260
Views
0
CrossRef citations to date
0
Altmetric
Review

Gut Microbial Metabolites Associated With HIV Infection

&
Pages 335-347 | Received 04 Jan 2019, Accepted 25 Apr 2019, Published online: 15 May 2019

References

  • Martin FP , SprengerN, YapIKet al. Panorganismal gut microbiome–host metabolic crosstalk. J. Proteom. Res., 8(4), 2090–2105 (2009).
  • Candela M , GuidottiM, FabbriA, BrigidiP, FranceschiC, FiorentiniC. Human intestinal microbiota: cross-talk with the host and its potential role in colorectal cancer. Crit. Rev. Microbiol., 37(1), 1–14 (2011).
  • Wang Z , ZolnikCP, QiuYet al. Comparison of fecal collection methods for microbiome and metabolomics studies. Front. Cell. Infect. Microbiol., 8, 301 (2018).
  • Frank DN , ZhuW, SartorRB, LiE. Investigating the biological and clinical significance of human dysbioses. Trends Microbiol., 19(9), 427–434 (2011).
  • Alkanani AK , HaraN, GottliebPAet al. Alterations in intestinal microbiota correlate with susceptibility to type 1 diabetes. Diabetes, 64(10), 3510–3520 (2015).
  • Markle JG , FrankDN, Mortin-TothSet al. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science, 339(6123), 1084–1088 (2013).
  • Mathis D , BenoistC. The influence of the microbiota on type-1 diabetes: on the threshold of a leap forward in our understanding. Immunol. Rev., 245(1), 239–249 (2012).
  • Brown K , DeCoffeD, MolcanE, GibsonDL. Diet-induced dysbiosis of the intestinal microbiota and the effects on immunity and disease. Nutrients, 4(8), 1095–1119 (2012).
  • John GK , MullinGE. The gut microbiome and obesity. Curr. Oncol. Rep., 18(7), 45 (2016).
  • Frank DN , RobertsonCE, HammCMet al. Disease phenotype and genotype are associated with shifts in intestinal-associated microbiota in inflammatory bowel diseases. Inflamm. Bowel Dis., 17(1), 179–184 (2011).
  • Frank DN , StAmand AL, FeldmanRA, BoedekerEC, HarpazN, PaceNR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl Acad. Sci. USA, 104(34), 13780–13785 (2007).
  • Li E , HammCM, GulatiASet al. Inflammatory bowel diseases phenotype, C. difficile and NOD2 genotype are associated with shifts in human ileum associated microbial composition. PLoS ONE, 7(6), e26284 (2012).
  • Wang J , QiJ, ZhaoHet al. Metagenomic sequencing reveals microbiota and its functional potential associated with periodontal disease. Sci. Rep., 3, 1843 (2013).
  • Koeth RA , WangZ, LevisonBSet al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med., 19(5), 576–585 (2013).
  • Singh V , YeohBS, Vijay-KumarM. Gut microbiome as a novel cardiovascular therapeutic target. Curr. Opin. Pharmacol., 27, 8–12 (2016).
  • Tang WH , WangZ, LevisonBSet al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med., 368(17), 1575–1584 (2013).
  • Yeoh N , BurtonJP, SuppiahP, ReidG, StebbingsS. The role of the microbiome in rheumatic diseases. Curr. Rheumatol. Rep., 15(3), 314-012-0314-y (2013).
  • Dillon SM , FrankDN, WilsonCC. The gut microbiome and HIV-1 pathogenesis: a two-way street. AIDS, 30(18), 2737–2751 (2016).
  • Ribeiro ABDTM , HeimesaatMM, BereswillS. Changes of the intestinal microbiome–host homeostasis in HIV-infected individuals – a focus on the bacterial gut microbiome. Eur. J. Microbiol. Immunol., 7(3), 158–167 (2017).
  • Brenchley JM , SchackerTW, RuffLEet al. CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. J. Exp. Med., 200(6), 749–759 (2004).
  • Chege D , ShethPM, KainTet al. Sigmoid Th17 populations, the HIV latent reservoir, and microbial translocation in men on long-term antiretroviral therapy. AIDS, 25(6), 741–749 (2011).
  • Sankaran S , GeorgeMD, ReayEet al. Rapid onset of intestinal epithelial barrier dysfunction in primary human immunodeficiency virus infection is driven by an imbalance between immune response and mucosal repair and regeneration. J. Virol., 82(1), 538–545 (2008).
  • Kim CJ , NazliA, RojasOLet al. A role for mucosal IL-22 production and Th22 cells in HIV-associated mucosal immunopathogenesis. Mucosal Immunol., 5(6), 670–680 (2012).
  • Kok A , HocquelouxL, HociniHet al. Early initiation of combined antiretroviral therapy preserves immune function in the gut of HIV-infected patients. Mucosal Immunol., 8(1), 127–140 (2015).
  • Brenchley JM , PaiardiniM, KnoxKSet al. Differential Th17 CD4 T-cell depletion in pathogenic and nonpathogenic lentiviral infections. Blood, 112(7), 2826–2835 (2008).
  • Dinh DM , VolpeGE, DuffaloCet al. Intestinal microbiota, microbial translocation, and systemic inflammation in chronic HIV infection. J. Infect. Dis., 211(1), 19–27 (2015).
  • Ellis CL , MaZM, MannSKet al. Molecular characterization of stool microbiota in HIV-infected subjects by panbacterial and order-level 16S ribosomal DNA (rDNA) quantification and correlations with immune activation. J. Acquir. Immune Defic. Syndr., 57(5), 363–370 (2011).
  • Mutlu EA , KeshavarzianA, LosurdoJet al. A compositional look at the human gastrointestinal microbiome and immune activation parameters in HIV infected subjects. PLoS Pathog., 10(2), e1003829 (2014).
  • Vujkovic-Cvijin I , DunhamRM, IwaiSet al. Dysbiosis of the gut microbiota is associated with HIV disease progression and tryptophan catabolism. Sci. Transl. Med., 5(193), 193ra91 (2013).
  • Lozupone CA , RhodesME, NeffCP, FontenotAP, CampbellTB, PalmerBE. HIV-induced alteration in gut microbiota: driving factors, consequences, and effects of antiretroviral therapy. Gut Microbes, 5(4), 562–570 (2014).
  • Brenchley JM , DouekDC. HIV infection and the gastrointestinal immune system. Mucosal Immunol., 1(1), 23–30 (2008).
  • Brenchley JM , PriceDA, SchackerTWet al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat. Med., 12(12), 1365–1371 (2006).
  • Moriyama K , AndoC, TashiroKet al. Polymerase chain reaction detection of bacterial 16S rRNA gene in human blood. Microbiol. Immunol., 52(7), 375–382 (2008).
  • Liu J , WilliamsB, FrankD, DillonSM, WilsonCC, LandayAL. Inside out: HIV, the gut microbiome, and the mucosal immune system. J. Immunol., 198(2), 605–614 (2017).
  • Noguera-Julian M , RocafortM, GuillenYet al. Gut microbiota linked to sexual preference and HIV infection. EBioMedicine, 5, 135–146 (2016).
  • Yang L , PolesMA, FischGSet al. HIV-induced immunosuppression is associated with colonization of the proximal gut by environmental bacteria. AIDS, 30(1), 19–29 (2016).
  • McHardy IH , LiX, TongMet al. HIV infection is associated with compositional and functional shifts in the rectal mucosal microbiota. Microbiome, 1(1), 26-2618-1-26 (2013).
  • Dinh DM , VolpeGE, DuffaloCet al. Intestinal microbiota, microbial translocation, and systemic inflammation in chronic HIV infection. J. Infect. Dis., 211(1), 19–27 (2015).
  • Dillon SM , LeeEJ, KotterCVet al. An altered intestinal mucosal microbiome in HIV-1 infection is associated with mucosal and systemic immune activation and endotoxemia. Mucosal Immunol., 7(4), 983–994 (2014).
  • Moon JY , ZolnikCP, WangZet al. Gut microbiota and plasma metabolites associated with diabetes in women with, or at high risk for, HIV infection. EBioMedicine, 37, 392–400 (2018).
  • Tuddenham SA , KoayWLA, ZhaoNet al. The impact of HIV infection on gut microbiota alpha-diversity: an individual level meta-analysis. Clin. Infect. Dis.pii:ciz258 (2019) (Epub ahead of print).
  • Vazquez-Castellanos JF , Serrano-VillarS, LatorreAet al. Altered metabolism of gut microbiota contributes to chronic immune activation in HIV-infected individuals. Mucosal Immunol., 8(4), 760–772 (2015).
  • Nowak P , TroseidM, AvershinaEet al. Gut microbiota diversity predicts immune status in HIV-1 infection. AIDS, 29(18), 2409–2418 (2015).
  • Monaco CL , GootenbergDB, ZhaoGet al. Altered virome and bacterial microbiome in human immunodeficiency virus-associated acquired immunodeficiency syndrome. Cell. Host Microbe, 19(3), 311–322 (2016).
  • Serrano-Villar S , RojoD, Martinez-MartinezMet al. Gut bacteria metabolism impacts immune recovery in HIV-infected individuals. EBioMedicine, 8, 203–216 (2016).
  • Villar-Garcia J , Guerri-FernandezR, MoyaAet al. Impact of probiotic saccharomyces boulardii on the gut microbiome composition in HIV-treated patients: a double-blind, randomised, placebo-controlled trial. PLoS ONE, 12(4), e0173802 (2017).
  • De Filippo C , CavalieriD, DiPaola Met al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl Acad. Sci. USA, 107(33), 14691–14696 (2010).
  • Yatsunenko T , ReyFE, ManaryMJet al. Human gut microbiome viewed across age and geography. Nature, 486(7402), 222–227 (2012).
  • Clarke SF , MurphyEF, O’SullivanOet al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut, 63(12), 1913–1920 (2014).
  • Lozupone CA , LiM, CampbellTBet al. Alterations in the gut microbiota associated with HIV-1 infection. Cell. Host Microbe, 14(3), 329–339 (2013).
  • Armstrong AJS , ShafferM, NusbacherNMet al. An exploration of Prevotella-rich microbiomes in HIV and men who have sex with men. Microbiome, 6, doi: https://doi.org/10.1186/s40168-018-0580-7 (2018).
  • Liu J , WilliamsB, FrankD, DillonSM, WilsonCC, LandayAL. Inside out: HIV, the gut microbiome, and the mucosal immune system. J. Immunol., 198(2), 605–614 (2017).
  • Serrano-Villar S , RojoD, Martinez-MartinezMet al. HIV infection results in metabolic alterations in the gut microbiota different from those induced by other diseases. Sci. Rep., 6, 26192 (2016).
  • Liu G , ChenS, ZhongJ, TengK, YinY. Crosstalk between tryptophan metabolism and cardiovascular disease, mechanisms, and therapeutic implications. Oxid. Med. Cell. Longev., 2017, 1602074 (2017).
  • Qi Q , HuaS, ClishCBet al. Plasma tryptophan-kynurenine metabolites are altered in human immunodeficiency virus infection and associated with progression of carotid artery atherosclerosis. Clin. Infect. Dis., 67(2), 235–242 (2018).
  • Favre D , MoldJ, HuntPWet al. Tryptophan catabolism by indoleamine 2,3-dioxygenase 1 alters the balance of TH17 to regulatory T cells in HIV disease. Sci. Transl. Med., 2(32), 32ra36 (2010).
  • Taylor MW , FengGS. Relationship between interferon-gamma, indoleamine 2,3-dioxygenase, and tryptophan catabolism. FASEB J., 5(11), 2516–2522 (1991).
  • Byakwaga H , HuntPW, Laker-OkettaMet al. The kynurenine pathway of tryptophan catabolism and AIDS-associated Kaposi sarcoma in Africa. J. Acquir. Immune Defic. Syndr., 70(3), 296–303 (2015).
  • Vazquez-Castellanos JF , Serrano-VillarS, Jimenez-HernandezNet al. Interplay between gut microbiota metabolism and inflammation in HIV infection. ISME J., 12(8), 1964–1976 (2018).
  • Siedner MJ , KimJH, NakkuRSet al. Persistent immune activation and carotid atherosclerosis in HIV-infected ugandans receiving antiretroviral therapy. J. Infect. Dis., 213(3), 370–378 (2016).
  • Pertovaara M , RaitalaA, JuonalaMet al. Indoleamine 2,3-dioxygenase enzyme activity correlates with risk factors for atherosclerosis: the Cardiovascular Risk in Young Finns study. Clin. Exp. Immunol., 148(1), 106–111 (2007).
  • Niinisalo P , RaitalaA, PertovaaraMet al. Indoleamine 2,3-dioxygenase activity associates with cardiovascular risk factors: the Health 2000 study. Scand. J. Clin. Lab. Invest., 68(8), 767–770 (2008).
  • Kato A , SuzukiY, SudaTet al. Relationship between an increased serum kynurenine/tryptophan ratio and atherosclerotic parameters in hemodialysis patients. Hemodial. Int., 14(4), 418–424 (2010).
  • Wirleitner B , RudziteV, NeurauterGet al. Immune activation and degradation of tryptophan in coronary heart disease. Eur. J. Clin. Invest., 33(7), 550–554 (2003).
  • Pawlak K , DomaniewskiT, MysliwiecM, PawlakD. The kynurenines are associated with oxidative stress, inflammation and the prevalence of cardiovascular disease in patients with end-stage renal disease. Atherosclerosis, 204(1), 309–314 (2009).
  • Sulo G , VollsetSE, NygardOet al. Neopterin and kynurenine-tryptophan ratio as predictors of coronary events in older adults, the Hordaland Health Study. Int. J. Cardiol., 168(2), 1435–1440 (2013).
  • Pedersen ER , MidttunO, UelandPMet al. Systemic markers of interferon-gamma-mediated immune activation and long-term prognosis in patients with stable coronary artery disease. Arterioscler. Thromb. Vasc. Biol., 31(3), 698–704 (2011).
  • Hoel H , Hove-SkovsgaardM, HovJRet al. Impact of HIV and type 2 diabetes on gut microbiota diversity, tryptophan catabolism and endothelial dysfunction. Sci. Rep., 8(1), 6725 (2018).
  • Konopelski P , UfnalM. Indoles – gut bacteria metabolites of tryptophan with pharmacotherapeutic potential. Curr. Drug Metab., 19(10), 883–890 (2018).
  • Zelante T , IannittiRG, CunhaCet al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity, 39(2), 372–385 (2013).
  • Zhang LS , DaviesSS. Microbial metabolism of dietary components to bioactive metabolites: opportunities for new therapeutic interventions. Genome Med., 8(1), doi:10.1186/s13073-016-0296-x (2016).
  • Romani L , ZelanteT, DeLuca Aet al. Microbiota control of a tryptophan-AhR pathway in disease tolerance to fungi. Eur. J. Immunol., 44(11), 3192–3200 (2014).
  • Vesterbacka J , RiveraJ, NoyanKet al. Richer gut microbiota with distinct metabolic profile in HIV infected elite controllers. Sci. Rep., 7(1), 6269 (2017).
  • Hamer HM , JonkersD, VenemaK, VanhoutvinS, TroostFJ, BrummerRJ. Review article: the role of butyrate on colonic function. Aliment. Pharmacol. Ther., 27(2), 104–119 (2008).
  • MacFarlane S , MacFarlaneGT. Regulation of short-chain fatty acid production. Proc. Nutr. Soc., 62(1), 67–72 (2003).
  • Louis P , FlintHJ. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol. Lett., 294(1), 1–8 (2009).
  • Sun Y , MaY, LinPet al. Fecal bacterial microbiome diversity in chronic HIV-infected patients in China. Emerg. Microbes Infect., 5, e31 (2016).
  • Serrano-Villar S , Vazquez-CastellanosJF, VallejoAet al. The effects of prebiotics on microbial dysbiosis, butyrate production and immunity in HIV-infected subjects. Mucosal Immunol., 10(5), 1279–1293 (2017).
  • Dillon SM , KibbieJ, LeeEJet al. Low abundance of colonic butyrate-producing bacteria in HIV infection is associated with microbial translocation and immune activation. AIDS, 31(4), 511–521 (2017).
  • Wolever TM , SpadaforaPJ, CunnaneSC, PencharzPB. Propionate inhibits incorporation of colonic [1,2-13C]acetate into plasma lipids in humans. Am. J. Clin. Nutr., 61(6), 1241–1247 (1995).
  • Scott KP , DuncanSH, FlintHJ. Dietary fibre and the gut microbiota. Nutr. Bull., 33(3), 201–211 (2008).
  • Aldunate M , SrbinovskiD, HearpsACet al. Antimicrobial and immune modulatory effects of lactic acid and short chain fatty acids produced by vaginal microbiota associated with eubiosis and bacterial vaginosis. Front. Physiol., 6, 164 (2015).
  • Frost G , SleethML, Sahuri-ArisoyluMet al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat. Commun., 5, 3611 (2014).
  • Vallianou NG , StratigouT, TsagarakisS. Microbiome and diabetes: where are we now?Diabetes Res. Clin. Pract., 146, 111–118 (2018).
  • Perry RJ , PengL, BarryNAet al. Acetate mediates a microbiome-brain-beta-cell axis to promote metabolic syndrome. Nature, 534(7606), 213–217 (2016).
  • Cho CE , TaesuwanS, MalyshevaOVet al. Trimethylamine-N-oxide (TMAO) response to animal source foods varies among healthy young men and is influenced by their gut microbiota composition: a randomized controlled trial. Mol. Nutr. Food Res., 61(1), doi:10.1002/mnfr.201600324 (2017).
  • Brown JM , HazenSL. The gut microbial endocrine organ: bacterially derived signals driving cardiometabolic diseases. Annu. Rev. Med., 66, 343–359 (2015).
  • Romano KA , VivasEI, Amador-NoguezD, ReyFE. Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide. MBio, 6(2), e02481-14 (2015).
  • Tang WH , HazenSL. The contributory role of gut microbiota in cardiovascular disease. J. Clin. Invest., 124(10), 4204–4211 (2014).
  • Velasquez MT , RamezaniA, ManalA, RajDS. Trimethylamine N-oxide: the good, the bad and the unknown. Toxins, 8(11), pii:E326 (2016).
  • Haissman JM , HaugaardAK, OstrowskiSRet al. Microbiota-dependent metabolite and cardiovascular disease marker trimethylamine-N-oxide (TMAO) is associated with monocyte activation but not platelet function in untreated HIV infection. BMC Infect. Dis., 17(1), 445 (2017).
  • Miller PE , HaberlenSA, BrownTTet al. Brief report: intestinal microbiota-produced trimethylamine-N-oxide and its association with coronary stenosis and HIV serostatus. J. Acquir. Immune Defic. Syndr., 72(1), 114–118 (2016).
  • Srinivasa S , FitchKV, LoJet al. Plaque burden in HIV-infected patients is associated with serum intestinal microbiota-generated trimethylamine. AIDS, 29(4), 443–452 (2015).
  • Haissman JM , KnudsenA, HoelHet al. Microbiota-dependent marker TMAO is elevated in silent ischemia but is not associated with first-time myocardial infarction in HIV infection. J. Acquir. Immune Defic. Syndr., 71(2), 130–136 (2016).
  • Knudsen A , ChristensenTE, ThorsteinssonKet al. Microbiota-dependent marker TMAO is not associated with decreased myocardial perfusion in well-treated HIV-infected patients as assessed by 82Rubidium PET/CT. J. Acquir. Immune Defic. Syndr., 72(4), e83–e85 (2016).
  • Shan Z , ClishCB, HuaSet al. Gut microbial-related choline metabolite trimethylamine-N-oxide is associated with progression of carotid artery atherosclerosis in HIV infection. J. Infect. Dis., 218(9), 1474–1479 (2018).
  • Zhu W , GregoryJC, OrgEet al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell, 165(1), 111–124 (2016).
  • Cunningham-Rundles S , AhrneS, Johann-LiangRet al. Effect of probiotic bacteria on microbial host defense, growth, and immune function in human immunodeficiency virus type-1 infection. Nutrients, 3(12), 1042–1070 (2011).
  • Cribbs SK , UppalK, LiSet al. Correlation of the lung microbiota with metabolic profiles in bronchoalveolar lavage fluid in HIV infection. Microbiome, 4, doi:10.1186/s40168-016-0147-4 (2016).
  • Aaron L , SaadounD, CalatroniIet al. Tuberculosis in HIV-infected patients: a comprehensive review. Clin. Microbiol. Infect., 10(5), 388–398 (2004).
  • McPhee F , CalderaPS, BemisGW, McDonaghAF, KuntzID, CraikCS. Bile pigments as HIV-1 protease inhibitors and their effects on HIV-1 viral maturation and infectivity in vitro. Biochem. J., 320(Pt 2), 681–686 (1996).
  • Wegiel B , OtterbeinLE. Go green: the anti-inflammatory effects of biliverdin reductase. Front. Pharmacol., 3, 47 (2012).
  • Fowler CJ . Oleamide: a member of the endocannabinoid family?Br. J. Pharmacol., 141(2), 195–196 (2004).
  • Gianotti RJ , MossAC. Fecal microbiota transplantation: from Clostridium difficile to inflammatory bowel disease. Gastroenterol. Hepatol., 13(4), 209–213 (2017).
  • Kim CJ , WalmsleySL, RaboudJMet al. Can probiotics reduce inflammation and enhance gut immune health in people living with HIV: study designs for the Probiotic Visbiome for Inflammation and Translocation (PROOV IT) pilot trials. HIV Clin. Trials, 17(4), 147–157 (2016).
  • Di Bella JM , BaoY, GloorGB, BurtonJP, ReidG. High throughput sequencing methods and analysis for microbiome research. J. Microbiol. Methods, 95(3), 401–414 (2013).
  • Frank DN , PaceNR. Gastrointestinal microbiology enters the metagenomics era. Curr. Opin. Gastroenterol., 24(1), 4–10 (2008).
  • Serrano-Villar S , MorenoS, FerrerM. The functional consequences of the microbiome in HIV: insights from metabolomic studies. Curr. Opin. HIV AIDS, 13(1), 88–94 (2018).
  • Langille MG , ZaneveldJ, CaporasoJGet al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol., 31(9), 814–821 (2013).
  • Theriot CM , KoenigsknechtMJ, CarlsonPE Jret al. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat. Commun., 5, 3114 (2014).
  • El Aidy S , DerrienM, MerrifieldCAet al. Gut bacteria–host metabolic interplay during conventionalisation of the mouse germfree colon. ISME J., 7(4), 743–755 (2013).
  • Sigurdsson MI , JamshidiN, SteingrimssonE, ThieleI, PalssonBO. A detailed genome-wide reconstruction of mouse metabolism based on human Recon 1. BMC Syst. Biol., 4, doi:10.1186/1752-0509-4-140 (2010).
  • Borenstein E , KupiecM, FeldmanMW, RuppinE. Large-scale reconstruction and phylogenetic analysis of metabolic environments. Proc. Natl Acad. Sci. USA, 105(38), 14482–14487 (2008).
  • Chong J , XiaJ. Computational approaches for integrative analysis of the metabolome and microbiome. Metabolites, 7(4), doi:10.3390/metabo7040062 (2017).
  • McGeachie MJ , SordilloJE, GibsonTet al. Longitudinal prediction of the infant gut microbiome with dynamic bayesian networks. Sci. Rep., 6, 20359 (2016).
  • Kau AL , AhernPP, GriffinNW, GoodmanAL, GordonJI. Human nutrition, the gut microbiome and the immune system. Nature, 474(7351), 327–336 (2011).
  • Ding M , EllervikC, HuangTet al. Diet quality and genetic association with body mass index: results from 3 observational studies. Am. J. Clin. Nutr., 108(6), 1291–1300 (2018).
  • El-Far M , TremblayCL. Gut microbial diversity in HIV infection post combined antiretroviral therapy: a key target for prevention of cardiovascular disease. Curr. Opin. HIV AIDS., 13(1), 38–44 (2018).
  • Rowland I , GibsonG, HeinkenAet al. Gut microbiota functions: metabolism of nutrients and other food components. Eur. J. Nutr., 57(1), 1–24 (2018).
  • Rabe SM . Treatment of recurrent Clostridium difficile infection with fecal transplantation. Gastroenterol. Nurs., 37(2), 156–163; quiz 164–165 (2014).
  • Newman KM , RankKM, VaughnBP, KhorutsA. Treatment of recurrent Clostridiumdifficile infection using fecal microbiota transplantation in patients with inflammatory bowel disease. Gut Microbes, 8(3), 303–309 (2017).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.