67
Views
0
CrossRef citations to date
0
Altmetric
Perspective

HIV Antivirals: Targeting the Functional Organization of the Lipid Envelope

&
Pages 129-140 | Received 19 Sep 2017, Accepted 06 Nov 2017, Published online: 12 Jan 2018

References

  • Wilen CB , TiltonJC, DomsRW . HIV: cell binding and entry . Cold Spring Harb. Perspect. Med.2 ( 8 ), pii:a006866 ( 2012 ).
  • Checkley MA , LuttgeBG, FreedEO . HIV-1 envelope glycoprotein biosynthesis, trafficking, and incorporation . J. Mol. Biol.410 ( 4 ), 582 – 608 ( 2011 ).
  • White JM , DelosSE, BrecherM, SchornbergK . Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme . Crit. Rev. Biochem. Mol. Biol.43 ( 3 ), 189 – 219 ( 2008 ).
  • Ward AB , WilsonIA . Insights into the trimeric HIV-1 envelope glycoprotein structure . Trends Biochem. Sci.40 ( 2 ), 101 – 107 ( 2015 ).
  • Eckert DM , KimPS . Mechanisms of viral membrane fusion and its inhibition . Annu. Rev. Biochem.70 ( 1 ), 777 – 810 ( 2001 ).
  • Lalezari JP , HenryK, O’HearnMet al. Enfuvirtide, an HIV-1 fusion inhibitor, for drug-resistant HIV infection in North and South America . N. Engl. J. Med.348 ( 22 ), 2175 – 2185 ( 2003 ).
  • Haqqani AA , TiltonJC . Entry inhibitors and their use in the treatment of HIV-1 infection . Antiviral Res.98 ( 2 ), 158 – 170 ( 2013 ).
  • Flexner C , SaagM . The antiretroviral drug pipeline: prospects and implications for future treatment research . Curr. Opin. HIV AIDS8 ( 6 ), 572 – 578 ( 2013 ).
  • Wisskirchen K , LuciforaJ, MichlerT, ProtzerU . New pharmacological strategies to fight enveloped viruses . Trends Pharmacol. Sci.35 ( 9 ), ( 2014 ).
  • Chernomordik LV , KozlovMM . Mechanics of membrane fusion . Nat. Struct. Mol. Biol.15 ( 7 ), 675 – 683 ( 2008 ).
  • Kozlov MM , McMahonHT, ChernomordikLV . Protein-driven membrane stresses in fusion and fission . Trends Biochem. Sci.35 ( 12 ), 699 – 706 ( 2010 ).
  • Apellaniz B , HuarteN, LargoE, NievaJL . The three lives of viral fusion peptides . Chem. Phys. Lipids.181, 40 – 55 ( 2014 ).
  • St. Vincent MR , ColpittsCC, UstinovAVet al. Rigid amphipathic fusion inhibitors, small molecule antiviral compounds against enveloped viruses . Proc. Natl Acad. Sci. USA107 ( 40 ), 17339 – 17344 ( 2010 ).
  • Aloia RC , JensenFC, CurtainCC, MobleyPW, GordonLM . Lipid composition and fluidity of the human immunodeficiency virus . Proc. Natl Acad. Sci. USA85 ( 3 ), 900 – 904 ( 1988 ).
  • Aloia RC , TianH, JensenFC . Lipid composition and fluidity of the human immunodeficiency virus envelope and host cell plasma membranes . Proc. Natl Acad. Sci. USA90 ( 11 ), 5181 – 5185 ( 1993 ).
  • Brügger B , GlassB, HaberkantP, LeibrechtI, WielandFT, KräusslichH-GG . The HIV lipidome: a raft with an unusual composition . Proc. Natl Acad. Sci. USA103 ( 8 ), 2641 – 2646 ( 2006 ).
  • Huarte N , CarravillaP, CruzAet al. Functional organization of the HIV lipid envelope . Sci. Rep.6, 34190 ( 2016 ).
  • Chojnacki J , WaitheD, CarravillaPet al. Envelope glycoprotein mobility on HIV-1 particles depends on the virus maturation state . Nat. Commun.8 ( 1 ), 545 ( 2017 ).
  • Lorizate M , BrüggerB, AkiyamaHet al. Probing HIV-1 membrane liquid order by Laurdan staining reveals producer cell-dependent differences . J. Biol. Chem.284 ( 33 ), 22238 – 22247 ( 2009 ).
  • Wojcechowskyj JA , DomsRW . A potent broad-spectrum antiviral agent that targets viral membranes . Viruses2 ( 5 ), 1106 – 1109 ( 2010 ).
  • Nguyen DH , HildrethJEK . Evidence for budding of human immunodeficiency virus type 1 selectively from glycolipid-enriched membrane lipid rafts . J. Virol.74 ( 7 ), 3264 – 3272 ( 2000 ).
  • Slotte JP . The importance of hydrogen bonding in sphingomyelin’s membrane interactions with co-lipids . Biochim. Biophys. Acta Biomembr.1858 ( 2 ), 304 – 310 ( 2016 ).
  • Sezgin E , LeventalI, MayorS, EggelingC . The mystery of membrane organization: composition, regulation and roles of lipid rafts . Nat. Rev. Mol. Cell Biol.18 ( 6 ), 361 – 374 ( 2017 ).
  • Aeffner S , ReuschT, WeinhausenB, SaldittT . Energetics of stalk intermediates in membrane fusion are controlled by lipid composition . Proc. Natl Acad. Sci. USA109 ( 25 ), 1609 – 1618 ( 2012 ).
  • Yang S-T , KreutzbergerAJB, LeeJ, KiesslingV, TammLK . The role of cholesterol in membrane fusion . Chem. Phys. Lipids199, 136 – 143 ( 2016 ).
  • Epand RF , ThomasA, BrasseurR, VishwanathanSA, HunterE, EpandRM . Juxtamembrane protein segments that contribute to recruitment of cholesterol into domains . Biochemistry45 ( 19 ), 6105 – 6114 ( 2006 ).
  • Chen SS-L , YangP, KeP-YYet al. Identification of the LWYIK motif located in the human immunodeficiency virus type 1 transmembrane gp41 protein as a distinct determinant for viral infection . J. Virol.83 ( 2 ), 870 – 883 ( 2009 ).
  • Apellaniz B , RujasE, CarravillaPet al. Cholesterol-dependent membrane fusion induced by the gp41 membrane-proximal external region-transmembrane domain connection suggests a mechanism for broad HIV-1 neutralization . J. Virol.88 ( 22 ), 13367 – 13377 ( 2014 ).
  • Chan R , UchilPD, JinJet al. Retroviruses human immunodeficiency virus and murine leukemia virus are enriched in phosphoinositides . J. Virol.82 ( 22 ), 11228 – 11238 ( 2008 ).
  • Callahan MK , PopernackPM, TsutsuiS, TruongL, SchlegelRA, HendersonAJ . Phosphatidylserine on HIV envelope is a cofactor for infection of monocytic cells . J. Immunol.170 ( 9 ), 4840 – 4845 ( 2003 ).
  • Soares MM , KingSW, ThorpePE . Targeting inside-out phosphatidylserine as a therapeutic strategy for viral diseases . Nat. Med.14 ( 12 ), 1357 – 1362 ( 2008 ).
  • Li M , AblanSD, MiaoCet al. TIM-family proteins inhibit HIV-1 release . Proc. Natl Acad. Sci. USA111 ( 35 ), e3699 – e3707 ( 2014 ).
  • Henriques ST , HuangYH, CastanhoMARBet al. Phosphatidylethanolamine binding is a conserved feature of cyclotide-membrane interactions . J. Biol. Chem.287 ( 40 ), 33629 – 33643 ( 2012 ).
  • Phoenix DA , HarrisF, MuraM, DennisonSR . The increasing role of phosphatidylethanolamine as a lipid receptor in the action of host defence peptides . Prog. Lipid Res.59, 26 – 37 ( 2015 ).
  • Katz G , BenkarroumY, WeiHet al. Morphology of influenza B/lee/40 determined by cryo-electron microscopy . PLoS ONE9 ( 2 ), e88288 ( 2014 ).
  • Zhu P , LiuJ, BessJet al. Distribution and three-dimensional structure of AIDS virus envelope spikes . Nature441 ( 7095 ), 847 – 852 ( 2006 ).
  • Vigant F , SantosNC, LeeB . Broad-spectrum antivirals against viral fusion . Nat. Rev. Microbiol.13 ( 7 ), 426 – 437 ( 2015 ).
  • Campbell SM , CroweSM, MakJ . Virion-associated cholesterol is critical for the maintenance of HIV-1 structure and infectivity . AIDS16 ( 17 ), 2253 – 2261 ( 2002 ).
  • Guyader M , KiyokawaE, AbramiL, TurelliP, TronoD . Role for human immunodeficiency virus type 1 membrane cholesterol in viral internalization . J. Virol.76 ( 20 ), 10356 – 10364 ( 2002 ).
  • Liao Z , GrahamDR, HildrethJEK . Lipid Rafts and HIV Pathogenesis: virion-associated cholesterol is required for fusion and infection of susceptible cells . AIDS Res. Hum. Retroviruses19 ( 8 ), 675 – 687 ( 2003 ).
  • Ono A , FreedEO . Plasma membrane rafts play a critical role in HIV-1 assembly and release . Proc. Natl Acad. Sci. USA98 ( 24 ), 13925 – 13930 ( 2001 ).
  • Liao Z , CimakaskyLM, HamptonR, NguyenDH, HildrethJE . Lipid rafts and HIV pathogenesis: host membrane cholesterol is required for infection by HIV type 1 . AIDS Res. Hum. Retroviruses17 ( 11 ), 1009 – 1019 ( 2001 ).
  • Gerl MJ , SampaioJL, UrbanSet al. Quantitative analysis of the lipidomes of the influenza virus envelope and MDCK cell apical membrane . J. Cell Biol.196 ( 2 ), 213 – 221 ( 2012 ).
  • Sun X , WhittakerGR . Role for infuenza virus envelope cholesterol in virus entry and infection . J. Virol.77 ( 23 ), 12543 – 12551 ( 2003 ).
  • Domanska MK , WronaD, KassonPM . Multiphasic effects of cholesterol on influenza fusion kinetics reflect multiple mechanistic roles . Biophys. J.105 ( 6 ), 1383 – 1387 ( 2013 ).
  • Domanska MK , DunningRA, DrydenKA, ZawadaKE, YeagerM, KassonPM . Hemagglutinin spatial distribution shifts in response to cholesterol in the influenza viral envelope . Biophys. J.109 ( 9 ), 1917 – 1924 ( 2015 ).
  • Yang S-T , KiesslingV, TammLK . Line tension at lipid phase boundaries as driving force for HIV fusion peptide-mediated fusion . Nat. Commun.7, 11401 ( 2016 ).
  • Yang S-T , KreutzbergerAJB, KiesslingV, Ganser-PornillosBK, WhiteJM, TammLK . HIV virions sense plasma membrane heterogeneity for cell entry . Sci. Adv.3 ( 6 ), e1700338 ( 2017 ).
  • Pollock S , NichitaNB, BöhmerA, RadulescuC, DwekRa, ZitzmannN . Polyunsaturated liposomes are antiviral against hepatitis B and C viruses and HIV by decreasing cholesterol levels in infected cells . Proc. Natl Acad. Sci. USA107 ( 40 ), 17176 – 17181 ( 2010 ).
  • Chamoun-Emanuelli AM , PecheurEI, SimeonRLet al. Phenothiazines inhibit hepatitis C virus entry, likely by increasing the fluidity of cholesterol-rich membranes . Antimicrob. Agents Chemother.57 ( 6 ), 2571 – 2581 ( 2013 ).
  • Schaffner CP , PlesciaOJ, PontaniDet al. Anti-viral activity of amphotericin B methyl ester: inhibition of HTLV-III replication in cell culture . Biochem. Pharmacol.35 ( 22 ), 4110 – 4113 ( 1986 ).
  • Waheed AA , AblanSD, MankowskiMKet al. Inhibition of HIV-1 replication by amphotericin B methyl ester: selection for resistant variants . J. Biol. Chem.281 ( 39 ), 28699 – 28711 ( 2006 ).
  • Waheed AA , AblanSD, SoheilianFet al. Inhibition of human immunodeficiency virus type 1 assembly and release by the cholesterol-binding compound amphotericin B methyl ester: evidence for Vpu dependence . J. Virol.82 ( 19 ), 9776 – 9781 ( 2008 ).
  • Waheed AA , AblanSD, RoserJDet al. HIV-1 escape from the entry-inhibiting effects of a cholesterol-binding compound via cleavage of gp41 by the viral protease . Proc. Natl Acad. Sci. USA104 ( 20 ), 8467 – 8471 ( 2007 ).
  • Zwaal RFA , ComfuriusP, BeversEM . Surface exposure of phosphatidylserine in pathological cells . Cell. Mol. Life Sci.62 ( 9 ), 971 – 988 ( 2005 ).
  • Lorizate M , SachsenheimerT, GlassBet al. Comparative lipidomics analysis of HIV-1 particles and their producer cell membrane in different cell lines . Cell. Microbiol.15 ( 2 ), 292 – 304 ( 2013 ).
  • Morizono K , ChenISY . Role of phosphatidylserine receptors in enveloped virus infection . J. Virol.88 ( 8 ), 4275 – 4290 ( 2014 ).
  • Dowall SD , GrahamVA, Corbin-LickfettKet al. Effective binding of a phosphatidylserine-targeting antibody to ebola virus infected cells and purified virions . J. Immunol. Res.2015, doi:10.1155/2015/347903 ( 2015 ).
  • He J , YinY, LusterTA, WatkinsL, ThorpePE . Antiphosphatidylserine antibody combined with irradiation damages tumor blood vessels and induces tumor immunity in a rat model of glioblastoma . Clin. Cancer Res.15 ( 22 ), 6871 – 6880 ( 2009 ).
  • Vasiljevic S , BealeEV, BonomelliCet al. Redirecting adenoviruses to tumour cells using therapeutic antibodies: generation of a versatile human bispecific adaptor . Mol. Immunol.68 ( 2 ), 234 – 243 ( 2015 ).
  • Irimia A , SarkarA, StanfieldRL, WilsonIA . Crystallographic identification of lipid as an integral component of the epitope of HIV broadly neutralizing antibody 4E10 . Immunity44 ( 1 ), 21 – 31 ( 2016 ).
  • Rujas E , CaaveiroJMM, InsaustiS, García-PorrasM, TsumotoK, NievaJL . Peripheral membrane interactions boost the engagement by an anti HIV-1 broadly neutralizing antibody . J. Biol. Chem.292 ( 13 ), jbc.M117.775429 ( 2017 ).
  • Irimia A , SerraAM, SarkarAet al. Lipid interactions and angle of approach to the HIV-1 viral membrane of broadly neutralizing antibody 10E8: Insights for vaccine and therapeutic design . PLOS Pathog.13 ( 2 ), 1 – 20 ( 2017 ).
  • Dean JM , LodhiIJ . Structural and functional roles of ether lipids . Protein Cell. doi:10.1007/s13238-017-0423-5 ( 2017 ) ( Epub ahead of print ).
  • Sando L , HenriquesST, FoleyFet al. A synthetic mirror image of kalata B1 reveals that cyclotide activity is independent of a protein receptor . ChemBioChem.12 ( 16 ), 2456 – 2462 ( 2011 ).
  • Henriques ST , HuangYH, RosengrenKJet al. Decoding the membrane activity of the cyclotide kalata B1: the importance of phosphatidylethanolamine phospholipids and lipid organization on hemolytic and anti-HIV activities . J. Biol. Chem.286 ( 27 ), 24231 – 24241 ( 2011 ).
  • Martin I , RuysschaertJM . Lysophosphatidylcholine inhibits vesicles fusion induced by the NH Z-terminal extremity of SIV/HIV fusogenic proteins . Biochim. Biophys. Acta1240, 95 – 100 ( 1995 ).
  • Güther-Ausborn S , PraetorA, StegmannT . Inhibition of membrane fusion by lysophosphatidylcholine . Biochemistry270 ( 49 ), 29279 – 29285 ( 1995 ).
  • Colpitts CC , UstinovAV, EpandRF, EpandRM, KorshunVA, SchangLM . 5-(Perylen-3-yl)ethynyl-arabino-uridine (aUY11) an arabino-based rigid amphipathic fusion inhibitor, targets virion envelope lipids to inhibit fusion of influenza virus, hepatitis C virus, and other enveloped viruses . J. Virol.87 ( 7 ), 3640 – 3654 ( 2013 ).
  • Wolf MC , FreibergAN, ZhangTet al. A broad-spectrum antiviral targeting entry of enveloped viruses . Proc. Natl Acad. Sci. USA107 ( 7 ), 3157 – 3162 ( 2010 ).
  • Vigant F , LeeJ, HollmannAet al. A mechanistic paradigm for broad-spectrum antivirals that target virus-cell fusion . PLOS Pathog.9 ( 4 ), e1003297 ( 2013 ).
  • Hollmann A , CastanhoMA, LeeB, SantosNC . Singlet oxygen effects on lipid membranes: implications for the mechanism of action of broad-spectrum viral fusion inhibitors . Biochem. J.459 ( 1 ), 161 – 170 ( 2014 ).
  • Hollmann A , GonçalvesS, AugustoMTet al. Effects of singlet oxygen generated by a broad-spectrum viral fusion inhibitor on membrane nanoarchitecture . Nanomedicine11 ( 5 ), 1163 – 1167 ( 2015 ).
  • Vigant F , HollmannA, LeeJ, SantosNC, JungME, LeeB . The rigid amphipathic fusion inhibitor dUY11 acts through photosensitization of viruses . J. Virol.88 ( 3 ), 1849 – 1853 ( 2014 ).
  • Wang G , WatsonKM, PeterkofskyA, BuckheitRW . Identification of novel human immunodeficiency virus type 1-inhibitory peptides based on the antimicrobial peptide database . Antimicrob. Agents Chemother.54 ( 3 ), 1343 – 1346 ( 2010 ).
  • Zhang L , YuW, HeTet al. Contribution of human-defensin 1, 2, and 3 to the anti-HIV-1 activity of CD8 antiviral factor . Science298 ( 5595 ), 995 – 1000 ( 2002 ).
  • Van Compernolle SE , TaylorRJ, Oswald-RichterKet al. Antimicrobial peptides from amphibian skin potently inhibit human immunodeficiency virus infection and transfer of virus from dendritic cells to T cells . J. Virol.79 ( 18 ), 11598 – 11606 ( 2005 ).
  • Demirkhanyan LH , MarinM, Padilla-ParraSet al. Multifaceted mechanisms of HIV-1 entry inhibition by human α-defensin . J. Biol. Chem.287 ( 34 ), 28821 – 28838 ( 2012 ).
  • Badani H , GarryRF, WimleyWC . Peptide entry inhibitors of enveloped viruses: the importance of interfacial hydrophobicity . Biochim. Biophys. Acta Biomembr.1838 ( 9 ), 2180 – 2197 ( 2014 ).
  • Galdiero S , FalangaA, MorelliG, GaldieroM . GH625: a milestone in understanding the many roles of membranotropic peptides . Biochim. Biophys. Acta Biomembr.1848 ( Part A ), 16 – 25 ( 2015 ).
  • Apellániz B , IvankinA, NirS, GidalevitzD, NievaJL . Membrane-proximal external HIV-1 gp41 motif adapted for destabilizing the highly rigid viral envelope . Biophys. J.101 ( 10 ), 2426 – 2435 ( 2011 ).
  • Bobardt MD , ChengG, de WitteLet al. Hepatitis C virus NS5A anchor peptide disrupts human immunodeficiency virus . Proc. Natl Acad. Sci. USA105 ( 14 ), 5525 – 5530 ( 2008 ).
  • Giannecchini S , Di FenzaA, D’UrsiAM, MatteucciD, RoveroP, BendinelliM . Antiviral activity and conformational features of an octapeptide derived from the membrane-proximal ectodomain of the feline immunodeficiency virus transmembrane glycoprotein . J. Virol.77 ( 6 ), 3724 – 3733 ( 2003 ).
  • Hrobowski YM , GarryRF, MichaelSF . Peptide inhibitors of dengue virus and West Nile virus infectivity . Virol. J.2 ( 1 ), 49 ( 2005 ).
  • Sainz B Jr , MosselEC, GallaherWRet al. Inhibition of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) infectivity by peptides analogous to the viral spike protein . Virus Res.120 ( 1–2 ), 146 – 155 ( 2006 ).
  • Galdiero S , FalangaA, VitielloMet al. Peptides containing membrane-interacting motifs inhibit herpes simplex virus type 1 infectivity . Peptides29 ( 9 ), 1461 – 1471 ( 2008 ).
  • Spence JS , MelnikLI, BadaniH, WimleyWC, GarryRF . Inhibition of arenavirus infection by a glycoprotein-derived peptide with a novel mechanism . J. Virol.88 ( 15 ), 8556 – 8564 ( 2014 ).
  • Lorizate M , HuarteN, Sáez-CiriónA, NievaJL . Interfacial pre-transmembrane domains in viral proteins promoting membrane fusion and fission . Biochim. Biophys. Acta Biomembr.1778 ( 7–8 ), 1624 – 1639 ( 2008 ).
  • Carravilla P , CruzA, Martin-UgarteIet al. Effects of HIV-1 gp41-derived virucidal peptides on virus-like lipid membranes . Biophys. J.3495 ( 17 ), 30747 – 30746 ( 2017 ).
  • Ashkenazi A , FaingoldO, ShaiY . HIV-1 fusion protein exerts complex immunosuppressive effects . Trends Biochem. Sci.38 ( 7 ), 345 – 349 ( 2013 ).
  • Apellaniz B , RujasE, SerranoSet al. The atomic structure of the HIV-1 gp41 transmembrane domain and its connection to the immunogenic membrane-proximal external region . J. Biol. Chem.290 ( 21 ), 12999 – 13015 ( 2015 ).
  • Rujas E , CaaveiroJMM, Partida-HanonAet al. Structural basis for broad neutralization of HIV-1 through the molecular recognition of 10E8 helical epitope at the membrane interface . Sci. Rep.6 ( 1 ), 38177 ( 2016 ).
  • London E . Membrane fusion: a new role for lipid domains?Nat. Chem. Biol.11 ( 6 ), 383 – 384 ( 2015 ).
  • Yang S-T , KiesslingV, SimmonsJA, WhiteJM, TammLK . HIV gp41-mediated membrane fusion occurs at edges of cholesterol-rich lipid domains . Nat. Chem. Biol.11 ( 6 ), 1 – 10 ( 2015 ).
  • Brandenberg OF , MagnusC, RegoesRR, TrkolaA . The HIV-1 entry process: a stoichiometric view . Trends Microbiol.23 ( 12 ), 763 – 774 ( 2015 ).
  • Heberle FA , PetruzieloRS, PanJet al. Bilayer thickness mismatch controls domain size in model membranes . J. Am. Chem. Soc.135 ( 18 ), 6853 – 6859 ( 2013 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.