144
Views
0
CrossRef citations to date
0
Altmetric
Review

The Role of miRNAs in Bone Metastasis and their Significance in the Detection of Bone Metastasis: A Review of the Published Data

&
Pages 141-151 | Published online: 09 Jan 2015

References

  • Brown JE , CookRJ, MajorPet al. Bone turnover markers as predictors of skeletal complications in prostate cancer, lung cancer, and other solid tumors. J. Natl. Cancer Inst.97(1), 59–69 (2005).
  • Weilbaecher KN , GuiseTA, McCauleyLK. Cancer to bone: a fatal attraction. Nat. Rev. Cancer11(6), 411–425 (2011).
  • Barton MK . Denosumab an option for patients with bone metastasis from breast cancer. CA Cancer J. Clin.61(3), 135–136 (2011).
  • Sturge J , CaleyMP, WaxmanJ. Bone metastasis in prostate cancer: emerging therapeutic strategies. Nat. Rev. Clin. Oncol.8(6), 357–368 (2011).
  • Suva LJ , WashamC, NicholasRW, GriffinRJ. Bone metastasis: mechanisms and therapeutic opportunities. Nat. Rev. Endocrinol.7(4), 208–218 (2011).
  • Huang Q , OuyangX. Biochemical-markers for the diagnosis of bone metastasis: a clinical review. Cancer Epidemiol.36(1), 94–98 (2012).
  • Kamiya N , SuzukiH, EndoTet al. Clinical usefulness of bone markers in prostate cancer with bone metastasis. Int. J. Urol.19(11), 968–979 (2012).
  • Volinia S , CalinGA, LiuCGet al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl Acad. Sci. USA103(7), 2257–2261 (2006).
  • Harquail J , BenzinaS, RobichaudGA. MicroRNAs and breast cancer malignancy: an overview of miRNA-regulated cancer processes leading to metastasis. Cancer Biomark.11(6), 269–280 (2012).
  • Suda T , TakahashiN, UdagawaN, JimiE, GillespieMT, MartinTJ. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr. Rev.20(3), 345–357 (1999).
  • Sims NA , GooiJH. Bone remodeling: multiple cellular interactions required for coupling of bone formation and resorption. Semin. Cell Dev. Biol.19(5), 444–451 (2008).
  • Hanahan D , WeinbergRA. Hallmarks of cancer: the next generation. Cell144(5), 646–674 (2011).
  • Patel LR , CamachoDF, ShiozawaY, PientaKJ, TaichmanRS. Mechanisms of cancer cell metastasis to the bone: a multistep process. Future Oncol.7(11), 1285–1297 (2011).
  • Wickramasinghe NS , ManavalanTT, DoughertySM, RiggsKA, LiY, KlingeCM. Estradiol downregulates miR-21 expression and increases miR-21 target gene expression in MCF-7 breast cancer cells. Nucleic Acids Res.37(8), 2584–2595 (2009).
  • Hashimi ST , FulcherJA, ChangMH, GovL, WangS, LeeB. MicroRNA profiling identifies miR-34a and miR-21 and their target genes JAG1 and WNT1 in the coordinateregulation of dendritic cell differentiation. Blood114(2), 404–414 (2009).
  • Han M , LiuM, WangYet al. Antagonism of miR-21 reverses epithelial–mesenchymal transition and cancer stem cell phenotype through AKT/ERK1/2 inactivation by targeting PTEN. PLoS ONE7(6), e39520 (2012).
  • Han M , LiuM, WangYet al. Re-expression of miR-21 contributes to migration and invasion by inducing epithelial–mesenchymal transitionconsistent with cancer stem cell characteristics in MCF-7 cells. Mol. Cell. Biochem.363(1–2), 427–436 (2012).
  • Ma L , YoungJ, PrabhalaHet al. MiR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat. Cell Biol.12(3), 247–256 (2010).
  • Zhuang G , WuX, JiangZet al. Tumour-secreted miR-9 promotes endothelial cell migration and angiogenesis by activating the JAK-STAT pathway. EMBO J.31(17), 3513–3523 (2012).
  • Gebeshuber CA , ZatloukalK, MartinezJ. MiR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. EMBO Rep.10(4), 400–405 (2009).
  • Wang H , ZhuY, ZhaoMet al. MiRNA-29c suppresses lung cancer cell adhesion to extracellular matrix and metastasis by targeting integrin β1 and matrix metalloproteinase 2 (MMP2). PLoS ONE8(8), e70192 (2013).
  • Kuo PL , LiaoSH, HungJY, HuangMS, HsuYL. MicroRNA-33a functions as a bone metastasis suppressor in lung cancer by targeting parathyroid hormonerelated protein. Biochim. Biophys. Acta1830(6), 3756–3766 (2013).
  • Png KJ , HalbergN, YoshidaM, TavazoieSF. A microRNA regulon that mediates endothelial recruitment and metastasis by cancer cells. Nature481(7380), 190–194 (2011).
  • Deng Y , DengH, BiFet al. MicroRNA-137 targets carboxyl-terminal binding protein 1 in melanoma cell lines. Int. J. Biol. Sci.7(1), 133–137 (2011).
  • Hu J , GuoH, LiHet al. MiR-145 regulates epithelial to mesenchymal transition of breast cancer cells by targeting Oct4. PLoS ONE7(9), e45965 (2012).
  • Peng X , GuoW, LiuTet al. Identification of miRs-143 and -145 that is associated with bone metastasis of prostate cancer and involved in the regulation of EMT. PLoS ONE6(5), e20341 (2011).
  • Guo W , RenD, ChenXet al. HEF1 promotes epithelial mesenchymal transition and bone invasion in prostate cancer under the regulation of microRNA-145. J. Cell Biochem.114(7), 1606–1615 (2013).
  • Ren D , WangM, GuoWet al. Wild-type p53 suppresses the epithelial–mesenchymal transition and stemness in PC-3 prostate cancer cells by modulating miR-145. Int. J. Oncol.42(4), 1473–1481 (2013).
  • Shin KH , BaeSD, HongHS, KimRH, KangMK, ParkNH. MiR-181a shows tumor suppressive effect against oral squamous cell carcinoma cells by downregulating K-ras. Biochem. Biophys. Res. Commun.404(4), 896–902 (2011).
  • Liu M , WangJ, HuangH, HouJ, ZhangB, WangA. MiR-181a–Twist1 pathway in the chemoresistance of tongue squamous cell carcinoma. Biochem. Biophys. Res. Commun.441(2), 364–370 (2013).
  • Gibbons DL , LinW, CreightonCJet al. Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR-200 family expression. Genes Dev.23(18), 2140–2151 (2009).
  • Brabletz S , BajdakK, MeidhofSet al. The ZEB1/miR-200 feedback loop controls Notch signalling in cancer cells. EMBO J.30(4), 770–782 (2011).
  • Vallejo DM , CaparrosE, DominguezM. Targeting Notch signalling by the conserved miR-8/200 microRNA family in development and cancer cells. EMBO J.30(4), 756–769 (2011).
  • Liu J , RuanB, YouNet al. Downregulation of miR-200a induces EMT phenotypes and CSC-like signatures through targeting the β-catenin pathway in hepatic oval cells. PLoS ONE8(11), e79409 (2013).
  • Pollari S , LeivonenSK, PeräläM, FeyV, KäkönenSM, KallioniemiO. Identification of microRNAs inhibiting TGF-β -induced IL-11 production in bone metastatic breast cancer cells. PLoS ONE7(5), e37361 (2012).
  • Lim PK , BlissSA, PatelSAet al. Gap junction-mediated import of microRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells. Cancer Res.71(5), 1550–1560 (2011).
  • Ell B , MercataliL, IbrahimTet al. Tumor-induced osteoclast miRNA changes as regulators and biomarkers of osteolytic bone metastasis. Cancer Cell24(4), 542–556 (2013).
  • Gong M , MaJ, GuillemetteRet al. MiR-335 inhibits small cell lung cancer bone metastases via IGF-IR and RANKL pathways. Mol. Cancer Res.12(1), 101–110 (2014).
  • Tavazoie SF , AlarcónC, OskarssonTet al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature451(7175), 147–152 (2008).
  • Oskarsson T , AcharyyaS, ZhangXHet al. Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat. Med.17(7), 867–874 (2011).
  • Vetter G , SaumetA, MoesMet al. MiR-661 expression in SNAI1-induced epithelial to mesenchymal transition contributes to breast cancer cell invasion by targeting Nectin-1 and StarD10 messengers. Oncogene29(31), 4436–4448 (2010).
  • Paterson EL , KazenwadelJ, BertAG, Khew-GoodallY, RuszkiewiczA, GoodallGJ. Down-regulation of the miRNA-200 family at the invasive front of colorectal cancers with degraded basement membrane indicates EMT is involved in cancer progression. Neoplasia15(2), 180–191 (2013).
  • Cong N , DuP, ZhangAet al. Downregulated microRNA-200a promotes EMT and tumor growth through the wnt/β-catenin pathway by targeting the E-cadherin repressors ZEB1/ZEB2 in gastric adenocarcinoma. Oncol. Rep.29(4), 1579–1587 (2013).
  • Gregory PA , BertAG, PatersonELet al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol.10(5), 593–601 (2008).
  • Aydoğdu E , KatchyA, TsoukoEet al. MicroRNA-regulated gene networks during mammary cell differentiation are associated with breast cancer. Carcinogenesis33(8), 1502–1511 (2012).
  • Pacurari M , AddisonJB, BondalapatiNet al. The microRNA-200 family targets multiple non-small cell lung cancer prognostic markers in H1299 cells and BEAS-2B cells. Int. J. Oncol.43(2), 548–560 (2013).
  • Zidar N , BoštjančičE, GaleNet al. Downregulation of micro-RNAs of the miR-200 family and miR-205, and an altered expression of classic and desmosomal cadherins in spindle cell carcinoma of the head and neck – hallmark of epithelial–mesenchymal transition. Hum. Pathol.42(4), 482–488 (2011).
  • Bendoraite A , KnoufEC, GargKSet al. Regulation of miR-200 family microRNAs and ZEB transcription factors in ovarian cancer: evidence supporting a mesothelial-to-epithelial transition. Gynecol. Oncol.116(1), 117–124 (2010).
  • Maitah MY , AliS, AhmadA, GadgeelS, SarkarFH. Up-regulation of sonic hedgehog contributes to TGF-β1-induced epithelial to mesenchymal transition in NSCLC cells. PLoS ONE6(1), e16068 (2011).
  • Wu H , XiaoZ, WangK, LiuW, HaoQ. MiR-145 is down-regulated in human ovarian cancer and modulates cell growth and invasion by targeting p70S6K1 and MUC1. Biochem. Biophys. Res. Commun.441(4), 693–700 (2013).
  • Yin Y , YanZP, LuNNet al. Downregulation of miR-145 associated with cancer progression and VEGF transcriptional activation by targeting N-RAS and IRS1. Biochim. Biophys. Acta1829(2), 239–247 (2013).
  • Xu Q , LiuLZ, QianXet al. MiR-145 directly targets p70S6K1 in cancer cells to inhibit tumor growth and angiogenesis. Nucleic Acids Res.40(2), 761–774 (2012).
  • Chen X , GongJ, ZengHet al. MicroRNA145 targets BNIP3 and suppresses prostate cancer progression. Cancer Res.70(7), 2728–2738 (2010).
  • Zhai XF , FangFF, LiuQ, MengYB, GuoYY, ChenZ. MiR-181a contributes to bufalin-induced apoptosis in PC-3 prostate cancer cells. BMC Complement. Altern. Med.13, 325 (2013).
  • Bisso A , FaleschiniM, ZampaFet al. Oncogenic miR-181a/b affect the DNA damage response in aggressive breast cancer. Cell Cycle12(11), 1679–1687 (2013).
  • Fei J , LiY, ZhuX, LuoX. MiR-181a post-transcriptionally downregulates oncogenic RalA and contributes to growth inhibition and apoptosis in chronic myelogenous leukemia (CML). PLoS ONE7(3), e32834 (2012).
  • Chen DL , WangDS, WuWJet al. Overexpression of paxillin induced by miR-137 suppression promotes tumor progression and metastasis in colorectal cancer. Carcinogenesis34(4), 803–811 (2013).
  • Luo C , TettehPW, MerzPRet al. MiR-137 inhibits the invasion of melanoma cells through downregulation of multiple oncogenic target genes. J. Invest. Dermatol.133(3), 768–775 (2013).
  • Balaguer F , LinkA, LozanoJJet al. Epigenetic silencing of miR-137 is an early event in colorectal carcinogenesis. Cancer Res.70(16), 6609–6618 (2010).
  • Langevin SM , StoneRA, BunkerCH, GrandisJR, SobolRW, TaioliE. MicroRNA-137 promoter methylation in oral rinses from patients with squamous cell carcinoma of the head and neck is associated with gender and body mass index. Carcinogenesis31(5), 864–870 (2010).
  • Sengupta S , den BoonJA, ChenIHet al. MicroRNA 29c is down-regulated in nasopharyngeal carcinomas, up-regulating mRNAs encoding extracellularmatrix proteins. Proc. Natl Acad. Sci. USA105(15), 5874–5878 (2008).
  • Fabbri M , GarzonR, CimminoAet al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc. Natl Acad. Sci. USA104(40), 15805–15810 (2007).
  • Thomas M , Lange-GrünwellerK, WeirauchUet al. The proto -oncogene Pim-1 is a target of miR-33a. Oncogene31(7), 918–928 (2012).
  • Hemingway F , TaylorR, KnowlesHJ, AthanasouNA. RANKL-independent human osteoclast formation with APRIL, BAFF, NGF, IGF I and IGF II. Bone48(4), 938–944 (2011).
  • Guo C , SahJF, BeardL, WillsonJK, MarkowitzSD, GudaK. The noncoding RNA, miR-126, suppresses the growth of neoplastic cells by targeting phosphatidylinositol 3-kinase signaling and is frequently lost in colon cancers. Genes Chromosomes Cancer47(11), 939–946 (2008).
  • Feng R , ChenX, YuYet al. MiR-126 functions as a tumour suppressor in human gastric cancer. Cancer Lett.298(1), 50–63 (2010).
  • Jusufović E , RijavecM, KeserDet al. Let-7b and miR-126 are down-regulated in tumor tissue and correlate with microvessel density and survival outcomes in non-small-cell lung cancer. PLoS ONE7(9), e45577 (2012).
  • Bao L , YanY, XuCet al. MicroRNA-21 suppresses PTEN and hSulf-1 expression and promotes hepatocellular carcinoma progression through AKT/ERK pathways. Cancer Lett.337(2), 226–236 (2013).
  • Zhao FL , HuGD, WangXF, ZhangXH, ZhangYK, YuZS. Serum overexpression of microRNA-10b in patients with bone metastatic primary breast cancer. J. Int. Med. Res.40(3), 859–866 (2012).
  • Xie L , YangZ, LiGet al. Genome-wide identification of bone metastasis-related microRNAs in lung adenocarcinoma by high-throughput sequencing. PLoS ONE8(4), e61212 (2013).
  • Valencia K , Martín-FernándezM, ZanduetaCet al. MiR-326 associates with biochemical markers of bone turnover in lung cancer bone metastasis. Bone52(1), 532–539 (2013).
  • Hess KR , VaradhacharyGR, TaylorSHet al. Metastatic patterns in adenocarcinoma. Cancer106(7), 1624–1633 (2006).
  • Zhang HL , QinXJ, CaoDLet al. An elevated serum miR-141 level in patients with bone-metastatic prostate cancer is correlated with more bone lesions. Asian J. Androl.15(2), 231–235 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.