185
Views
0
CrossRef citations to date
0
Altmetric
Review

Nanoparticle Vaccines Against Respiratory Syncytial Virus

ORCID Icon & ORCID Icon
Pages 763-778 | Received 03 Jun 2020, Accepted 11 Nov 2020, Published online: 30 Nov 2020

References

  • Scheltema NM , GentileA, LucionFet al. Global respiratory syncytial virus-associated mortality in young children (RSV GOLD): a retrospective case series. Lancet Glob. Health, 5(10), e984–e991 (2017).
  • Paramore LC , CiurylaV, CieslaG, LiuL. Economic impact of respiratory syncytial virus-related illness in the US: an analysis of national databases. Pharmacoeconomics, 22(5), 275–284 (2004).
  • Nair H , NokesDJ, GessnerBDet al. Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and meta-analysis. Lancet, 375(9725), 1545–1555 (2010).
  • Falsey AR , HennesseyPA, FormicaMA, CoxC, WalshEE. Respiratory syncytial virus infection in elderly and high-risk adults. N. Engl. J. Med., 352(17), 1749–1759 (2005).
  • Hall CB , WalshEE, LongCE, SchnabelKC. Immunity to and frequency of reinfection with respiratory syncytial virus. J. Infect. Dis., 163(4), 693–698 (1991).
  • Henderson FW , CollierAM, ClydeWAJr, DennyFW. Respiratory-syncytial-virus infections, reinfections and immunity. A prospective, longitudinal study in young children. N. Engl. J. Med., 300(10), 530–534 (1979).
  • Sommer C , ReschB, SimoesEA. Risk factors for severe respiratory syncytial virus lower respiratory tract infection. Open Microbiol. J., 5, 144–154 (2011).
  • Kaneko M , WatanabeJ, UenoE, HidaM, SoneT. Risk factors for severe respiratory syncytial virus-associated lower respiratory tract infection in children. Pediatr. Int., 43(5), 489–492 (2001).
  • Tan L , CoenjaertsFE, HouspieLet al. The comparative genomics of human respiratory syncytial virus subgroups A and B: genetic variability and molecular evolutionary dynamics. J. Virol., 87(14), 8213–8226 (2013).
  • Johnson SM , McnallyBA, IoannidisIet al. Respiratory syncytial virus uses CX3CR1 as a receptor on primary human airway epithelial cultures. PLoS Pathog., 11(12), e1005318 (2015).
  • Batonick M , WertzGW. Requirements for human respiratory syncytial virus glycoproteins in assembly and egress from infected cells. Adv. Virol., 2011, 1–11 (2011).
  • Tayyari F , MarchantD, MoraesTJ, DuanW, MastrangeloP, HegeleRG. Identification of nucleolin as a cellular receptor for human respiratory syncytial virus. Nat. Med., 17(9), 1132–1135 (2011).
  • Griffiths CD , BilawchukLM, McdonoughJEet al. IGF1R is an entry receptor for respiratory syncytial virus. Nature, 583(7817), 615–619 (2020).
  • Gilman MS , CastellanosCA, ChenMet al. Rapid profiling of RSV antibody repertoires from the memory B cells of naturally infected adult donors. Sci. Immunol., 1(6), Eaaj1879 (2016).
  • Cortjens B , YasudaE, YuXet al. Broadly reactive anti-respiratory syncytial virus G antibodies from exposed individuals effectively inhibit infection of primary airway epithelial cells. J. Virol., 91(10), E02357–16 (2017).
  • Van Bleek GM , PoelenMC, VanDer Most Ret al. Identification of immunodominant epitopes derived from the respiratory syncytial virus fusion protein that are recognized by human CD4 T cells. J. Virol., 77(2), 980–988 (2003).
  • Medina-Armenteros Y , Farinha-ArcieriLE, BragaCJ, CarromeuC, TamuraRE, VenturaAM. Mapping of CD8 T cell epitopes in human respiratory syncytial virus L protein. Intervirology, 57(2), 55–64 (2014).
  • Heidema J , DeBree GJ, DeGraaff PMet al. Human CD8(+) T cell responses against five newly identified respiratory syncytial virus-derived epitopes. J. Gen. Virol., 85(Pt 8), 2365–2374 (2004).
  • Levely ME , BannowCA, SmithCW, NicholasJA. Immunodominant T-cell epitope on the F protein of respiratory syncytial virus recognized by human lymphocytes. J. Virol., 65(7), 3789–3796 (1991).
  • Mclellan JS , ChenM, LeungSet al. Structure of RSV fusion glycoprotein trimer bound to a prefusion-specific neutralizing antibody. Science, 340(6136), 1113–1117 (2013).
  • Ngwuta JO , ChenM, ModjarradKet al. Prefusion F-specific antibodies determine the magnitude of RSV neutralizing activity in human sera. Sci. Transl. Med., 7(309), 309ra162 (2015).
  • Magro M , MasV, ChappellKet al. Neutralizing antibodies against the preactive form of respiratory syncytial virus fusion protein offer unique possibilities for clinical intervention. Proc. Natl Acad. Sci. USA, 109(8), 3089–3094 (2012).
  • Hajj Hussein I , ChamsN, ChamsSet al. Vaccines through centuries: major cornerstones of global health. Front. Public Health, 3, 269 (2015).
  • Kim HW , CancholaJG, BrandtCDet al. Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine. Am. J. Epidemiol., 89(4), 422–434 (1969).
  • Fulginiti VA , EllerJJ, SieberOF, JoynerJW, MinamitaniM, MeiklejohnG. Respiratory virus immunization. I. A field trial of two inactivated respiratory virus vaccines; an aqueous trivalent parainfluenza virus vaccine and an alum-precipitated respiratory syncytial virus vaccine. Am. J. Epidemiol., 89(4), 435–448 (1969).
  • Kapikian AZ , MitchellRH, ChanockRM, ShvedoffRA, StewartCE. An epidemiologic study of altered clinical reactivity to respiratory syncytial (RS) virus infection in children previously vaccinated with an inactivated RS virus vaccine. Am. J. Epidemiol., 89(4), 405–421 (1969).
  • Chin J , MagoffinRL, ShearerLA, SchiebleJH, LennetteEH. Field evaluation of a respiratory syncytial virus vaccine and a trivalent parainfluenza virus vaccine in a pediatric population. Am. J. Epidemiol., 89(4), 449–463 (1969).
  • Waris ME , TsouC, ErdmanDD, ZakiSR, AndersonLJ. Respiratory synctial virus infection in BALB/c mice previously immunized with formalin-inactivated virus induces enhanced pulmonary inflammatory response with a predominant Th2-like cytokine pattern. J. Virol., 70(5), 2852–2860 (1996).
  • Murphy BR , WalshEE. Formalin-inactivated respiratory syncytial virus vaccine induces antibodies to the fusion glycoprotein that are deficient in fusion-inhibiting activity. J. Clin. Microbiol., 26(8), 1595–1597 (1988).
  • Olson MR , VargaSM. CD8 T cells inhibit respiratory syncytial virus (RSV) vaccine-enhanced disease. J. Immunol., 179(8), 5415–5424 (2007).
  • Olson MR , HartwigSM, VargaSM. The number of respiratory syncytial virus (RSV)-specific memory CD8 T cells in the lung is critical for their ability to inhibit RSV vaccine-enhanced pulmonary eosinophilia. J. Immunol., 181(11), 7958–7968 (2008).
  • Knudson CJ , HartwigSM, MeyerholzDK, VargaSM. RSV vaccine-enhanced disease is orchestrated by the combined actions of distinct CD4 T cell subsets. PLoS Pathog., 11(3), e1004757 (2015).
  • Delgado MF , CovielloS, MonsalvoACet al. Lack of antibody affinity maturation due to poor Toll-like receptor stimulation leads to enhanced respiratory syncytial virus disease. Nat. Med., 15(1), 34–41 (2009).
  • Capella C , ChaiwatpongsakornS, GorrellEet al. Prefusion F, postfusion F, G antibodies, and disease severity in infants and young children with acute respiratory syncytial virus infection. J. Infect. Dis., 216(11), 1398–1406 (2017).
  • Narbona-Lopez E , UberosJ, Checa-RosA, Rodriguez-BelmonteR, Munoz-HoyosA. Prevention of syncytial respiratory virus infection with palivizumab: descriptive and comparative analysis after 12 years of use. Minerva Pediatr., 70(6), 513–518 (2018).
  • Anderson EJ , Carosone-LinkP, YogevR, YiJ, SimoesEaF. Effectiveness of palivizumab in high-risk infants and children: a propensity score weighted regression analysis. Pediatr. Infect. Dis. J., 36(8), 699–704 (2017).
  • Alansari K , ToaimahFH, AlmatarDH, ElTatawy LA, DavidsonBL, QusadMIM. Monoclonal antibody treatment of RSV bronchiolitis in young infants: a randomized trial. Pediatrics, 143(3), E20182308 (2019).
  • Fisher RG , CroweJEJr, JohnsonTR, TangYW, GrahamBS. Passive IgA monoclonal antibody is no more effective than IgG at protecting mice from mucosal challenge with respiratory syncytial virus. J. Infect. Dis., 180(4), 1324–1327 (1999).
  • Habibi MS , JozwikA, MakrisSet al. Impaired antibody-mediated protection and defective IgA B-cell memory in experimental infection of adults with respiratory syncytial virus. Am. J. Respir. Crit. Care Med., 191(9), 1040–1049 (2015).
  • Bagga B , CehelskyJE, VaishnawAet al. Effect of preexisting serum and mucosal antibody on experimental respiratory syncytial virus (RSV) challenge and infection of adults. J. Infect. Dis., 212(11), 1719–1725 (2015).
  • Piedra PA , JewellAM, CronSG, AtmarRL, GlezenWP. Correlates of immunity to respiratory syncytial virus (RSV) associated-hospitalization: establishment of minimum protective threshold levels of serum neutralizing antibodies. Vaccine, 21(24), 3479–3482 (2003).
  • Luchsinger V , PiedraPA, RuizMet al. Role of neutralizing antibodies in adults with community-acquired pneumonia by respiratory syncytial virus. Clin. Infect. Dis., 54(7), 905–912 (2012).
  • Falsey AR , SinghHK, WalshEE. Serum antibody decay in adults following natural respiratory syncytial virus infection. J. Med. Virol., 78(11), 1493–1497 (2006).
  • Singleton R , EtchartN, HouS, HylandL. Inability to evoke a long-lasting protective immune response to respiratory syncytial virus infection in mice correlates with ineffective nasal antibody responses. J. Virol., 77(21), 11303–11311 (2003).
  • Brandenburg AH , GroenJ, Van Steensel-MollHAet al. Respiratory syncytial virus specific serum antibodies in infants under six months of age: limited serological response upon infection. J. Med. Virol., 52(1), 97–104 (1997).
  • Schmidt MR , McginnesLW, KenwardSA, WillemsKN, WoodlandRT, MorrisonTG. Long-term and memory immune responses in mice against Newcastle disease virus-like particles containing respiratory syncytial virus glycoprotein ectodomains. J. Virol., 86(21), 11654–11662 (2012).
  • Graham BS , BuntonLA, WrightPF, KarzonDT. Role of T lymphocyte subsets in the pathogenesis of primary infection and rechallenge with respiratory syncytial virus in mice. J. Clin. Invest., 88(3), 1026–1033 (1991).
  • Kinnear E , LambertL, McdonaldJU, CheesemanHM, CaproniLJ, TregoningJS. Airway T cells protect against RSV infection in the absence of antibody. Mucosal Immunol., 11(1), 249–256 (2018).
  • Jozwik A , HabibiMS, ParasAet al. RSV-specific airway resident memory CD8+ T cells and differential disease severity after experimental human infection. Nat. Commun., 6, 10224 (2015).
  • Bont L , VersteeghJ, SwelsenWTet al. Natural reinfection with respiratory syncytial virus does not boost virus-specific T-cell immunity. Pediatr. Res., 52(3), 363–367 (2002).
  • De Bree GJ , HeidemaJ, Van LeeuwenEMet al. Respiratory syncytial virus-specific CD8+ memory T cell responses in elderly persons. J. Infect. Dis., 191(10), 1710–1718 (2005).
  • Chang J , BracialeTJ. Respiratory syncytial virus infection suppresses lung CD8+ T-cell effector activity and peripheral CD8+ T-cell memory in the respiratory tract. Nat. Med., 8(1), 54–60 (2002).
  • Welliver TP , GarofaloRP, HosakoteYet al. Severe human lower respiratory tract illness caused by respiratory syncytial virus and influenza virus is characterized by the absence of pulmonary cytotoxic lymphocyte responses. J. Infect. Dis., 195(8), 1126–1136 (2007).
  • Poletti P , MerlerS, AjelliMet al. Evaluating vaccination strategies for reducing infant respiratory syncytial virus infection in low-income settings. BMC Med., 13, 49 (2015).
  • Glezen WP , ParedesA, AllisonJE, TaberLH, FrankAL. Risk of respiratory syncytial virus infection for infants from low-income families in relationship to age, sex, ethnic group, and maternal antibody level. J. Pediatr., 98(5), 708–715 (1981).
  • Glezen WP , TaberLH, FrankAL, KaselJA. Risk of primary infection and reinfection with respiratory syncytial virus. Am. J. Dis. Child., 140(6), 543–546 (1986).
  • Hall CB , WeinbergGA, IwaneMKet al. The burden of respiratory syncytial virus infection in young children. N. Engl. J. Med., 360(6), 588–598 (2009).
  • Ochola R , SandeC, FeganGet al. The level and duration of RSV-specific maternal IgG in infants in Kilifi Kenya. PLoS ONE, 4(12), e8088 (2009).
  • Ridings J , DinanL, WilliamsR, RobertonD, ZolaH. Somatic mutation of immunoglobulin V(H)6 genes in human infants. Clin. Exp. Immunol., 114(1), 33–39 (1998).
  • Pihlgren M , FriedliM, TougneC, RochatAF, LambertPH, SiegristCA. Reduced ability of neonatal and early-life bone marrow stromal cells to support plasmablast survival. J. Immunol., 176(1), 165–172 (2006).
  • Murphy BR , AllingDW, SnyderMHet al. Effect of age and preexisting antibody on serum antibody response of infants and children to the F and G glycoproteins during respiratory syncytial virus infection. J. Clin. Microbiol., 24(5), 894–898 (1986).
  • Crowe JE Jr , FirestoneCY, MurphyBR. Passively acquired antibodies suppress humoral but not cell-mediated immunity in mice immunized with live attenuated respiratory syncytial virus vaccines. J. Immunol., 167(7), 3910–3918 (2001).
  • Murphy BR , OlmstedRA, CollinsPL, ChanockRM, PrinceGA. Passive transfer of respiratory syncytial virus (RSV) antiserum suppresses the immune response to the RSV fusion (F) and large (G) glycoproteins expressed by recombinant vaccinia viruses. J. Virol., 62(10), 3907–3910 (1988).
  • Schneider-Ohrum K , CayatteC, BennettASet al. Immunization with low doses of recombinant postfusion or prefusion respiratory syncytial virus F primes for vaccine-enhanced disease in the cotton rat model independently of the presence of a Th1-biasing (GLA-SE) or Th2-biasing (Alum) adjuvant. J. Virol., 91(8), (2017).
  • Gibson KL , WuYC, BarnettYet al. B-cell diversity decreases in old age and is correlated with poor health status. Aging Cell, 8(1), 18–25 (2009).
  • Fagnoni FF , VescoviniR, PasseriGet al. Shortage of circulating naive CD8(+) T cells provides new insights on immunodeficiency in aging. Blood, 95(9), 2860–2868 (2000).
  • Walsh EE , FalseyAR. Humoral and mucosal immunity in protection from natural respiratory syncytial virus infection in adults. J. Infect. Dis., 190(2), 373–378 (2004).
  • Walsh EE , PetersonDR, FalseyAR. Risk factors for severe respiratory syncytial virus infection in elderly persons. J. Infect. Dis., 189(2), 233–238 (2004).
  • Duncan CB , WalshEE, PetersonDR, LeeFE, FalseyAR. Risk factors for respiratory failure associated with respiratory syncytial virus infection in adults. J. Infect. Dis., 200(8), 1242–1246 (2009).
  • Cusi MG , MartorelliB, DiGenova G, TerrosiC, CampocciaG, CorrealeP. Age related changes in T cell mediated immune response and effector memory to Respiratory Syncytial Virus (RSV) in healthy subjects. Immun. Ageing, 7, 14 (2010).
  • Cherukuri A , PattonK, GasserRAJret al. Adults 65 years old and older have reduced numbers of functional memory T cells to respiratory syncytial virus fusion protein. Clin. Vaccine Immunol., 20(2), 239–247 (2013).
  • Fulton RB , WeissKA, PeweLL, HartyJT, VargaSM. Aged mice exhibit a severely diminished CD8 T cell response following respiratory syncytial virus infection. J. Virol., 87(23), 12694–12700 (2013).
  • Krasia-Christoforou T , GeorgiouTK. Polymeric theranostics: using polymer-based systems for simultaneous imaging and therapy. J. Mater. Chem. B., 1(24), 3002–3025 (2013).
  • Kamaly N , XiaoZ, ValenciaPM, Radovic-MorenoAF, FarokhzadOC. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem. Soc. Rev., 41(7), 2971–3010 (2012).
  • Determan AS , GrahamJR, PfeifferKA, NarasimhanB. The role of microsphere fabrication methods on the stability and release kinetics of ovalbumin encapsulated in polyanhydride microspheres. J. Microencapsul., 23(8), 832–843 (2006).
  • Lacasse FX , FilionMC, PhillipsNC, EscherE, McmullenJN, HildgenP. Influence of surface properties at biodegradable microsphere surfaces: effects on plasma protein adsorption and phagocytosis. Pharm. Res., 15(2), 312–317 (1998).
  • Chattopadhyay S , ChenJY, ChenHW, HuCJ. Nanoparticle vaccines adopting virus-like features for enhanced immune potentiation. Nanotheranostics, 1(3), 244–260 (2017).
  • Schwendeman SP . Recent advances in the stabilization of proteins encapsulated in injectable PLGA delivery systems. Crit. Rev. Ther. Drug Carrier Syst., 19(1), 73–98 (2002).
  • Kipper MJ , WilsonJH, WannemuehlerMJ, NarasimhanB. Single dose vaccine based on biodegradable polyanhydride microspheres can modulate immune response mechanism. J. Biomed. Mater. Res. A., 76(4), 798–810 (2006).
  • Jaganathan KS , SinghP, PrabakaranD, MishraV, VyasSP. Development of a single-dose stabilized poly(D,L-lactic-co-glycolic acid) microspheres-based vaccine against hepatitis B. J. Pharm. Pharmacol., 56(10), 1243–1250 (2004).
  • Haughney SL , RossKA, BoggiattoPM, WannemuehlerMJ, NarasimhanB. Effect of nanovaccine chemistry on humoral immune response kinetics and maturation. Nanoscale, 6(22), 13770–13778 (2014).
  • Pachioni-Vasconcelos Jde A , LopesAM, ApolinarioACet al. Nanostructures for protein drug delivery. Biomater. Sci., 4(2), 205–218 (2016).
  • Walter E , DreherD, KokMet al. Hydrophilic poly(DL-lactide-co-glycolide) microspheres for the delivery of DNA to human-derived macrophages and dendritic cells. J. Control. Rel., 76(1–2), 149–168 (2001).
  • Fredriksen BN , GripJ. PLGA/PLA micro- and nanoparticle formulations serve as antigen depots and induce elevated humoral responses after immunization of Atlantic salmon (Salmo salar L.). Vaccine, 30(3), 656–667 (2012).
  • Jelley-Gibbs DM , BrownDM, DibbleJP, HaynesL, EatonSM, SwainSL. Unexpected prolonged presentation of influenza antigens promotes CD4 T cell memory generation. J. Exp. Med., 202(5), 697–706 (2005).
  • Desai MP , LabhasetwarV, WalterE, LevyRJ, AmidonGL. The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm. Res., 14(11), 1568–1573 (1997).
  • Torres MP , Wilson-WelderJH, LopacSKet al. Polyanhydride microparticles enhance dendritic cell antigen presentation and activation. Acta. Biomater., 7(7), 2857–2864 (2011).
  • Santos DM , CarneiroMW, DeMoura TRet al. PLGA nanoparticles loaded with KMP-11 stimulate innate immunity and induce the killing of Leishmania. Nanomedicine, 9(7), 985–995 (2013).
  • Clawson C , HuangCT, FutalanDet al. Delivery of a peptide via poly(D,L-lactic-co-glycolic) acid nanoparticles enhances its dendritic cell-stimulatory capacity. Nanomedicine, 6(5), 651–661 (2010).
  • Lunov O , SyrovetsT, LoosCet al. Amino-functionalized polystyrene nanoparticles activate the NLRP3 inflammasome in human macrophages. ACS Nano, 5(12), 9648–9657 (2011).
  • Yazdi AS , GuardaG, RiteauNet al. Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1alpha and IL-1beta. Proc. Natl Acad. Sci. USA, 107(45), 19449–19454 (2010).
  • Morishige T , YoshiokaY, TanabeAet al. Titanium dioxide induces different levels of IL-1beta production dependent on its particle characteristics through caspase-1 activation mediated by reactive oxygen species and cathepsin B. Biochem. Biophys. Res. Commun., 392(2), 160–165 (2010).
  • Lutsiak ME , KwonGS, SamuelJ. Biodegradable nanoparticle delivery of a Th2-biased peptide for induction of Th1 immune responses. J. Pharm. Pharmacol., 58(6), 739–747 (2006).
  • Sheng KC , KalkanidisM, PouniotisDSet al. Delivery of antigen using a novel mannosylated dendrimer potentiates immunogenicity in vitro and in vivo. Eur. J. Immunol., 38(2), 424–436 (2008).
  • Kwon YJ , JamesE, ShastriN, FrechetJM. In vivo targeting of dendritic cells for activation of cellular immunity using vaccine carriers based on pH-responsive microparticles. Proc. Natl Acad. Sci. USA, 102(51), 18264–18268 (2005).
  • Nagamoto T , HattoriY, TakayamaK, MaitaniY. Novel chitosan particles and chitosan-coated emulsions inducing immune response via intranasal vaccine delivery. Pharm. Res., 21(4), 671–674 (2004).
  • Iyer V , CayatteC, GuzmanBet al. Impact of formulation and particle size on stability and immunogenicity of oil-in-water emulsion adjuvants. Hum. Vaccin. Immunother., 11(7), 1853–1864 (2015).
  • Mottram PL , LeongD, Crimeen-IrwinBet al. Type 1 and 2 immunity following vaccination is influenced by nanoparticle size: formulation of a model vaccine for respiratory syncytial virus. Mol. Pharm., 4(1), 73–84 (2007).
  • Shen Z , ReznikoffG, DranoffG, RockKL. Cloned dendritic cells can present exogenous antigens on both MHC class I and class II molecules. J. Immunol., 158(6), 2723–2730 (1997).
  • Jain S , YapWT, IrvineDJ. Synthesis of protein-loaded hydrogel particles in an aqueous two-phase system for coincident antigen and CpG oligonucleotide delivery to antigen-presenting cells. Biomacromolecules, 6(5), 2590–2600 (2005).
  • Desai MP , LabhasetwarV, AmidonGL, LevyRJ. Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm. Res., 13(12), 1838–1845 (1996).
  • Manolova V , FlaceA, BauerM, SchwarzK, SaudanP, BachmannMF. Nanoparticles target distinct dendritic cell populations according to their size. Eur. J. Immunol., 38(5), 1404–1413 (2008).
  • Brenza TM , PetersenLK, ZhangYet al. Pulmonary biodistribution and cellular uptake of intranasally administered monodisperse particles. Pharm. Res., 32(4), 1368–1382 (2015).
  • Jaques PA , KimCS. Measurement of total lung deposition of inhaled ultrafine particles in healthy men and women. Inhal. Toxicol., 12(8), 715–731 (2000).
  • Geiser M , Rothen-RutishauserB, KappNet al. Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ. Health Perspect., 113(11), 1555–1560 (2005).
  • Illum L . Nanoparticulate systems for nasal delivery of drugs: a real improvement over simple systems?J. Pharm. Sci., 96(3), 473–483 (2007).
  • Jakobsson JKF , AaltonenHL, NicklassonHet al. Altered deposition of inhaled nanoparticles in subjects with chronic obstructive pulmonary disease. BMC Pulm. Med., 18(1), 129 (2018).
  • Moller W , FeltenK, SommererKet al. Deposition, retention, and translocation of ultrafine particles from the central airways and lung periphery. Am. J. Respir. Crit. Care Med., 177(4), 426–432 (2008).
  • Ichinohe T , AinaiA, TashiroM, SataT, HasegawaH. PolyI:polyC12U adjuvant-combined intranasal vaccine protects mice against highly pathogenic H5N1 influenza virus variants. Vaccine, 27(45), 6276–6279 (2009).
  • Piluso S , SoultanAH, PattersonJ. Molecularly engineered polymer-based systems in drug delivery and regenerative medicine. Curr. Pharm. Des., 23(2), 281–294 (2017).
  • Lai P , DaearW, LobenbergR, PrennerEJ. Overview of the preparation of organic polymeric nanoparticles for drug delivery based on gelatine, chitosan, poly(d,l-lactide-co-glycolic acid) and polyalkylcyanoacrylate. Colloids Surf. B. Biointerfaces, 118, 154–163 (2014).
  • Gentile P , ChionoV, CarmagnolaI, HattonPV. An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int. J. Mol. Sci., 15(3), 3640–3659 (2014).
  • Ulery BD , PhanseY, SinhaA, WannemuehlerMJ, NarasimhanB, BellaireBH. Polymer chemistry influences monocytic uptake of polyanhydride nanospheres. Pharm. Res., 26(3), 683–690 (2009).
  • Langer R . New methods of drug delivery. Science, 249(4976), 1527–1533 (1990).
  • Kim K , YuM, ZongXet al. Control of degradation rate and hydrophilicity in electrospun non-woven poly(D,L-lactide) nanofiber scaffolds for biomedical applications. Biomaterials, 24(27), 4977–4985 (2003).
  • Bolhassani A , JavanzadS, SalehT, HashemiM, AghasadeghiMR, SadatSM. Polymeric nanoparticles: potent vectors for vaccine delivery targeting cancer and infectious diseases. Hum. Vaccin. Immunother., 10(2), 321–332 (2014).
  • Jorquera PA , ChoiY, OakleyKEet al. Nanoparticle vaccines encompassing the respiratory syncytial virus (RSV) G protein CX3C chemokine motif induce robust immunity protecting from challenge and disease. PLoS ONE, 8(9), e74905 (2013).
  • Powell TJ , PalathN, DeromeME, TangJ, JacobsA, BoydJG. Synthetic nanoparticle vaccines produced by layer-by-layer assembly of artificial biofilms induce potent protective T-cell and antibody responses in vivo. Vaccine, 29(3), 558–569 (2011).
  • Jorquera PA , OakleyKE, PowellTJ, PalathN, BoydJG, TrippRA. Layer-by-layer nanoparticle vaccines carrying the G protein CX3C motif protect against RSV infection and disease. Vaccines (Basel), 3(4), 829–849 (2015).
  • Katti DS , LakshmiS, LangerR, LaurencinCT. Toxicity, biodegradation and elimination of polyanhydrides. Adv. Drug Deliv. Rev., 54(7), 933–961 (2002).
  • Ulery BD , KumarD, Ramer-TaitAE, MetzgerDW, WannemuehlerMJ, NarasimhanB. Design of a protective single-dose intranasal nanoparticle-based vaccine platform for respiratory infectious diseases. PLoS ONE, 6(3), e17642 (2011).
  • Mcgill JL , KellySM, KumarPet al. Efficacy of mucosal polyanhydride nanovaccine against respiratory syncytial virus infection in the neonatal calf. Sci. Rep., 8(1), 3021 (2018).
  • Lynn GM , LagaR, DarrahPAet al. In vivo characterization of the physicochemical properties of polymer-linked TLR agonists that enhance vaccine immunogenicity. Nat. Biotechnol., 33(11), 1201–1210 (2015).
  • Francica JR , LynnGM, LagaRet al. Thermoresponsive polymer nanoparticles co-deliver RSV F trimers with a TLR-7/8 adjuvant. Bioconjug. Chem., 27(10), 2372–2385 (2016).
  • Smith G , RaghunandanR, WuYet al. Respiratory syncytial virus fusion glycoprotein expressed in insect cells form protein nanoparticles that induce protective immunity in cotton rats. PLoS ONE, 7(11), e50852 (2012).
  • Raghunandan R , LuH, ZhouBet al. An insect cell derived respiratory syncytial virus (RSV) F nanoparticle vaccine induces antigenic site II antibodies and protects against RSV challenge in cotton rats by active and passive immunization. Vaccine, 32(48), 6485–6492 (2014).
  • Fries L , ShindeV, StoddardJJet al. Immunogenicity and safety of a respiratory syncytial virus fusion protein (RSV F) nanoparticle vaccine in older adults. Immun. Ageing, 14, 8 (2017).
  • Novavax Press Release . Novavax announces topline RSV F vaccine data from two clinical trials in older adults. (2019). https://ir.novavax.com/news-releases/news-release-details/novavax-announces-topline-rsv-f-vaccine-data-two-clinical-trials
  • August A , GlennGM, KpameganEet al. A Phase II randomized, observer-blind, placebo-controlled, dose-ranging trial of aluminum-adjuvanted respiratory syncytial virus F particle vaccine formulations in healthy women of childbearing age. Vaccine, 35(30), 3749–3759 (2017).
  • Munoz FM , SwamyGK, HickmanSPet al. Safety and immunogenicity of a respiratory syncytial virus fusion (F) protein nanoparticle vaccine in healthy third-trimester pregnant women and their infants. J. Infect. Dis., 220(11), 1802–1815 (2019).
  • Welliver RC , PapinJF, PrenoAet al. Maternal immunization with RSV fusion glycoprotein vaccine and substantial protection of neonatal baboons against respiratory syncytial virus pulmonary challenge. Vaccine, 28(5), 1258–1270 (2020).
  • Madhi SA , PolackFP, PiedraPAet al. Respiratory syncytial virus vaccination during pregnancy and effects in infants. N. Engl. J. Med., 383(5), 426–439 (2020).
  • Smith DM , SimonJK, BakerJRJr. Applications of nanotechnology for immunology. Nat. Rev. Immunol., 13(8), 592–605 (2013).
  • Bachmann MF , JenningsGT. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat. Rev. Immunol., 10(11), 787–796 (2010).
  • Irvine DJ , SwartzMA, SzetoGL. Engineering synthetic vaccines using cues from natural immunity. Nat. Mater., 12(11), 978–990 (2013).
  • Zhao Q , AllenMJ, WangYet al. Disassembly and reassembly improves morphology and thermal stability of human papillomavirus type 16 virus-like particles. Nanomedicine, 8(7), 1182–1189 (2012).
  • Mohsen MO , ZhaL, Cabral-MirandaG, BachmannMF. Major findings and recent advances in virus-like particle (VLP)-based vaccines. Semin. Immunol., 34, 123–132 (2017).
  • Hofmann KJ , CookJC, JoyceJGet al. Sequence determination of human papillomavirus type 6a and assembly of virus-like particles in Saccharomyces cerevisiae. Virology, 209(2), 506–518 (1995).
  • Vicente T , RoldaoA, PeixotoC, CarrondoMJ, AlvesPM. Large-scale production and purification of VLP-based vaccines. J. Invertebr. Pathol., 107(Suppl.), S42–S48 (2011).
  • Quan FS , KimY, LeeSet al. Viruslike particle vaccine induces protection against respiratory syncytial virus infection in mice. J. Infect. Dis., 204(7), 987–995 (2011).
  • Lee S , QuanFS, KwonYet al. Additive protection induced by mixed virus-like particles presenting respiratory syncytial virus fusion or attachment glycoproteins. Antiviral Res., 111, 129–135 (2014).
  • Lee Y , LeeYT, KoEJet al. Soluble F proteins exacerbate pulmonary histopathology after vaccination upon respiratory syncytial virus challenge but not when presented on virus-like particles. Hum. Vaccin. Immunother., 13(11), 2594–2605 (2017).
  • Lee YT , KoEJ, HwangHSet al. Respiratory syncytial virus-like nanoparticle vaccination induces long-term protection without pulmonary disease by modulating cytokines and T-cells partially through alveolar macrophages. Int. J. Nanomedicine, 10, 4491–4505 (2015).
  • Kim KH , LeeYT, HwangHSet al. Virus-like particle vaccine containing the F protein of respiratory syncytial virus confers protection without pulmonary disease by modulating specific subsets of dendritic cells and effector T cells. J. Virol., 89(22), 11692–11705 (2015).
  • Liu F , WuX, LiL, LiuZ, WangZ. Use of baculovirus expression system for generation of virus-like particles: successes and challenges. Protein Expr. Purif., 90(2), 104–116 (2013).
  • Walpita P , JohnsLM, TandonR, MooreML. Mammalian cell-derived respiratory syncytial virus-like particles protect the lower as well as the upper respiratory tract. PLoS ONE, 10(7), e0130755 (2015).
  • Murawski MR , McginnesLW, FinbergRWet al. Newcastle disease virus-like particles containing respiratory syncytial virus G protein induced protection in BALB/c mice, with no evidence of immunopathology. J. Virol., 84(2), 1110–1123 (2010).
  • Mcginnes LW , GravelKA, FinbergRWet al. Assembly and immunological properties of Newcastle disease virus-like particles containing the respiratory syncytial virus F and G proteins. J. Virol., 85(1), 366–377 (2011).
  • Cullen LM , BlancoJC, MorrisonTG. Cotton rat immune responses to virus-like particles containing the pre-fusion form of respiratory syncytial virus fusion protein. J. Transl. Med., 13, 350 (2015).
  • Chackerian B . Virus-like particles: flexible platforms for vaccine development. Expert Rev. Vaccines, 6(3), 381–390 (2007).
  • Blanco JCG , FernandoLR, ZhangWet al. Alternative virus-like particle-associated pre-fusion F proteins as maternal vaccines for respiratory syncytial virus. J. Virol., 93(23), e00914–19 (2019).
  • Blanco JCG , PletnevaLM, Mcginnes-CullenLet al. Efficacy of a respiratory syncytial virus vaccine candidate in a maternal immunization model. Nat. Commun., 9(1), 1904 (2018).
  • Huertas-Diaz MC , PhanS, ElsonAet al. Parainfluenza virus 5 (PIV5) amplifying virus-like particles expressing respiratory syncytial virus (RSV) antigens protect mice against RSV infection. Vaccine, 37(22), 2925–2934 (2019).
  • Qiao L , ZhangY, ChaiF, TanY, HuoC, PanZ. Chimeric virus-like particles containing a conserved region of the G protein in combination with a single peptide of the M2 protein confer protection against respiratory syncytial virus infection. Antiviral Res., 131, 131–140 (2016).
  • Schickli JH , WhitacreDC, TangRSet al. Palivizumab epitope-displaying virus-like particles protect rodents from RSV challenge. J. Clin. Invest., 125(4), 1637–1647 (2015).
  • Marcandalli J , FialaB, OlsSet al. Induction of potent neutralizing antibody responses by a designed protein nanoparticle vaccine for respiratory syncytial virus. Cell, 176(6), 1420–1431, e1417 (2019).
  • Kamphuis T , ShafiqueM, MeijerhofT, StegmannT, WilschutJ, DeHaan A. Efficacy and safety of an intranasal virosomal respiratory syncytial virus vaccine adjuvanted with monophosphoryl lipid A in mice and cotton rats. Vaccine, 31(17), 2169–2176 (2013).
  • Kamphuis T , StegmannT, MeijerhofT, WilschutJ, DeHaan A. A virosomal respiratory syncytial virus vaccine adjuvanted with monophosphoryl lipid A provides protection against viral challenge without priming for enhanced disease in cotton rats. Influenza Other Respir. Viruses, 7(6), 1227–1236 (2013).
  • Xiang D , ZhengY, DuanWet al. Inhibition of A/Human/Hubei/3/2005 (H3N2) influenza virus infection by silver nanoparticles in vitro and in vivo. Int. J. Nanomedicine, 8, 4103–4113 (2013).
  • Chen N , ZhengY, YinJ, LiX, ZhengC. Inhibitory effects of silver nanoparticles against adenovirus type 3 in vitro. J. Virol. Methods, 193(2), 470–477 (2013).
  • Sun L , SinghAK, VigK, PillaiSR, SinghSR. Silver nanoparticles inhibit replication of respiratory syncytial virus. J. Biomed. Nanotechnol., 4(2), 149–158 (2008).
  • Greulich C , DiendorfJ, SimonT, EggelerG, EppleM, KollerM. Uptake and intracellular distribution of silver nanoparticles in human mesenchymal stem cells. Acta Biomater., 7(1), 347–354 (2011).
  • Marques Neto LM , KipnisA, Junqueira-KipnisAP. Role of metallic nanoparticles in vaccinology: implications for infectious disease vaccine development. Front. Immunol., 8, 239 (2017).
  • Tao W , GillHS. M2e-immobilized gold nanoparticles as influenza A vaccine: role of soluble M2e and longevity of protection. Vaccine, 33(20), 2307–2315 (2015).
  • Feliu N , DocterD, HeineMet al. In vivo degeneration and the fate of inorganic nanoparticles. Chem. Soc. Rev., 45(9), 2440–2457 (2016).
  • Boisselier E , AstrucD. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev., 38(6), 1759–1782 (2009).
  • Botelho DJ , LeoBF, MassaCBet al. Low-dose AgNPs reduce lung mechanical function and innate immune defense in the absence of cellular toxicity. Nanotoxicology, 10(1), 118–127 (2016).
  • Silva RM , AndersonDS, FranziLMet al. Pulmonary effects of silver nanoparticle size, coating, and dose over time upon intratracheal instillation. Toxicol. Sci., 144(1), 151–162 (2015).
  • Stone JW , ThornburgNJ, BlumDL, KuhnSJ, WrightDW, CroweJEJr. Gold nanorod vaccine for respiratory syncytial virus. Nanotechnology, 24(29), 295102 (2013).
  • Swanson KA , Rainho-TomkoJN, WilliamsZPet al. A respiratory syncytial virus (RSV) F protein nanoparticle vaccine focuses antibody responses to a conserved neutralization domain. Sci. Immunol., 5(47), Saba6466 (2020).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.