Biol. Chem.271(2), 1016–1021 (1996).
  • Nickerson T , HuynhH, PollakM. Insulin-like growth factor binding protein-3 induces apoptosis in MCF7 breast cancer cells.Biochem. Biophys. Res. Commun.237(3), 690–693 (1997).
  • Zhang Z , KumarR, SantenRJ, SongRX. The role of adapter protein Shc in estrogen non-genomic action.Steroids69(8–9), 523–529 (2004).
  • Figueroa JA , SharmaJ, JacksonJG, McDermottMJ, HilsenbeckSG, YeeD. Recombinant insulin-like growth factor binding protein-1 inhibits IGF-I, serum, and estrogen-dependent growth of MCF-7 human breast cancer cells.J. Cell. Physiol.157(2), 229–236 (1993).
  • Knowlden JM , HutchesonIR, BarrowD, GeeJM, NicholsonRI. Insulin-like growth factor-I receptor signaling in tamoxifen-resistant breast cancer: a supporting role to the epidermal growth factor receptor.Endocrinology146(11), 4609–4618 (2005).
  • Parisot JP , HuXF, DeluiseM, ZalcbergJR. Altered expression of the IGF-1 receptor in a tamoxifen-resistant human breast cancer cell line.Br. J. Cancer79(5–6), 693–700 (1999).
  • Santen RJ , FanP, ZhangZ, BaoY, SongRXD, YueW. Estrogen signals via an extra-nuclear pathway involving IGF-1R and EGFR in tamoxifen-sensitive and -resistant breast cancer cells.Steroids74(7), 586–594 (2009).
  • Song RX , ChenY, ZhangZet al. Estrogen utilization of IGF-1-R and EGF-R to signal in breast cancer cells. J. Steroid Biochem. Mol. Biol. 118(4–5), 219–230 (2010).
  • Zhang Y , MoerkensM, RamaiahgariSet al. Elevated insulin-like growth factor 1 receptor signaling induces antiestrogen resistance through the MAPK/ERK and PI3K/AKT signaling routes. Breast Cancer Res. 13(3), R52 (2011).
  • Kaufman PA , FerreroJM, BourgeoisHet al. A randomized, double-blind, placebo-controlled, Phase 2 study of AMG 479 with exemestane (E) or fulvestrant (F) in postmenopausal women with hormone-receptor positive (HR+) metastatic (M) or locally advanced (LA) breast cancer (BC). Presented at: 33rd Annual San Antonio Breast Cancer Symposium. San Antonio, TX, USA, 8–12 December 2010.
  • Ryan PD , NevenP, DirixLYet al. Safety of the anti-IGF-1R antibody CP-751,871 in combination with exemestane in patients with advanced breast cancer. Presented at: San Antonio Breast Cancer Symposium. San antonio, TX, USA, 10–14 December (Abstract 2136) (2008).
  • Haugsten EM , WiedlochaA, OlsnesS, WescheJ. Roles of fibroblast growth factor receptors in carcinogenesis.Mol. Cancer Res.8(11), 1439–1452 (2010).
  • Johnson DE , WilliamsLT. Structural and functional diversity in the FGF receptor multigene family.Adv. Cancer Res.60, 1–41 (1993).
  • Hynes NE , DeyJH. Potential for targeting the fibroblast growth factor receptors in breast cancer.Cancer Res.70(13), 5199–5202 (2010).
  • Turner N , GroseR. Fibroblast growth factor signalling: from development to cancer.Nat. Rev. Cancer10(2), 116–129 (2010).
  • Elbauomy Elsheikh S , GreenAR, LambrosMBet al. FGFR1 amplification in breast carcinomas: a chromogenic in situ hybridisation analysis. Breast Cancer Res. 9(2), R23 (2007).
  • Turner N , PearsonA, SharpeRet al. FGFR1 amplification drives endocrine therapy resistance and is a therapeutic target in breast cancer. Cancer Res. 70(5), 2085–2094 (2010).
  • Tomlinson D , KnowlesM, SpeirsV. Mechanisms of FGFR3 actions in endocrine resistant breast cancer.Int. J. Cancer doi: 10.1002/ijc.26304 (2011) (Epub ahead of print).
  • Meijer D , SieuwertsAM, LookMP, Van AgthovenT, FoekensJA, DorssersLC. Fibroblast growth factor receptor 4 predicts failure on tamoxifen therapy in patients with recurrent breast cancer.Endocr. Relat. Cancer15(1), 101–111 (2008).
  • Thomas SM , BruggeJS. Cellular functions regulated by Src family kinases.Annu. Rev. Cell Dev. Biol.13, 513–609 (1997).
  • Myoui A , NishimuraR, WilliamsPJet al. C-SRC tyrosine kinase activity is associated with tumor colonization in bone and lung in an animal model of human breast cancer metastasis. Cancer Res. 63(16), 5028–5033 (2003).
  • Fox EM , BernaciakTM, WenJ, WeaverAM, ShupnikMA, SilvaCM. Signal transducer and activator of transcription 5b, c-Src, and epidermal growth factor receptor signaling play integral roles in estrogen-stimulated proliferation of estrogen receptor-positive breast cancer cells.Mol. Endocrinol.22(8), 1781–1796 (2008).
  • Planas-Silva MD , BruggemanRD, GrenkoRT, Stanley SmithJ. Role of c-Src and focal adhesion kinase in progression and metastasis of estrogen receptor-positive breast cancer.Biochem. Biophys. Res. Commun.341(1), 73–81 (2006).
  • Hiscox S , Barrett-LeeP, BorleyAC, NicholsonRI. Combining Src inhibitors and aromatase inhibitors: a novel strategy for overcoming endocrine resistance and bone loss.Eur. J. Cancer46(12), 2187–2195 (2010).
  • Castoria G , MigliaccioA, BilancioAet al. PI3-kinase in concert with Src promotes the S-phase entry of oestradiol-stimulated MCF-7 cells. EMBO J. 20(21), 6050–6059 (2001).
  • Song RX , ZhangZ, SantenRJ. Estrogen rapid action via protein complex formation involving ERalpha and Src.Trends Endocrinol. Metab.16(8), 347–353 (2005).
  • Feng W , WebbP, NguyenPet al. Potentiation of estrogen receptor activation function 1 (AF-1) by Src/JNK through a serine 118-independent pathway. Mol. Endocrinol. 15(1), 32–45 (2001).
  • Shupnik MA . Crosstalk between steroid receptors and the c-Src-receptor tyrosine kinase pathways: implications for cell proliferation.Oncogene23(48), 7979–7989 (2004).
  • Yue W , FanP, WangJ, LiY, SantenRJ. Mechanisms of acquired resistance to endocrine therapy in hormone-dependent breast cancer cells.J. Steroid Biochem. Mol. Biol.106(1–5), 102–110 (2007).
  • Finn RS . Targeting Src in breast cancer.Ann. Oncol.19(8), 1379–1386 (2008).
  • Vallabhaneni S , NairBC, CortezVet al. Significance of ER–Src axis in hormonal therapy resistance. Breast Cancer Res. Treat. 130(2), 377–385 (2011).
  • Morgan L , GeeJ, PumfordSet al. Elevated Src kinase activity attenuates tamoxifen response in vitro and is associated with poor prognosis clinically. Cancer Biol. Ther. 8(16), 1550–1558 (2009).
  • Elsberger B , ParavasthuDM, ToveySM, EdwardsJ. Shorter disease-specific survival of ER-positive breast cancer patients with high cytoplasmic Src kinase expression after tamoxifen treatment.J. Cancer Res. Clin. Oncol.138(2), 327–332 (2012).
  • Hiscox S , MorganL, GreenTP, BarrowD, GeeJ, NicholsonRI. Elevated Src activity promotes cellular invasion and motility in tamoxifen resistant breast cancer cells.Breast Cancer Res. Treat.97(3), 263–274 (2006).
  • Hiscox S , JordanNJ, MorganL, GreenTP, NicholsonRI. Src kinase promotes adhesion-independent activation of FAK and enhances cellular migration in tamoxifen-resistant breast cancer cells.Clin. Exp. Metastasis24(3), 157–167 (2007).
  • Planas-Silva MD , HamiltonKN. Targeting c-Src kinase enhances tamoxifen’s inhibitory effect on cell growth by modulating expression of cell cycle and survival proteins.Cancer Chemother. Pharmacol.60(4), 535–543 (2007).
  • Herynk MH , BeyerAR, CuiYet al. Cooperative action of tamoxifen and c-Src inhibition in preventing the growth of estrogen receptor-positive human breast cancer cells. Mol. Cancer Ther. 5(12), 3023–3031 (2006).
  • Anbalagan M , CarrierL, GlodowskiS, HangauerD, ShanB, RowanBG. KX-01, a novel Src kinase inhibitor directed toward the peptide substrate site, synergizes with tamoxifen in estrogen receptor alpha positive breast cancer.Breast Cancer Res. Treat. doi: 10.1007/s10549-011-1513-3 (2011) (Epub ahead of print).
  • Hiscox S , JordanNJ, SmithCet al. Dual targeting of Src and ER prevents acquired antihormone resistance in breast cancer cells. Breast Cancer Res. Treat. 115(1), 57–67 (2009).
  • Chen Y , GuggisbergN, JordaMet al. Combined Src and aromatase inhibition impairs human breast cancer growth in vivo and bypass pathways are activated in AZD0530-resistant tumors. Clin. Cancer Res. 15(10), 3396–3405 (2009).
  • Mayer EL , BaurainJF, SparanoJet al. A Phase 2 trial of dasatinib in patients with advanced HER2-positive and/or hormone receptor-positive breast cancer. Clin. Cancer Res. 17(21), 6897–6904 (2011).
  • Pathiraja TN , StearnsV, OesterreichS. Epigenetic regulation in estrogen receptor positive breast cancer – role in treatment response.J. Mammary Gland Biol. Neoplasia15(1), 35–47 (2010).
  • Brinkman JA , El-AshryD. ER re-expression and re-sensitization to endocrine therapies in ER-negative breast cancers.J. Mammary Gland Biol. Neoplasia14(1), 67–78 (2009).
  • Ottaviano YL , IssaJP, ParlFF, SmithHS, BaylinSB, DavidsonNE. Methylation of the estrogen receptor gene CpG island marks loss of estrogen receptor expression in human breast cancer cells.Cancer Res.54(10), 2552–2555 (1994).
  • Yan L , NassSJ, SmithD, NelsonWG, HermanJG, DavidsonNE. Specific inhibition of DNMT1 by antisense oligonucleotides induces re-expression of estrogen receptor-alpha (ER) in ER-negative human breast cancer cell lines.Cancer Biol. Ther.2(5), 552–556 (2003).
  • Keen JC , YanL, MackKMet al. A novel histone deacetylase inhibitor, scriptaid, enhances expression of functional estrogen receptor alpha (ER) in ER negative human breast cancer cells in combination with 5-aza 2´-deoxycytidine. Breast Cancer Res. Treat. 81(3), 177–186 (2003).
  • Yang X , PhillipsDL, FergusonAT, NelsonWG, HermanJG, DavidsonNE. Synergistic activation of functional estrogen receptor (ER)-alpha by DNA methyltransferase and histone deacetylase inhibition in human ER-alpha-negative breast cancer cells.Cancer Res.61(19), 7025–7029 (2001).
  • Zhou Q , AtadjaP, DavidsonNE. Histone deacetylase inhibitor LBH589 reactivates silenced estrogen receptor alpha (ER) gene expression without loss of DNA hypermethylation.Cancer Biol. Ther.6(1), 64–69 (2007).
  • Sabnis GJ , GoloubevaO, ChumsriS, NguyenN, SukumarS, BrodieAM. Functional activation of the estrogen receptor-alpha and aromatase by the HDAC inhibitor entinostat sensitizes ER-negative tumors to letrozole.Cancer Res.71(5), 1893–1903 (2011).
  • Fan J , YinWJ, LuJSet al. ER alpha negative breast cancer cells restore response to endocrine therapy by combination treatment with both HDAC inhibitor and DNMT inhibitor. J. Cancer Res. Clin. Oncol. 134(8), 883–890 (2008).
  • Sharma D , SaxenaNK, DavidsonNE, VertinoPM. Restoration of tamoxifen sensitivity in estrogen receptor-negative breast cancer cells: tamoxifen-bound reactivated ER recruits distinctive corepressor complexes.Cancer Res.66(12), 6370–6378 (2006).
  • Fan M , YanPS, Hartman-FreyCet al. Diverse gene expression and DNA methylation profiles correlate with differential adaptation of breast cancer cells to the antiestrogens tamoxifen and fulvestrant. Cancer Res. 66(24), 11954–11966 (2006).
  • Munster PN , ThurnKT, ThomasSet al. A Phase II study of the histone deacetylase inhibitor vorinostat combined with tamoxifen for the treatment of patients with hormone therapy-resistant breast cancer. Br. J. Cancer 104(12), 1828–1835 (2011).
  • Yardley DA , Ismail-KhanRR, KleinPMet al. Entinostat, a novel histone deacetylase inhibitor, added to exemestane improves PFS in advanced breast cancer in a randomized, Phase II, double-blind study. Presented at: 34th Annual San Antonio Breast Cancer Symposium. San Antonio, TX, USA, 7 December 2011.
  • Andorfer CA , NecelaBM, ThompsonEA, PerezEA. MicroRNA signatures: clinical biomarkers for the diagnosis and treatment of breast cancer.Trends Mol. Med.17(6), 313–319 (2011).
  • Bartel DP . MicroRNAs: genomics, biogenesis, mechanism, and function.Cell116(2), 281–297 (2004).
  • Zeng Y , YiR, CullenBR. MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms.Proc. Natl Acad. Sci. USA100(17), 9779–9784 (2003).
  • Lowery AJ , MillerN, DevaneyAet al. MicroRNA signatures predict oestrogen receptor, progesterone receptor and HER2/neu receptor status in breast cancer. Breast Cancer Res. 11(3), R27 (2009).
  • Mattie MD , BenzCC, BowersJet al. Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol. Cancer 5, 24 (2006).
  • Rodriguez-Gonzalez FG , SieuwertsAM, SmidMet al. MicroRNA-30c expression level is an independent predictor of clinical benefit of endocrine therapy in advanced estrogen receptor positive breast cancer. Breast Cancer Res. Treat. 127(1), 43–51 (2011).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.