5,032
Views
1
CrossRef citations to date
0
Altmetric
Review

Antiviral Therapeutic Approaches for Human Rhinovirus Infections

, , &
Pages 505-518 | Received 29 Jan 2018, Accepted 20 Apr 2018, Published online: 12 Jun 2018

References

  • Palmenberg AC , RatheJA, LiggettSB . Analysis of the complete genome sequences of human rhinovirus . J. Allergy Clin. Immunol.125 ( 6 ), 1190 – 1201 ( 2010 ).
  • Bochkov YA , WattersK, AshrafSet al. Cadherin-related family member 3, a childhood asthma susceptibility gene product, mediates rhinovirus C binding and replication . Proc. Natl Acad. Sci. USA112 ( 17 ), 5485 – 5490 ( 2015 ).
  • Gern JE , GalaganDM, JarjourNN, DickEC, BusseWW . Detection of rhinovirus RNA in lower airway cells during experimentally induced infection . Am. J. Respir. Crit. Care Med.155 ( 3 ), 1159 – 1161 ( 1997 ).
  • Arruda E , BoyleTR, WintherB, PevearDC, GwaltneyJMJr, HaydenFG . Localization of human rhinovirus replication in the upper respiratory tract by in situ hybridization . J. Infect. Dis.171 ( 5 ), 1329 – 1333 ( 1995 ).
  • Winther B , GwaltneyJM, HendleyJO . Respiratory virus infection of monolayer cultures of human nasal epithelial cells . Am. Rev. Respir. Dis.141 ( 4 Pt 1 ), 839 – 845 ( 1990 ).
  • Sajjan U , WangQ, ZhaoY, GruenertDC, HershensonMB . Rhinovirus disrupts the barrier function of polarized airway epithelial cells . Am. J. Respir. Crit. Care Med.178 ( 12 ), 1271 – 1281 ( 2008 ).
  • Makela MJ , PuhakkaT, RuuskanenOet al. Viruses and bacteria in the etiology of the common cold . J. Clin. Microbiol.36 ( 2 ), 539 – 542 ( 1998 ).
  • Turner RB . Epidemiology, pathogenesis, and treatment of the common cold . Ann. Allergy Asthma Immunol.78 ( 6 ), 531 – 539 ( 1997 ).
  • Jartti T , GernJE . Rhinovirus-associated wheeze during infancy and asthma development . Curr. Respir. Med. Rev.7 ( 3 ), 160 – 166 ( 2011 ).
  • Kaiser L , AubertJD, PacheJCet al. Chronic rhinoviral infection in lung transplant recipients . Am. J. Respir. Crit. Care Med.174 ( 12 ), 1392 – 1399 ( 2006 ).
  • Corne JM , MarshallC, SmithSet al. Frequency, severity, and duration of rhinovirus infections in asthmatic and non-asthmatic individuals: a longitudinal cohort study . Lancet359 ( 9309 ), 831 – 834 ( 2002 ).
  • Johnston SL , PattemorePK, SandersonGet al. Community study of role of viral infections in exacerbations of asthma in 9–11 year old children . BMJ310 ( 6989 ), 1225 – 1229 ( 1995 ).
  • Papi A , BellettatoCM, BraccioniFet al. Infections and airway inflammation in chronic obstructive pulmonary disease severe exacerbations . Am. J. Respir. Crit. Care Med.173 ( 10 ), 1114 – 1121 ( 2006 ).
  • Gavala ML , BerticsPJ, GernJE . Rhinoviruses, allergic inflammation, and asthma . Immunol. Rev.242 ( 1 ), 69 – 90 ( 2011 ).
  • Glanville N , JohnstonSL . Challenges in developing a cross-serotype rhinovirus vaccine . Curr. Opin. Virol.11, 83 – 88 ( 2015 ).
  • Tang JW , LamTT, ZaraketHet al. Global epidemiology of non-influenza RNA respiratory viruses: data gaps and a growing need for surveillance . Lancet Infect. Dis.17 ( 10 ), e320 – e326 ( 2017 ).
  • Register RB , UncapherCR, NaylorAM, LinebergerDW, ColonnoRJ . Human–murine chimeras of ICAM-1 identify amino acid residues critical for rhinovirus and antibody binding . J. Virol.65 ( 12 ), 6589 – 6596 ( 1991 ).
  • Bartlett NW , WaltonRP, EdwardsMRet al. Mouse models of rhinovirus-induced disease and exacerbation of allergic airway inflammation . Nat. Med.14 ( 2 ), 199 – 204 ( 2008 ).
  • Mallia P , MessageSD, GielenVet al. Experimental rhinovirus infection as a human model of chronic obstructive pulmonary disease exacerbation . Am. J. Respir. Crit. Care Med.183 ( 6 ), 734 – 742 ( 2011 ).
  • De Clercq E , LiG . Approved antiviral drugs over the past 50 years . Clin. Microbiol. Rev.29 ( 3 ), 695 – 747 ( 2016 ).
  • Trang TP , WhalenM, Hilts-HoreczkoA, DoernbergSB, LiuC . Comparative effectiveness of aerosolized versus oral ribavirin for the treatment of respiratory syncytial virus infections: a single-center retrospective cohort study and review of the literature . Transpl. Infect. Dis.20 ( 2 ), e12844 ( 2018 ).
  • Abonyi ME , LakatosPL . Ribavirin in the treatment of hepatitis C . Anticancer Res.25 ( 2B ), 1315 – 1320 ( 2005 ).
  • Grim SA , ReidGE, ClarkNM . Update in the treatment of non-influenza respiratory virus infection in solid organ transplant recipients . Expert Opin. Pharmacother.18 ( 8 ), 767 – 779 ( 2017 ).
  • Mo Y , FisherD . A review of treatment modalities for Middle East Respiratory Syndrome . J. Antimicrob. Chemother.71 ( 12 ), 3340 – 3350 ( 2016 ).
  • Wong SS , YuenKY . The management of coronavirus infections with particular reference to SARS . J. Antimicrob. Chemother.62 ( 3 ), 437 – 441 ( 2008 ).
  • Szabo R . Antiviral therapy and prevention against hantavirus infections . Acta Virol.61 ( 1 ), 3 – 12 ( 2017 ).
  • Mccormick JB , KingIJ, WebbPAet al. Lassa fever. Effective therapy with ribavirin . N. Engl. J. Med.314 ( 1 ), 20 – 26 ( 1986 ).
  • Fisher-Hoch SP , KhanJA, RehmanS, MirzaS, KhurshidM, MccormickJB . Crimean Congo-haemorrhagic fever treated with oral ribavirin . Lancet346 ( 8973 ), 472 – 475 ( 1995 ).
  • Borio L , InglesbyT, PetersCJet al. Hemorrhagic fever viruses as biological weapons: medical and public health management . JAMA287 ( 18 ), 2391 – 2405 ( 2002 ).
  • Multicenter clinical trial of oral ribavirin in symptomatic HIV-infected patients. The Ribavirin ARC Study Group . J. Acquir. Immune Defic. Syndr.6 ( 1 ), 32 – 41 ( 1993 ).
  • Bierman SM , KirkpatrickW, FernandezH . Clinical efficacy of ribavirin in the treatment of genital herpes simplex virus infection . Chemotherapy27 ( 2 ), 139 – 145 ( 1981 ).
  • Allen LB , BoswellKH, KhwajaTAet al. Synthesis and antiviral acticity of some phosphates of the broad-spectrum antiviral nucleoside, 1-beta-D-ribofuranosyl-1,2,4-triazole-3-carboxamide (ribavirin) . J. Med. Chem.21 ( 8 ), 742 – 746 ( 1978 ).
  • Smee DF , EvansWJ, NicolaouKC, TarbetEB, DayCW . Susceptibilities of enterovirus D68, enterovirus 71, and rhinovirus 87 strains to various antiviral compounds . Antiviral Res.131, 61 – 65 ( 2016 ).
  • Thibaut HJ , LeyssenP, PuerstingerG, MuiggA, NeytsJ, De PalmaAM . Towards the design of combination therapy for the treatment of enterovirus infections . Antiviral Res.90 ( 3 ), 213 – 217 ( 2011 ).
  • Ruuskanen O , WarisM, KainulainenL . Treatment of persistent rhinovirus infection with pegylated interferon alpha2a and ribavirin in patients with hypogammaglobulinemia . Clin. Infect. Dis.58 ( 12 ), 1784 – 1786 ( 2014 ).
  • Reisdorph N , ThomasJJ, KatpallyUet al. Human rhinovirus capsid dynamics is controlled by canyon flexibility . Virology314 ( 1 ), 34 – 44 ( 2003 ).
  • Smith TJ , KremerMJ, LuoMet al. The site of attachment in human rhinovirus 14 for antiviral agents that inhibit uncoating . Science233 ( 4770 ), 1286 – 1293 ( 1986 ).
  • Kaiser L , CrumpCE, HaydenFG . In vitro activity of pleconaril and AG7088 against selected serotypes and clinical isolates of human rhinoviruses . Antiviral Res.47 ( 3 ), 215 – 220 ( 2000 ).
  • Ledford RM , PatelNR, DemenczukTMet al. VP1 sequencing of all human rhinovirus serotypes: insights into genus phylogeny and susceptibility to antiviral capsid-binding compounds . J. Virol.78 ( 7 ), 3663 – 3674 ( 2004 ).
  • Ledford RM , CollettMS, PevearDC . Insights into the genetic basis for natural phenotypic resistance of human rhinoviruses to pleconaril . Antiviral Res.68 ( 3 ), 135 – 138 ( 2005 ).
  • Hayden FG , CoatsT, KimKet al. Oral pleconaril treatment of picornavirus-associated viral respiratory illness in adults: efficacy and tolerability in phase II clinical trials . Antivir. Ther. (Lond.)7 ( 1 ), 53 – 65 ( 2002 ).
  • Hayden FG , HerringtonDT, CoatsTLet al. Efficacy and safety of oral pleconaril for treatment of colds due to picornaviruses in adults: results of 2 double-blind, randomized, placebo-controlled trials . Clin. Infect. Dis.36 ( 12 ), 1523 – 1532 ( 2003 ).
  • Pevear DC , HaydenFG, DemenczukTM, BaroneLR, MckinlayMA, CollettMS . Relationship of pleconaril susceptibility and clinical outcomes in treatment of common colds caused by rhinoviruses . Antimicrob. Agents Chemother.49 ( 11 ), 4492 – 4499 ( 2005 ).
  • Lacroix C , LaconiS, AngiusFet al. In vitro characterisation of a pleconaril/pirodavir-like compound with potent activity against rhinoviruses . Virol. J.12, 106 ( 2015 ).
  • Brown RN , CameronR, ChalmersDKet al. 2-Ethoxybenzoxazole as a bioisosteric replacement of an ethyl benzoate group in a human rhinovirus (HRV) capsid binder . Bioorg. Med. Chem. Lett.15 ( 8 ), 2051 – 2055 ( 2005 ).
  • Feil SC , HamiltonS, KrippnerGYet al. An orally available 3-ethoxybenzisoxazole capsid binder with clinical activity against human rhinovirus . ACS Med. Chem. Lett.3 ( 4 ), 303 – 307 ( 2012 ).
  • Binford SL , MaldonadoF, BrothersMAet al. Conservation of amino acids in human rhinovirus 3C protease correlates with broad-spectrum antiviral activity of rupintrivir, a novel human rhinovirus 3C protease inhibitor . Antimicrob. Agents Chemother.49 ( 2 ), 619 – 626 ( 2005 ).
  • Patick AK , BinfordSL, BrothersMAet al. In vitro antiviral activity of AG7088, a potent inhibitor of human rhinovirus 3C protease . Antimicrob. Agents Chemother.43 ( 10 ), 2444 – 2450 ( 1999 ).
  • Matthews DA , DragovichPS, WebberSEet al. Structure-assisted design of mechanism-based irreversible inhibitors of human rhinovirus 3C protease with potent antiviral activity against multiple rhinovirus serotypes . Proc. Natl Acad. Sci. USA96 ( 20 ), 11000 – 11007 ( 1999 ).
  • Lu G , QiJ, ChenZet al. Enterovirus 71 and coxsackievirus A16 3C proteases: binding to rupintrivir and their substrates and anti-hand, foot, and mouth disease virus drug design . J. Virol.85 ( 19 ), 10319 – 10331 ( 2011 ).
  • Lee ES , LeeWG, YunSHet al. Development of potent inhibitors of the coxsackievirus 3C protease . Biochem. Biophys. Res. Commun.358 ( 1 ), 7 – 11 ( 2007 ).
  • Hayden FG , TurnerRB, GwaltneyJMet al. Phase II, randomized, double-blind, placebo-controlled studies of ruprintrivir nasal spray 2-percent suspension for prevention and treatment of experimentally induced rhinovirus colds in healthy volunteers . Antimicrob. Agents Chemother.47 ( 12 ), 3907 – 3916 ( 2003 ).
  • Hsyu PH , PithavalaYK, GerstenM, PenningCA, KerrBM . Pharmacokinetics and safety of an antirhinoviral agent, ruprintrivir, in healthy volunteers . Antimicrob. Agents Chemother.46 ( 2 ), 392 – 397 ( 2002 ).
  • Kawatkar SP , GagnonM, HoeschVet al. Design and structure–activity relationships of novel inhibitors of human rhinovirus 3C protease . Bioorg. Med. Chem. Lett.26 ( 14 ), 3248 – 3252 ( 2016 ).
  • Mello C , AguayoE, RodriguezMet al. Multiple classes of antiviral agents exhibit in vitro activity against human rhinovirus type C . Antimicrob. Agents Chemother.58 ( 3 ), 1546 – 1555 ( 2014 ).
  • Binford SL , WeadyPT, MaldonadoF, BrothersMA, MatthewsDA, PatickAK . In vitro resistance study of rupintrivir, a novel inhibitor of human rhinovirus 3C protease . Antimicrob. Agents Chemother.51 ( 12 ), 4366 – 4373 ( 2007 ).
  • Powers RD , GwaltneyJMJr., HaydenFG . Activity of 2-(3,4-dichlorophenoxy)-5-nitrobenzonitrile (MDL-860) against picornaviruses in vitro . Antimicrob. Agents Chemother.22 ( 4 ), 639 – 642 ( 1982 ).
  • Torney HL , DulworthJK, StewardDL . Antiviral activity and mechanism of action of 2-(3,4-dichlorophenoxy)-5-nitrobenzonitrile (MDL-860) . Antimicrob. Agents Chemother.22 ( 4 ), 635 – 638 ( 1982 ).
  • Makarov VA , RiabovaOB, GranikVG, WutzlerP, SchmidtkeM . Novel [(biphenyloxy)propyl]isoxazole derivatives for inhibition of human rhinovirus 2 and coxsackievirus B3 replication . J. Antimicrob. Chemother.55 ( 4 ), 483 – 488 ( 2005 ).
  • Kim J , JungYK, KimCet al. A novel series of highly potent small molecule inhibitors of rhinovirus replication . J. Med. Chem.60 ( 13 ), 5472 – 5492 ( 2017 ).
  • Shim A , SongJH, KwonBEet al. Therapeutic and prophylactic activity of itraconazole against human rhinovirus infection in a murine model . Sci. Rep.6, 23110 ( 2016 ).
  • Strating JR , Van Der LindenL, AlbulescuLet al. Itraconazole inhibits enterovirus replication by targeting the oxysterol-binding protein . Cell Rep.10 ( 4 ), 600 – 615 ( 2015 ).
  • Lee JJ , ShimA, JeongJY, LeeSY, KoHJ, ChoHJ . Development of intranasal nanovehicles of itraconazole and their immunological activities for the therapy of rhinovirus infection . Colloids Surf. B Biointerfaces143, 336 – 341 ( 2016 ).
  • Cagno V , AndreozziP, D’alicarnassoMet al. Broad-spectrum non-toxic antiviral nanoparticles with a virucidal inhibition mechanism . Nat. Mater.17 ( 2 ), 195 – 203 ( 2018 ).
  • Findlay F , PohlJ, SvobodaPet al. Carbon nanoparticles inhibit the antimicrobial activities of the human cathelicidin LL-37 through structural alteration . J. Immunol.199 ( 7 ), 2483 – 2490 ( 2017 ).
  • Grassauer A , WeinmuellnerR, MeierC, PretschA, Prieschl-GrassauerE, UngerH . Iota-Carrageenan is a potent inhibitor of rhinovirus infection . Virol. J.5, 107 ( 2008 ).
  • Koenighofer M , LionT, BodenteichAet al. Carrageenan nasal spray in virus confirmed common cold: individual patient data analysis of two randomized controlled trials . Multidiscip. Respir. Med.9 ( 1 ), 57 ( 2014 ).
  • Zasloff M . Antimicrobial peptides of multicellular organisms . Nature415 ( 6870 ), 389 – 395 ( 2002 ).
  • Bowdish DM , DavidsonDJ, HancockRE . Immunomodulatory properties of defensins and cathelicidins . Curr. Top. Microbiol. Immunol.306, 27 – 66 ( 2006 ).
  • Barlow PG , FindlayEG, CurrieSM, DavidsonDJ . Antiviral potential of cathelicidins . Future Microbiol.9 ( 1 ), 55 – 73 ( 2014 ).
  • Gwyer Findlay E , CurrieSM, DavidsonDJ . Cationic host defence peptides: potential as antiviral therapeutics . BioDrugs27 ( 5 ), 479 – 493 ( 2013 ).
  • Agerberth B , CharoJ, WerrJet al. The human antimicrobial and chemotactic peptides LL-37 and alpha-defensins are expressed by specific lymphocyte and monocyte populations . Blood96 ( 9 ), 3086 – 3093 ( 2000 ).
  • Putsep K , CarlssonG, BomanHG, AnderssonM . Deficiency of antibacterial peptides in patients with morbus Kostmann: an observation study . Lancet360 ( 9340 ), 1144 – 1149 ( 2002 ).
  • Chromek M , SlamovaZ, BergmanPet al. The antimicrobial peptide cathelicidin protects the urinary tract against invasive bacterial infection . Nat. Med.12 ( 6 ), 636 – 641 ( 2006 ).
  • Iimura M , GalloRL, HaseK, MiyamotoY, EckmannL, KagnoffMF . Cathelicidin mediates innate intestinal defense against colonization with epithelial adherent bacterial pathogens . J. Immunol.174 ( 8 ), 4901 – 4907 ( 2005 ).
  • Yu FS , CornicelliMD, KovachMAet al. Flagellin stimulates protective lung mucosal immunity: role of cathelicidin-related antimicrobial peptide . J. Immunol.185 ( 2 ), 1142 – 1149 ( 2010 ).
  • Barlow PG , SvobodaP, MackellarAet al. Antiviral activity and increased host defense against influenza infection elicited by the human cathelicidin LL-37 . PLoS ONE6 ( 10 ), e25333 ( 2011 ).
  • Dean SN , BishopBM, Van HoekML . Natural and synthetic cathelicidin peptides with anti-microbial and anti-biofilm activity against Staphylococcus aureus . BMC Microbiol.11, 114 ( 2011 ).
  • Howell MD , JonesJF, KisichKO, StreibJE, GalloRL, LeungDY . Selective killing of vaccinia virus by LL-37: implications for eczema vaccinatum . J. Immunol.172 ( 3 ), 1763 – 1767 ( 2004 ).
  • Gordon YJ , HuangLC, RomanowskiEG, YatesKA, ProskeRJ, McdermottAM . Human cathelicidin (LL-37), a multifunctional peptide, is expressed by ocular surface epithelia and has potent antibacterial and antiviral activity . Curr. Eye Res.30 ( 5 ), 385 – 394 ( 2005 ).
  • Alagarasu K , PatilPS, ShilPet al. In vitro effect of human cathelicidin antimicrobial peptide LL-37 on dengue virus type 2 . Peptides92, 23 – 30 ( 2017 ).
  • Sousa FH , CasanovaV, FindlayFet al. Cathelicidins display conserved direct antiviral activity towards rhinovirus . Peptides95, 76 – 83 ( 2017 ).
  • Currie SM , FindlayEG, MchughBJet al. The human cathelicidin LL-37 has antiviral activity against respiratory syncytial virus . PLoS ONE8 ( 8 ), e73659 ( 2013 ).
  • Currie SM , Gwyer FindlayE, McfarlaneAJet al. Cathelicidins have direct antiviral activity against respiratory syncytial virus in vitro and protective function in vivo in mice and humans . J. Immunol.196 ( 6 ), 2699 – 2710 ( 2016 ).
  • Tripathi S , TecleT, VermaA, CrouchE, WhiteM, HartshornKL . The human cathelicidin LL-37 inhibits influenza A viruses through a mechanism distinct from that of surfactant protein D or defensins . J. Gen. Virol.94 ( Pt 1 ), 40 – 49 ( 2013 ).
  • Schogler A , MusterRJ, KieningerEet al. Vitamin D represses rhinovirus replication in cystic fibrosis cells by inducing LL-37 . Eur. Respir. J.47 ( 2 ), 520 – 530 ( 2015 ).
  • Telcian AG , ZdrengheaMT, EdwardsMRet al. Vitamin D increases the antiviral activity of bronchial epithelial cells in vitro . Antiviral Res.137, 93 – 101 ( 2017 ).
  • Barlow PG , BeaumontPE, CosseauCet al. The human cathelicidin LL-37 preferentially promotes apoptosis of infected airway epithelium . Am. J. Respir. Cell Mol. Biol.43 ( 6 ), 692 – 702 ( 2010 ).
  • Kahlenberg JM , KaplanMJ . Little peptide, big effects: the role of LL-37 in inflammation and autoimmune disease . J. Immunol.191 ( 10 ), 4895 – 4901 ( 2013 ).
  • Monlezun DJ , BittnerEA, ChristopherKB, CamargoCA, QuraishiSA . Vitamin D status and acute respiratory infection: cross sectional results from the United States National Health and Nutrition Examination Survey, 2001–2006 . Nutrients7 ( 3 ), 1933 – 1944 ( 2015 ).
  • Martineau AR , JolliffeDA, HooperRLet al. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data . BMJ356, i6583 ( 2017 ).
  • Fritsche J , MondalK, EhrnspergerA, AndreesenR, KreutzM . Regulation of 25-hydroxyvitamin D3–1 alpha-hydroxylase and production of 1 alpha,25-dihydroxyvitamin D3 by human dendritic cells . Blood102 ( 9 ), 3314 – 3316 ( 2003 ).
  • Hansdottir S , MonickMM, HindeSL, LovanN, LookDC, HunninghakeGW . Respiratory epithelial cells convert inactive vitamin D to its active form: potential effects on host defense . J. Immunol.181 ( 10 ), 7090 – 7099 ( 2008 ).
  • Liu PT , StengerS, LiHet al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response . Science311 ( 5768 ), 1770 – 1773 ( 2006 ).
  • Greiller CL , MartineauAR . Modulation of the immune response to respiratory viruses by vitamin D . Nutrients7 ( 6 ), 4240 – 4270 ( 2015 ).
  • Brockman-Schneider RA , PicklesRJ, GernJE . Effects of vitamin D on airway epithelial cell morphology and rhinovirus replication . PLoS ONE9 ( 1 ), e86755 ( 2014 ).
  • Thijs W , JanssenK, Van SchadewijkAMet al. Nasal levels of antimicrobial peptides in allergic asthma patients and healthy controls: differences and effect of a short 1,25(OH)2 vitamin D3 treatment . PLoS ONE10 ( 11 ), e0140986 ( 2015 ).
  • Schrumpf JA , AmatngalimGD, VeldkampJBet al. Proinflammatory cytokines impair vitamin D-induced host defense in cultured airway epithelial cells . Am. J. Respir. Cell Mol. Biol.56 ( 6 ), 749 – 761 ( 2017 ).
  • Isaacs A , LindenmannJ . Virus interference. I. The interferon . Proc. R. Soc. Lond. B Biol. Sci.147 ( 927 ), 258 – 267 ( 1957 ).
  • Taylor J . Inhibition of interferon action by actinomycin . Biochem. Biophys. Res. Commun.14, 447 – 451 ( 1964 ).
  • Marcus PI , SalbJM . Molecular basis of interferon action: inhibition of viral RNA translation . Virology30 ( 3 ), 502 – 516 ( 1966 ).
  • Nan Y , NanG, ZhangYJ . Interferon induction by RNA viruses and antagonism by viral pathogens . Viruses6 ( 12 ), 4999 – 5027 ( 2014 ).
  • Loo YM , FornekJ, CrochetNet al. Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity . J. Virol.82 ( 1 ), 335 – 345 ( 2008 ).
  • Bowie AG , UnterholznerL . Viral evasion and subversion of pattern-recognition receptor signalling . Nat. Rev. Immunol.8 ( 12 ), 911 – 922 ( 2008 ).
  • Wang Q , NagarkarDR, BowmanERet al. Role of double-stranded RNA pattern recognition receptors in rhinovirus-induced airway epithelial cell responses . J. Immunol.183 ( 11 ), 6989 – 6997 ( 2009 ).
  • Triantafilou K , VakakisE, RicherEA, EvansGL, VilliersJP, TriantafilouM . Human rhinovirus recognition in non-immune cells is mediated by Toll-like receptors and MDA-5, which trigger a synergetic pro-inflammatory immune response . Virulence2 ( 1 ), 22 – 29 ( 2011 ).
  • Lin T , ZhouW, SacksSH . The role of complement and Toll-like receptors in organ transplantation . Transpl. Int.20 ( 6 ), 481 – 489 ( 2007 ).
  • Guillot L , Le GofficR, BlochSet al. Involvement of toll-like receptor 3 in the immune response of lung epithelial cells to double-stranded RNA and influenza A virus . J. Biol. Chem.280 ( 7 ), 5571 – 5580 ( 2005 ).
  • Slater L , BartlettNW, HaasJJet al. Co-ordinated role of TLR3, RIG-I and MDA5 in the innate response to rhinovirus in bronchial epithelium . PLoS Pathog.6 ( 11 ), e1001178 ( 2010 ).
  • Abe Y , FujiiK, NagataNet al. The toll-like receptor 3-mediated antiviral response is important for protection against poliovirus infection in poliovirus receptor transgenic mice . J. Virol.86 ( 1 ), 185 – 194 ( 2012 ).
  • Richer MJ , LavalleeDJ, ShaninaI, HorwitzMS . Toll-like receptor 3 signaling on macrophages is required for survival following coxsackievirus B4 infection . PLoS ONE4 ( 1 ), e4127 ( 2009 ).
  • Lamborn IT , JingH, ZhangYet al. Recurrent rhinovirus infections in a child with inherited MDA5 deficiency . J. Exp. Med.214 ( 7 ), 1949 – 1972 ( 2017 ).
  • Becker TM , DurraniSR, BochkovYA, DevriesMK, RajamanickamV, JacksonDJ . Effect of exogenous interferons on rhinovirus replication and airway inflammatory responses . Ann. Allergy Asthma Immunol.111 ( 5 ), 397 – 401 ( 2013 ).
  • Wark PA , JohnstonSL, BucchieriFet al. Asthmatic bronchial epithelial cells have a deficient innate immune response to infection with rhinovirus . J. Exp. Med.201 ( 6 ), 937 – 947 ( 2005 ).
  • Cakebread JA , XuY, GraingeCet al. Exogenous IFN-beta has antiviral and anti-inflammatory properties in primary bronchial epithelial cells from asthmatic subjects exposed to rhinovirus . J. Allergy Clin. Immunol.127 ( 5 ), 1148 – 1154 ( 2011 ).
  • Gaajetaan GR , GeelenTH, VernooyJHet al. Interferon-beta induces a long-lasting antiviral state in human respiratory epithelial cells . J. Infect.66 ( 2 ), 163 – 169 ( 2013 ).
  • Gulraiz F , BellinghausenC, DentenerMAet al. Efficacy of IFN-lambda1 to protect human airway epithelial cells against human rhinovirus 1B infection . PLoS ONE9 ( 4 ), e95134 ( 2014 ).
  • Field AK , TytellAA, LampsonGP, HillemanMR . Inducers of interferon and host resistance. II. Multistranded synthetic polynucleotide complexes . Proc. Natl Acad. Sci. USA58 ( 3 ), 1004 – 1010 ( 1967 ).
  • Hilleman MR . Prospects for the use of double-stranded ribonucleic acid (poly I:C) inducers in man . J. Infect. Dis.121 ( 2 ), 196 – 211 ( 1970 ).
  • Field AK , TytellAA, PipernoE, LampsonGP, NemesMM, HillemanMR . Poly I:C, an inducer of interferon and interference against virus infections . Medicine (Baltimore)51 ( 3 ), 169 – 174 ( 1972 ).
  • Hill DA , BaronS, PerkinsJCet al. Evaluation of an interferon inducer in viral respiratory disease . JAMA219 ( 9 ), 1179 – 1184 ( 1972 ).
  • Matsumoto M , SeyaT . TLR3: interferon induction by double-stranded RNA including poly(I:C) . Adv. Drug Deliv. Rev.60 ( 7 ), 805 – 812 ( 2008 ).
  • Kato H , TakeuchiO, Mikamo-SatohEet al. Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5 . J. Exp. Med.205 ( 7 ), 1601 – 1610 ( 2008 ).
  • Wong JP , SaravolacEG, SabudaD, LevyHB, KendeM . Prophylactic and therapeutic efficacies of poly(IC.LC) against respiratory influenza A virus infection in mice . Antimicrob. Agents Chemother.39 ( 11 ), 2574 – 2576 ( 1995 ).
  • Kende M . Prophylactic and therapeutic efficacy of poly(I,C)-LC against Rift Valley fever virus infection in mice . J. Biol. Response Mod.4 ( 5 ), 503 – 511 ( 1985 ).
  • Baer GM , ShaddockJH, MooreSA, YagerPA, BaronSS, LevyHB . Successful prophylaxis against rabies in mice and Rhesus monkeys: the interferon system and vaccine . J. Infect. Dis.136 ( 2 ), 286 – 291 ( 1977 ).
  • Zhao J , ZhaoJ, Van RooijenN, PerlmanS . Evasion by stealth: inefficient immune activation underlies poor T cell response and severe disease in SARS-CoV-infected mice . PLoS Pathog.5 ( 10 ), e1000636 ( 2009 ).
  • Guerrero-Plata A , BaronS, PoastJS, AdegboyegaPA, CasolaA, GarofaloRP . Activity and regulation of alpha interferon in respiratory syncytial virus and human metapneumovirus experimental infections . J. Virol.79 ( 16 ), 10190 – 10199 ( 2005 ).
  • Wong JP , ChristopherME, ViswanathanSet al. Activation of toll-like receptor signaling pathway for protection against influenza virus infection . Vaccine27 ( 25–26 ), 3481 – 3483 ( 2009 ).
  • Lau YF , TangLH, OoiEE . A TLR3 ligand that exhibits potent inhibition of influenza virus replication and has strong adjuvant activity has the potential for dual applications in an influenza pandemic . Vaccine27 ( 9 ), 1354 – 1364 ( 2009 ).
  • Antonelli LR , Gigliotti RothfuchsA, GoncalvesRet al. Intranasal Poly-IC treatment exacerbates tuberculosis in mice through the pulmonary recruitment of a pathogen-permissive monocyte/macrophage population . J. Clin. Invest.120 ( 5 ), 1674 – 1682 ( 2010 ).
  • Tian X , XuF, LungWYet al. Poly I:C enhances susceptibility to secondary pulmonary infections by gram-positive bacteria . PLoS ONE7 ( 9 ), e41879 ( 2012 ).
  • Spickler C , LippensJ, LabergeMKet al. Phosphatidylinositol 4-kinase III beta is essential for replication of human rhinovirus and its inhibition causes a lethal phenotype in vivo . Antimicrob. Agents Chemother.57 ( 7 ), 3358 – 3368 ( 2013 ).
  • Arita M , KojimaH, NaganoT, OkabeT, WakitaT, ShimizuH . Oxysterol-binding protein family I is the target of minor enviroxime-like compounds . J. Virol.87 ( 8 ), 4252 – 4260 ( 2013 ).
  • Roulin PS , LotzerichM, TortaFet al. Rhinovirus uses a phosphatidylinositol 4-phosphate/cholesterol counter-current for the formation of replication compartments at the ER-Golgi interface . Cell Host Microbe16 ( 5 ), 677 – 690 ( 2014 ).
  • Decor A , Grand-MaitreC, HuckeOet al. Design, synthesis and biological evaluation of novel aminothiazoles as antiviral compounds acting against human rhinovirus . Bioorg. Med. Chem. Lett.23 ( 13 ), 3841 – 3847 ( 2013 ).
  • Albulescu L , BigayJ, BiswasBet al. Uncovering oxysterol-binding protein (OSBP) as a target of the anti-enteroviral compound TTP-8307 . Antiviral Res.140, 37 – 44 ( 2017 ).
  • Guedan A , SwiebodaD, CharlesMet al. Investigation of the role of protein kinase D in human rhinovirus replication . J. Virol.91 ( 9 ), pii:e00217-17 ( 2017 ).
  • Staring J , Von CastelmurE, BlomenVAet al. PLA2G16 represents a switch between entry and clearance of Picornaviridae . Nature541 ( 7637 ), 412 – 416 ( 2017 ).
  • MousnierA , BellAS, SwiebodaDP Fragment-derivedinhibitors of human N-myristoyltransferase block capsid assembly andreplication of the common cold virus . Nat. Chem. doi:10.1038/s41557-018-0039-2 ( 2018 ) ( Epub ahead of print ).
  • Jacobs SE , LamsonDM, St GeorgeK, WalshTJ . Human rhinoviruses . Clin. Microbiol. Rev.26 ( 1 ), 135 – 162 ( 2013 ).
  • Smith TJ , ChaseES, SchmidtTJ, OlsonNH, BakerTS . Neutralizing antibody to human rhinovirus 14 penetrates the receptor-binding canyon . Nature383 ( 6598 ), 350 – 354 ( 1996 ).
  • Che Z , OlsonNH, LeippeDet al. Antibody-mediated neutralization of human rhinovirus 14 explored by means of cryoelectron microscopy and X-ray crystallography of virus-Fab complexes . J. Virol.72 ( 6 ), 4610 – 4622 ( 1998 ).
  • Dong Y , LiuY, JiangW, SmithTJ, XuZ, RossmannMG . Antibody-induced uncoating of human rhinovirus B14 . Proc. Natl Acad. Sci. USA114 ( 30 ), 8017 – 8022 ( 2017 ).
  • Katpally U , FuTM, FreedDC, CasimiroDR, SmithTJ . Antibodies to the buried N terminus of rhinovirus VP4 exhibit cross-serotypic neutralization . J. Virol.83 ( 14 ), 7040 – 7048 ( 2009 ).
  • Panjwani A , AsforAS, TuthillTJ . The conserved N-terminus of human rhinovirus capsid protein VP4 contains membrane pore-forming activity and is a target for neutralizing antibodies . J. Gen. Virol.97 ( 12 ), 3238 – 3242 ( 2016 ).
  • Traub S , NikonovaA, CarruthersAet al. An anti-human ICAM-1 antibody inhibits rhinovirus-induced exacerbations of lung inflammation . PLoS Pathog.9 ( 8 ), e1003520 ( 2013 ).
  • Salazar G , ZhangN, FuTM, AnZ . Antibody therapies for the prevention and treatment of viral infections . NPJ Vaccines2, 19 ( 2017 ).
  • Cheung NN , LaiKK, DaiJet al. Broad-spectrum inhibition of common respiratory RNA viruses by a pyrimidine synthesis inhibitor with involvement of the host antiviral response . J. Gen. Virol.98 ( 5 ), 946 – 954 ( 2017 ).