111
Views
0
CrossRef citations to date
0
Altmetric
Review

Host Proteins Involved in microtubule-dependent HIV-1 Intracellular Transport and Uncoating

&
Pages 361-374 | Received 11 Jan 2019, Accepted 28 Feb 2019, Published online: 15 May 2019

References

  • Goychuk I , KharchenkoVO, MetzlerR. How molecular motors work in the crowded environment of living cells: coexistence and efficiency of normal and anomalous transport. PLoS ONE, 9(3), e91700 (2014).
  • Ellis RJ , MintonAP. Cell biology: join the crowd. Nature, 425(6953), 27–28 (2003).
  • McGuffee SR , ElcockAH. Diffusion, crowding & protein stability in a dynamic molecular model of the bacterial cytoplasm. PLoS Comput. Biol., 6(3), e1000694 (2010).
  • Haedicke J , DeLos Santos K, GoffSP, NaghaviMH. The Ezrin-radixin-moesin family member ezrin regulates stable microtubule formation and retroviral infection. J. Virol., 82(9), 4665–4670 (2008).
  • Jayappa KD , AoZ, WangXet al. Human immunodeficiency virus type 1 employs the cellular dynein light chain 1 protein for reverse transcription through interaction with its integrase protein. J. Virol., 89(7), 3497–3511 (2015).
  • Pawlica P , BerthouxL. Cytoplasmic dynein promotes HIV-1 uncoating. Viruses, 6(11), 4195–4211 (2014).
  • Gallo DE , HopeTJ. Knockdown of MAP4 and DNAL1 produces a post-fusion and pre-nuclear translocation impairment in HIV-1 replication. Virology, 422(1), 13–21 (2012).
  • Delaney MK , MalikovV, ChaiQ, ZhaoG, NaghaviMH. Distinct functions of diaphanous-related formins regulate HIV-1 uncoating and transport. Proc. Natl Acad. Sci. USA, 114(33), e6932–e6941 (2017).
  • Lukic Z , DharanA, FrickeT, Diaz-GrifferoF, CampbellEM. HIV-1 uncoating is facilitated by dynein and kinesin 1. J. Virol., 88(23), 13613–13625 (2014).
  • Dharan A , OppS, Abdel-RahimOet al. Bicaudal D2 facilitates the cytoplasmic trafficking and nuclear import of HIV-1 genomes during infection. Proc. Natl Acad. Sci. USA, 114(50), e10707–e10716 (2017).
  • Mcdonald D , VodickaMA, LuceroGet al. Visualization of the intracellular behavior of HIV in living cells. J. Cell Biol., 159(3), 441–452 (2002).
  • Sabo Y , WalshD, BarryDSet al. HIV-1 induces the formation of stable microtubules to enhance early infection. Cell Host Microbe, 14(5), 535–546 (2013).
  • Fernandez J , PortilhoDM, DanckaertAet al. Microtubule-associated proteins 1 (MAP1) promote human immunodeficiency virus type I (HIV-1) intracytoplasmic routing to the nucleus. J. Biol. Chem., 290(8), 4631–4646 (2015).
  • Carnes SK , ZhouJ, AikenC. HIV-1 engages a dynein–dynactin–BICD2 complex for infection and transport to the nucleus. J. Virol., 92(20), pii:e00358-18 (2018).
  • Malikov V , DaSilva ES, JovasevicVet al. HIV-1 capsids bind and exploit the kinesin-1 adaptor FEZ1 for inward movement to the nucleus. Nat. Commun., 6, 6660 (2015).
  • Afonso PV , ZamborliniA, SaibA, MahieuxR. Centrosome and retroviruses: the dangerous liaisons. Retrovirology, 4, 27 (2007).
  • Kollman JM , MerdesA, MoureyL, AgardDA. Microtubule nucleation by gamma–tubulin complexes. Nat. Rev. Mol. Cell Biol., 12(11), 709–721 (2011).
  • Petry S , ValeRD. Microtubule nucleation at the centrosome and beyond. Nat. Cell Biol., 17(9), 1089–1093 (2015).
  • Akhmanova A , SteinmetzMO. Control of microtubule organization and dynamics: two ends in the limelight. Nat. Rev. Mol. Cell Biol., 16(12), 711–726 (2015).
  • Janke C , BulinskiJC. Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat. Rev. Mol. Cell Biol., 12(12), 773–786 (2011).
  • Xiao PJ , SamulskiRJ. Cytoplasmic trafficking, endosomal escape, and perinuclear accumulation of adeno-associated virus type 2 particles are facilitated by microtubule network. J. Virol., 86(19), 10462–10473 (2012).
  • Giannakakou P , NakanoM, NicolaouKCet al. Enhanced microtubule-dependent trafficking and p53 nuclear accumulation by suppression of microtubule dynamics. Proc. Natl Acad. Sci. USA, 99(16), 10855–10860 (2002).
  • Hook P , ValleeRB. The dynein family at a glance. J. Cell Sci., 119(Pt 21), 4369–4371 (2006).
  • Hirokawa N , NodaY, TanakaY, NiwaS. Kinesin superfamily motor proteins and intracellular transport. Nat. Rev. Mol. Cell Biol., 10(10), 682–696 (2009).
  • Kato Y , MiyakawaT, TanokuraM. Overview of the mechanism of cytoskeletal motors based on structure. Biophys. Rev., 10(2), 571–581 (2018).
  • Liu JJ . Regulation of dynein–dynactin-driven vesicular transport. Traffic, 18(6), 336–347 (2017).
  • Schmidt H , CarterAP. Review: structure and mechanism of the dynein motor ATPase. Biopolymers, 105(8), 557–567 (2016).
  • Ayloo S , LazarusJE, DoddaAet al. Dynactin functions as both a dynamic tether and brake during dynein-driven motility. Nat. Commun., 5, 4807 (2014).
  • Tripathy SK , WeilSJ, ChenCet al. Autoregulatory mechanism for dynactin control of processive and diffusive dynein transport. Nat. Cell Biol., 16(12), 1192–1201 (2014).
  • Kobayashi T , MiyashitaT, MurayamaT, ToyoshimaYY. Dynactin has two antagonistic regulatory domains and exerts opposing effects on dynein motility. PLoS ONE, 12(8), e0183672 (2017).
  • Urnavicius L , ZhangK, DiamantAGet al. The structure of the dynactin complex and its interaction with dynein. Science, 347(6229), 1441–1446 (2015).
  • Cheong FK , FengL, SarkeshikA, YatesJR3rd, SchroerTA. Dynactin integrity depends upon direct binding of dynamitin to Arp1. Mol. Biol. Cell, 25(14), 2171–2180 (2014).
  • Yeh TY , QuintyneNJ, ScipioniBR, EckleyDM, SchroerTA. Dynactin’s pointed-end complex is a cargo-targeting module. Mol. Biol. Cell, 23(19), 3827–3837 (2012).
  • Culver-Hanlon TL , LexSA, StephensAD, QuintyneNJ, KingSJ. A microtubule-binding domain in dynactin increases dynein processivity by skating along microtubules. Nat. Cell Biol., 8(3), 264–270 (2006).
  • Jacquot G , Maidou-PeindaraP, BenichouS. Molecular and functional basis for the scaffolding role of the p50/dynamitin subunit of the microtubule-associated dynactin complex. J. Biol. Chem., 285(30), 23019–23031 (2010).
  • Schlager MA , HoangHT, UrnaviciusL, BullockSL, CarterAP. In vitro reconstitution of a highly processive recombinant human dynein complex. EMBO J., 33(17), 1855–1868 (2014).
  • Kardon JR , ValeRD. Regulators of the cytoplasmic dynein motor. Nat. Rev. Mol. Cell Biol., 10(12), 854–865 (2009).
  • Mckenney RJ , HuynhW, TanenbaumME, BhabhaG, ValeRD. Activation of cytoplasmic dynein motility by dynactin-cargo adapter complexes. Science, 345(6194), 337–341 (2014).
  • Cianfrocco MA , DesantisME, LeschzinerAE, Reck-PetersonSL. Mechanism and regulation of cytoplasmic dynein. Annu. Rev. Cell Dev. Biol., 31, 83–108 (2015).
  • Hancock WO . Bidirectional cargo transport: moving beyond tug of war. Nat. Rev. Mol. Cell Biol., 15(9), 615–628 (2014).
  • Rezaul K , GuptaD, SemenovaIet al. Engineered tug-of-war between kinesin and dynein controls direction of microtubule based transport in vivo. Traffic, 17(5), 475–486 (2016).
  • Blehm BH , SelvinPR. Single-molecule fluorescence and in vivo optical traps: how multiple dyneins and kinesins interact. Chem. Rev., 114(6), 3335–3352 (2014).
  • Yoder A , GuoJ, YuDet al. Effects of microtubule modulators on HIV-1 infection of transformed and resting CD4 T cells. J. Virol., 85(6), 3020–3024 (2011).
  • Naghavi MH . Stable microtubule subsets facilitate early HIV-1 infection. AIDS Res. Hum. Retroviruses, 30(3), 211–212 (2014).
  • Ohka S , MatsudaN, TohyamaKet al. Receptor (CD155)-dependent endocytosis of poliovirus and retrograde axonal transport of the endosome. J. Virol., 78(13), 7186–7198 (2004).
  • Suomalainen M , NakanoMY, BouckeK, KellerS, GreberUF. Adenovirus-activated PKA and p38/MAPK pathways boost microtubule-mediated nuclear targeting of virus. EMBO J., 20(6), 1310–1319 (2001).
  • Warren JC , RutkowskiA, CassimerisL. Infection with replication-deficient adenovirus induces changes in the dynamic instability of host cell microtubules. Mol. Biol. Cell, 17(8), 3557–3568 (2006).
  • Yamauchi Y , BoukariH, BanerjeeIet al. Histone deacetylase 8 is required for centrosome cohesion and influenza A virus entry. PLoS Pathog., 7(10), e1002316 (2011).
  • Roohvand F , MaillardP, LavergneJPet al. Initiation of hepatitis C virus infection requires the dynamic microtubule network: role of the viral nucleocapsid protein. J. Biol. Chem., 284(20), 13778–13791 (2009).
  • De Conto F , DiLonardo E, ArcangelettiMCet al. Highly dynamic microtubules improve the effectiveness of early stages of human influenza A/NWS/33 virus infection in LLC-MK2 cells. PLoS ONE, 7(7), e41207 (2012).
  • Zan J , LiuS, SunDNet al. Rabies virus infection induces microtubule depolymerization to facilitate viral RNA synthesis by upregulating HDAC6. Front. Cell Infect. Microbiol., 7, 146 (2017).
  • Akhmanova A , SteinmetzMO. Microtubule +TIPs at a glance. J. Cell Sci., 123(Pt 20), 3415–3419 (2010).
  • Wloga D , GaertigJ. Post-translational modifications of microtubules. J. Cell Sci., 123(Pt 20), 3447–3455 (2010).
  • Halpain S , DehmeltL. The MAP1 family of microtubule-associated proteins. Genome Biol., 7(6), 224 (2006).
  • Hoogenraad CC , WulfP, SchiefermeierNet al. Bicaudal D induces selective dynein-mediated microtubule minus end-directed transport. EMBO J., 22(22), 6004–6015 (2003).
  • Hoogenraad CC , AkhmanovaA. Bicaudal D family of motor adaptors: linking dynein motility to cargo binding. Trends Cell Biol., 26(5), 327–340 (2016).
  • Zhou H , XuM, HuangQet al. Genome-scale RNAi screen for host factors required for HIV replication. Cell Host Microbe, 4(5), 495–504 (2008).
  • Dohner K , WolfsteinA, PrankUet al. Function of dynein and dynactin in herpes simplex virus capsid transport. Mol. Biol. Cell, 13(8), 2795–2809 (2002).
  • Douglas MW , DiefenbachRJ, HomaFLet al. Herpes simplex virus type 1 capsid protein VP26 interacts with dynein light chains RP3 and Tctex1 and plays a role in retrograde cellular transport. J. Biol. Chem., 279(27), 28522–28530 (2004).
  • Cao J , LinC, WangHet al. Circovirus transport proceeds via direct interaction of the cytoplasmic dynein IC1 subunit with the viral capsid protein. J. Virol., 89(5), 2777–2791 (2015).
  • Bremner KH , SchererJ, YiJet al. Adenovirus transport via direct interaction of cytoplasmic dynein with the viral capsid hexon subunit. Cell Host Microbe, 6(6), 523–535 (2009).
  • Cortese M , GoellnerS, AcostaEGet al. Ultrastructural characterization of Zika virus replication factories. Cell Rep., 18(9), 2113–2123 (2017).
  • Banerjee I , MiyakeY, NobsSPet al. Influenza A virus uses the aggresome processing machinery for host cell entry. Science, 346(6208), 473–477 (2014).
  • Radtke K , KienekeD, WolfsteinAet al. Plus- and minus-end directed microtubule motors bind simultaneously to herpes simplex virus capsids using different inner tegument structures. PLoS Pathog., 6(7), e1000991 (2010).
  • Valle-Tenney R , OpazoT, CancinoJ, GoffSP, ArriagadaG. Dynein regulators are important for ecotropic murine leukemia virus infection. J. Virol., 90(15), 6896–6905 (2016).
  • Malikov V , NaghaviMH. Localized phosphorylation of a kinesin-1 adaptor by a capsid-associated kinase regulates HIV-1 motility and uncoating. Cell Rep., 20(12), 2792–2799 (2017).
  • Haedicke J , BrownC, NaghaviMH. The brain-specific factor FEZ1 is a determinant of neuronal susceptibility to HIV-1 infection. Proc. Natl Acad. Sci. USA, 106(33), 14040–14045 (2009).
  • Mamede JI , CianciGC, AndersonMR, HopeTJ. Early cytoplasmic uncoating is associated with infectivity of HIV-1. Proc. Natl Acad. Sci. USA, 114(34), e7169–e7178 (2017).
  • Forshey BM , Von SchwedlerU, SundquistWI, AikenC. Formation of a human immunodeficiency virus type 1 core of optimal stability is crucial for viral replication. J. Virol., 76(11), 5667–5677 (2002).
  • Francis AC , MelikyanGB. Single HIV-1 imaging reveals progression of infection through CA-dependent steps of docking at the nuclear pore, uncoating, and nuclear transport. Cell Host Microbe, 23(4), 536–548e536 (2018).
  • Francis AC , MarinM, ShiJ, AikenC, MelikyanGB. Time-resolved imaging of single HIV-1 uncoating in vitro and in living cells. PLoS Pathog., 12(6), e1005709 (2016).
  • Da Silva Santos C , TartourK, CimarelliA. A novel entry/uncoating assay reveals the presence of at least two species of viral capsids during synchronized HIV-1 infection. PLoS Pathog., 12(9), e1005897 (2016).
  • Hulme AE , KelleyZ, FoleyD, HopeTJ. Complementary assays reveal a low level of CA associated with viral complexes in the nuclei of HIV-1-infected cells. J. Virol., 89(10), 5350–5361 (2015).
  • Stremlau M , PerronM, LeeMet al. Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5alpha restriction factor. Proc. Natl Acad. Sci. USA, 103(14), 5514–5519 (2006).
  • Hulme AE , HopeTJ. The cyclosporin A washout assay to detect HIV-1 uncoating in infected cells. Methods Mol. Biol., 1087, 37–46 (2014).
  • Hendricks AG , HolzbaurEL, GoldmanYE. Force measurements on cargoes in living cells reveal collective dynamics of microtubule motors. Proc. Natl Acad. Sci. USA, 109(45), 18447–18452 (2012).
  • Blehm BH , SchroerTA, TrybusKM, ChemlaYR, SelvinPR. In vivo optical trapping indicates kinesin’s stall force is reduced by dynein during intracellular transport. Proc. Natl Acad. Sci. USA, 110(9), 3381–3386 (2013).
  • Rai AK , RaiA, RamaiyaAJ, JhaR, MallikR. Molecular adaptations allow dynein to generate large collective forces inside cells. Cell, 152(1–2), 172–182 (2013).
  • Strunze S , EngelkeMF, WangIHet al. Kinesin-1-mediated capsid disassembly and disruption of the nuclear pore complex promote virus infection. Cell Host Microbe, 10(3), 210–223 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.