156
Views
0
CrossRef citations to date
0
Altmetric
Perspective

Colorectal Clinical Trials: What is on the Horizon?

&
Pages 525-531 | Received 17 Sep 2015, Accepted 23 Nov 2015, Published online: 18 Jan 2016

References

  • Siegel R , MaJ, ZouZ, JemalA. Cancer statistics, 2014. CA Cancer J. Clin.64(1), 9–29 (2014).
  • Siegel R , DesantisC, JemalA. Colorectal cancer statistics, 2014. CA Cancer J. Clin.64(2), 104–117 (2014).
  • American Cancer Society . Colorectal Cancer. www.cancer.org/cancer/colonandrectumcancer/detailedguide/colorectal-cancer-key-statistics.
  • Tol J , NagtegaalID, PuntCJ. BRAF mutation in metastatic colorectal cancer. N. Engl. J. Med.361(1), 98–99 (2009).
  • Loupakis F , CremoliniC, MasiGet al. Initial therapy with FOLFOXIRI and bevacizumab for metastatic colorectal cancer. N. Engl. J. Med.371(17), 1609–1618 (2014).
  • Loupakis F , CremoliniC, LonardiS. Subgroup analyses in RAS mutant, BRAF mutant and all-wt mCRC pts treated with FOLFOXIRI plus bevacizumab (bev) or FOLFIRI plus bev in the TRIBE study. J. Clin. Oncol.32(Suppl. 5s), Abstract 3519 (2014).
  • Ahmadzadeh M , JohnsonLA, HeemskerkBet al. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood114(8), 1537–1544 (2009).
  • Baitsch L , LegatA, BarbaLet al. Extended co-expression of inhibitory receptors by human CD8 T-cells depending on differentiation, antigen-specificity and anatomical localization. PLoS ONE7(2), e30852 (2012).
  • Topalian SL , HodiFS, BrahmerJRet al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med.366(26), 2443–2454 (2012).
  • Brahmer JR , DrakeCG, WollnerIet al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J. Clin. Oncol.28(19), 3167–3175 (2010).
  • Dolcetti R , VielA, DoglioniCet al. High prevalence of activated intraepithelial cytotoxic T lymphocytes and increased neoplastic cell apoptosis in colorectal carcinomas with microsatellite instability. Am. J. Pathol.154(6), 1805–1813 (1999).
  • Alexander J , WatanabeT, WuTT, RashidA, LiS, HamiltonSR. Histopathological identification of colon cancer with microsatellite instability. Am. J. Pathol.158(2), 527–535 (2001).
  • Smyrk TC , WatsonP, KaulK, LynchHT. Tumor-infiltrating lymphocytes are a marker for microsatellite instability in colorectal carcinoma. Cancer91(12), 2417–2422 (2001).
  • Young J , SimmsLA, BidenKGet al. Features of colorectal cancers with high-level microsatellite instability occurring in familial and sporadic settings: parallel pathways of tumorigenesis. Am. J. Pathol.159(6), 2107–2116 (2001).
  • Le DT , UramJN, WangHet al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med.372(26), 2509–2520 (2015).
  • Lutz ER , WuAA, BigelowEet al. Immunotherapy converts nonimmunogenic pancreatic tumors into immunogenic foci of immune regulation. Cancer Immunol. Res.2(7), 616–631 (2014).
  • Soares KC , RuckiAA, WuAAet al. PD-1/PD-L1 blockade together with vaccine therapy facilitates effector T-cell infiltration into pancreatic tumors. J. Immunother.38(1), 1–11 (2015).
  • Okuno K , SugiuraF, HidaJIet al. Phase I clinical trial of a novel peptide vaccine in combination with UFT/LV for metastatic colorectal cancer. Exp. Ther. Med.2(1), 73–79 (2011).
  • Hazama S , OkaM, YoshidaKet al. Phase I clinical trial of cancer vaccine with five novel epitope peptides with metastatic colorectal cancer (mCRC). J. Clin. Oncol.29(15 Suppl.), 2510 (2011).
  • Marx AH , BurandtEC, ChoschzickMet al. Heterogenous high-level HER-2 amplification in a small subset of colorectal cancers. Hum. Pathol.41(11), 1577–1585 (2010).
  • Osako T , MiyaharaM, UchinoS, InomataM, KitanoS, KobayashiM. Immunohistochemical study of c-erbB-2 protein in colorectal cancer and the correlation with patient survival. Oncology55(6), 548–555 (1998).
  • Bodkin DK , NibertML, FieldsBN. Proteolytic digestion of reovirus in the intestinal lumens of neonatal mice. J. Virol.63(11), 4676–4681 (1989).
  • Rosen L , EvansHE, SpickardA. Reovirus infections in human volunteers. Am. J. Hyg.77, 29–37 (1963).
  • Battcock SM , CollierTW, ZuD, HirasawaK. Negative regulation of the alpha interferon-induced antiviral response by the Ras/Raf/MEK pathway. J. Virol.80(9), 4422–4430 (2006).
  • Strong JE , CoffeyMC, TangD, SabininP, LeePW. The molecular basis of viral oncolysis: usurpation of the Ras signaling pathway by reovirus. EMBO J.17(12), 3351–3362 (1998).
  • Prahallad A , SunC, HuangSet al. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature483(7387), 100–103 (2012).
  • Corcoran RB , EbiH, TurkeABet al. EGFR-mediated re-activation of MAPK signaling contributes to insensitivity of BRAF mutant colorectal cancers to RAF inhibition with vemurafenib. Cancer Discov.2(3), 227–235 (2012).
  • Corcoran RB , AtreyaCE, FalchookGSet al. Phase I–II trial of the BRAF inhibitor dabrafenib (D) plus MEK inhibitior trametinib (T) in BRAF V600 mutant colorectal cancer (CRC): updated efficacy and biomarker analysis. J. Clin. Oncol.32(Suppl. 5s), Abstract 3517 (2014).
  • Misale S , ArenaS, LambaSet al. Blockade of EGFR and MEK intercepts heterogeneous mechanisms of acquired resistance to anti-EGFR therapies in colorectal cancer. Sci. Transl. Med.6(224), 224ra226 (2014).
  • Troiani T , NapolitanoS, VitaglianoDet al. Primary and acquired resistance of colorectal cancer cells to anti-EGFR antibodies converge on MEK/ERK pathway activation and can be overcome by combined MEK/EGFR inhibition. Clin. Cancer. Res.20(14), 3775–3786 (2014).
  • Schellens J , Van GeelR, BendellJet al. Final biomarker analysis of the pahse I study of the selective BRAF V600 inhibitor encorafenib (LGX818) combined with cetuximab with or without the α-specific PI3K inhibitor alpelisib (BYL719) in patients with advanced BRAF-mutant colorectal cancer. Presented at: The 106th Annual Meeting of the American Association for Cancer Research. Philadelphia, PA, USA, 18–22 April 2015.
  • Davies H , BignellGR, CoxCet al. Mutations of the BRAF gene in human cancer. Nature417(6892), 949–954 (2002).
  • Tie J , GibbsP, LiptonLet al. Optimizing targeted therapeutic development: analysis of a colorectal cancer patient population with the BRAF(V600E) mutation. Int. J. Cancer128(9), 2075–2084 (2011).
  • Samowitz WS , SweeneyC, HerrickJet al. Poor survival associated with the BRAF V600E mutation in microsatellite-stable colon cancers. Cancer Res.65(14), 6063–6069 (2005).
  • Yokota T , UraT, ShibataNet al. BRAF mutation is a powerful prognostic factor in advanced and recurrent colorectal cancer. Br. J. Cancer104(5), 856–862 (2011).
  • Price TJ , HardinghamJE, LeeCKet al. Impact of KRAS and BRAF gene mutation status on outcomes from the Phase III AGITG MAX trial of capecitabine alone or in combination with bevacizumab and mitomycin in advanced colorectal cancer. J. Clin. Oncol.29(19), 2675–2682 (2011).
  • Douillard JY , OlinerKS, SienaSet al. Panitumumab–FOLFOX4 treatment and RAS mutations in colorectal cancer. N. Engl. J. Med.369(11), 1023–1034 (2013).
  • Morris V , OvermanMJ, JiangZQet al. Progression-free survival remains poor over sequential lines of systemic therapy in patients with BRAF-mutated colorectal cancer. Clin. Colorectal Cancer13(3), 164–171 (2014).
  • Tran B , KopetzS, TieJet al. Impact of BRAF mutation and microsatellite instability on the pattern of metastatic spread and prognosis in metastatic colorectal cancer. Cancer117(20), 4623–4632 (2011).
  • Sosman JA , KimKB, SchuchterLet al. Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N. Engl. J. Med.366(8), 707–714 (2012).
  • Flaherty KT , PuzanovI, KimKBet al. Inhibition of mutated, activated BRAF in metastatic melanoma. N. Engl. J. Med.363(9), 809–819 (2010).
  • Falchook GS , LongGV, KurzrockRet al. Dabrafenib in patients with melanoma, untreated brain metastases, and other solid tumours: a Phase 1 dose-escalation trial. Lancet379(9829), 1893–1901 (2012).
  • Hauschild A , GrobJJ, DemidovLVet al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, Phase 3 randomised controlled trial. Lancet380(9839), 358–365 (2012).
  • Kopetz S , DesaiJ, ChanEet al. Phase II pilot study of vemurafenib in patients with metastatic BRAF-mutated colorectal cancer. J. Clin. Oncol. doi: 10.1200/JCO.2015.63.2497 (2015) ( Epub ahead of print).
  • Corcoran RB , Dias-SantagataD, BergethonK, IafrateAJ, SettlemanJ, EngelmanJA. BRAF gene amplification can promote acquired resistance to MEK inhibitors in cancer cells harboring the BRAF V600E mutation. Sci. Signal.3(149), ra84 (2010).
  • Flaherty KT , InfanteJR, DaudAet al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N. Engl. J. Med.367(18), 1694–1703 (2012).
  • Corcoran RB , AtreyaCE, FalchookGSet al. Combined BRAF and MEK inhibition with dabrafenib and trametinib in BRAF V600-mutant colorectal cancer. J. Clin. Oncol. doi: 10.1200/JCO.2015.63.2471 (2015) ( Epub ahead of print).
  • Yaeger R , CercekA, O’reillyEMet al. Pilot trial of combined BRAF and EGFR inhibition in BRAF-mutant metastatic colorectal cancer patients. Clin. Cancer Res.21(6), 1313–1320 (2015).
  • Hong DS , MorrisVK, FuSet al. Phase 1B study of vemurafenib in combination with irinotecan and cetuximab in patients with BRAF-mutated advanced cancers and metastatic colorectal cancer. J. Clin. Oncol.32(Suppl. 5s), Abstract 3516 (2014).
  • Tabernero J , ChanE, BaselgaJet al. VE-BASKET, a Simon 2-stage adaptive design, Phase II, histology-independent study in nonmelanoma solid tumors harboring BRAF V600 mutations (V600m): activity of vemurafenib (VEM) with or without cetuximab (CTX) in colorectal cancer (CRC). J. Clin. Oncol.32(Suppl. 15s), s217 (2014).
  • Atreya CE , Van CutsemE, BendellJCet al. Updated efficacy of the MEK inhibitor trametinib (T), BRAF inhibitor dabrafenib (D), and anti-EGFR antibody panitumumab (P) in patients (pts) with BRAF V600E mutated (BRAFm) metastatic colorectal cancer (mCRC). J. Clin. Oncol.33(Suppl. 15s), Abstract 103 (2015).
  • Hurwitz H , FehrenbacherL, NovotnyWet al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med.350(23), 2335–2342 (2004).
  • Cunningham D , LangI, MarcuelloEet al. Bevacizumab plus capecitabine versus capecitabine alone in elderly patients with previously untreated metastatic colorectal cancer (AVEX): an open-label, randomised Phase 3 trial. Lancet Oncol.14(11), 1077–1085 (2013).
  • Tebbutt NC , WilsonK, GebskiVJet al. Capecitabine, bevacizumab, and mitomycin in first-line treatment of metastatic colorectal cancer: results of the Australasian Gastrointestinal Trials Group Randomized Phase III MAX Study. J. Clin. Oncol.28(19), 3191–3198 (2010).
  • Stathopoulos GP , BatziouC, TrafalisDet al. Treatment of colorectal cancer with and without bevacizumab: a Phase III study. Oncology78(5–6), 376–381 (2010).
  • Saltz LB , ClarkeS, Diaz-RubioEet al. Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized Phase III study. J. Clin. Oncol.26(12), 2013–2019 (2008).
  • Cunningham D , HumbletY, SienaSet al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N. Engl. J. Med.351(4), 337–345 (2004).
  • Jonker DJ , O’callaghanCJ, KarapetisCSet al. Cetuximab for the treatment of colorectal cancer. N. Engl. J. Med.357(20), 2040–2048 (2007).
  • Karapetis CS , Khambata-FordS, JonkerDJet al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N. Engl. J. Med.359(17), 1757–1765 (2008).
  • Price TJ , PeetersM, KimTWet al. Panitumumab versus cetuximab in patients with chemotherapy-refractory wild-type KRAS exon 2 metastatic colorectal cancer (ASPECCT): a randomised, multicentre, open-label, non-inferiority Phase 3 study. Lancet Oncol.15(6), 569–579 (2014).
  • Amado RG , WolfM, PeetersMet al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J. Clin. Oncol.26(10), 1626–1634 (2008).
  • Cancer Genome Atlas N . Comprehensive molecular characterization of human colon and rectal cancer. Nature487(7407), 330–337 (2012).
  • Aisner DL , NguyenTT, PaskulinDDet al. ROS1 and ALK fusions in colorectal cancer, with evidence of intratumoral heterogeneity for molecular drivers. Mol. Cancer Res.12(1), 111–118 (2014).
  • Zeng ZS , WeiserMR, KuntzEet al. c-Met gene amplification is associated with advanced stage colorectal cancer and liver metastases. Cancer Lett.265(2), 258–269 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.