888
Views
0
CrossRef citations to date
0
Altmetric
Perspective

Reviewing Findings on the Polypeptide Sequence of the SARS-CoV-2 S-Protein to Discuss the Origins of the Virus

ORCID Icon
Pages 393-402 | Received 25 Aug 2021, Accepted 18 Mar 2022, Published online: 05 Apr 2022

References

  • Zhou P , YangXl, WangXGet al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579, 270–273 (2020).
  • Coronaviridae Study Group of the International Committee on Taxonomy of Viruses . The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol., 5, 536–544 (2020).
  • Hu D , ZhuC, AiLet al. Genomic characterization and infectivity of a novel SARS-like coronavirus in Chinese bats. Emerg. Microbes Infect., 7(1), 154 (2018).
  • Coutard B , ValleC, de LamballerieX, CanardB, SeidahNG, DecrolyE. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antivir. Res., 176, 104742 (2020).
  • Xiao C , LiX, LiuS, SangY, GaoSJ, GaoF. HIV-1 did not contribute to the 2019-nCoV genome. Emerg. Microb. Infect., 9(1), 378–381 (2020).
  • Edgar RC . MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl. Acids Res., 32(5), 1792–1797 (2004).
  • Hall TA . BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser., 41, 95–98 (1999).
  • Andersen KG , RambautA, LipkinWI, HolmesEC, GarryRF. The proximal origin of SARS-CoV-2. Nat. Med., 26, 450–452 (2020).
  • Ge XY , WangN, ZhangWet al. Coexistence of multiple coronaviruses in several bat colonies in an abandoned mineshaft. Virol. Sinica, 31(1), 31–40 (2016).
  • Gao Y , YanL, HuangYet al. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science, 368(6492), 779–782 (2020).
  • Graham RL , BaricRS. Recombination, reservoirs, and the modular spike: mechanisms of coronavirus cross-species transmission. J. Virol., 84(7), 3134–3146 (2010). https://doi.org/10.1128/JVI.01394-09
  • Yang L , WuZ, RenXet al. Novel SARS-like betacoronaviruses in bats, China. Emerg. Infect. Dis., 19(6), 989–991 (2013).
  • Ji W , WangW, ZhaoX, ZaiJ, LiX. Cross-species transmission of the newly identified coronavirus 2019-nCoV. J. Med. Virol., 92(4), 433–440 (2020).
  • Zhang T , WuQ, ZhangZ. Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak. Curr. Biol., 30(7), 1346–1351 (2020).
  • Liu P , ChenW, ChenJP. Viral metagenomics revealed sendai virus and coronavirus infection of Malayan pangolins (Manis javanica). Viruses, 11(11), 979 (2019).
  • Li W , MooreMJ, VasilievaNet al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 426, 450–454 (2003).
  • Ge XY , LiJL, YangXLet al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature, 503(7477), 535–538 (2013).
  • Liu P , JiangJZ, WanXFet al. Are pangolins the intermediate host of the 2019 novel coronavirus (SARS-CoV-2)? PLoS. Pathog., 16(5), e1008421 (2020).
  • Segreto R , DeiginY. The genetic structure of SARS-CoV-2 does not rule out a laboratory origin. BioEssays, 43(3), 2000240 (2021).
  • Zhang D . Anomalies in BatCoV/RaTG13 sequencing and provenance. Zenodo (2020). https://zenodo.org/record/3969272
  • Singla M , AhmadS, GuptaC, SethiT. De novo assembly of RaTG13 genome reveals inconsistencies further obscuring SARS-CoV-2 origins. Preprints doi: https://doi.org/10.20944/preprints202008.0595.v1 (2020) ( Epub ahead of print).
  • Chan YA , ZhanSH. Single source of pangolin CoVs with a near identical spike RBD to SARS-CoV-2. BioRxiv doi: https://doi.org/10.1101/2020.07.07.184374 (2020) ( Epub ahead of print).
  • Lam TTY , JiaN, ZhangYWet al. Identifying SARS-CoV-2 related coronaviruses in Malayan pangolins. Nature, 583, 282–285 (2020).
  • Cagliani R , ForniD, ClericiM, SironiM. Computational inference of selection underlying the evolution of the novel coronavirus, severe acute respiratory syndrome coronavirus 2. J. Virol., 94(12), 1–11 (2020).
  • Rahalkar M , BahulikarRA. Understanding the origin of ‘BatCoVRaTG13’, a virus closest to SARS-CoV-2. Preprints.2020050322 (2020). https://www.preprints.org/manuscript/202005.0322/v2
  • Chen L , LiuW, ZhangQet al. RNA based mNGS approach identifies a novel human coronavirus from two individual pneumonia cases in 2019 Wuhan outbreak. Emerg. Microbes Infect., 9(1), 313–319 (2020).
  • Huang C , WangY, LiXet al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 395(10223), 497–506 (2020).
  • Maxmen A . WHO names researchers to reboot outbreak origin investigations. Nature doi:10.1038/d41586-021-02813-y (2021) ( Epub ahead of print).
  • Seyran M , PizzolD, AdadiPet al. Questions concerning the proximal origin of SARS-CoV-2. J. Med. Virol., 93(3), 1204–1206 (2021).
  • Agostini ML , AndresEL, SimsACet al. Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. MBio, 9(2), 1–15 (2018).
  • Xia S , LiuM, WangCet al. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res., 30, 343–355 (2020).
  • Totura AL , BavariS. Broad-spectrum coronavirus antiviral drug discovery. Exp. Opin. Drug Discov., 14(4), 397–412 (2019).
  • Wang Y , SunY, WuAet al. Coronavirus nsp10/nsp16 Methyltransferase can be targeted by nsp10-derived peptide in vitro and in vivo to reduce replication and pathogenesis. J. Virol., 89(16), 8416–8427 (2015).
  • Kuo L , GodekeGJ, RaamsmanMJB, MastersPS, RottierPJM. Retargeting of coronavirus by substitution of the Spike glycoprotein ectodomain: crossing the host cell species barrier. J. Virol., 74(3), 1393–1406 (2000).
  • Boehm E , KronigI, NeherRA, EckerleI, VetterP, KaiserL. Novel SARS-CoV-2 variants: the pandemics within the pandemic. Clin. Microbiol. Infect., 27(8), 1109–1117 (2021).
  • Yang Q , ShahSyed AA, FahiraA, ShiY. Structural analysis of the SARS-CoV-2 Omicron variant proteins. AAAS Res., 2021, 9769586 (2021).
  • Cattaneo AM , BengtssonJM, MontagnéNet al. TRPA5, an ankyrin subfamily insect TRP channel, is expressed in antennae of Cydia pomonella (Lepidoptera: tortricidae) in multiple splice variants. J. Ins. Sci., 16(1), 83 (2016).
  • Holmgrain M , ResenthalJJC. Regulation of ion channel and transporter function through RNA editing. Curr. Issues Mol. Biol., 17, 23–36 (2015).
  • Graveley BR , BrooksAN, CarlsonJWet al. The developmental transcriptome of Drosophila melanogaster. Nature, 471, 473–479 (2011).
  • Dehghani R , KassiriH. A brief review on the possible role of houseflies and cockroaches in the mechanical transmission of coronavirus disease 2019 (COVID-19). Arch. Clin. Infect. Dis., 15(COVID-19), e102863 (2020).
  • Huang YJS , VanlandinghamDL, BilyeuAN, SharpHM, HettenbachSM, HiggsS. SARS-CoV-2 failure to infect or replicate in mosquitoes: an extreme challenge. Sci. Rep., 10, 11915 (2020).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.