42
Views
0
CrossRef citations to date
0
Altmetric
Review

Role of Oxidative Stress in the Epstein–Barr Virus Lifecycle and Tumorigenicity

, & ORCID Icon
Pages 465-477 | Received 13 Jan 2023, Accepted 17 May 2023, Published online: 07 Jun 2023

References

  • Chen CJ , YouSL , HsuWLet al. Epidemiology of virus infection and human cancer. Recent Results Cancer Res.217, 13–45 (2021).
  • Wen KW , WangL , MenkeJR , DamaniaB. Cancers associated with human gammaherpesviruses. FEBS J.289(24), 7631–7669 (2022).
  • Bray F , FerlayJ , SoerjomataramI , SiegelRL , TorreLA , JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin.68(6), 394–424 (2018).
  • Farrell PJ . Epstein–Barr virus and cancer. Annu. Rev. Pathol.14, 29–53 (2019).
  • Lupo J , TruffotA , AndreaniJet al. Virological markers in Epstein–Barr virus-associated diseases. Viruses15(3), 656 (2023).
  • Cruz-Muñoz ME , Fuentes-PananáEM. Beta and gamma human herpesviruses: agonistic and antagonistic interactions with the host immune system. Front. Microbiol.8, 2521 (2017).
  • Li H , LiuS , HuJet al. Epstein–Barr virus lytic reactivation regulation and its pathogenic role in carcinogenesis. Int. J. Biol. Sci.12(11), 1309–1318 (2016).
  • Moloney JN , CotterTG. ROS signalling in the biology of cancer. Semin. Cell Dev. Biol.80, 50–64 (2018).
  • Sausen DG , BhuttaMS , GalloES , DahariH , BorensteinR. Stress-induced Epstein–Barr virus reactivation. Biomolecules11(9), 1380 (2021).
  • Morales-Sánchez A , Fuentes-PananaEM. The immunomodulatory capacity of an Epstein–Barr virus abortive lytic cycle: potential contribution to viral tumorigenesis. Cancers (Basel)10(4), 98 (2018).
  • Arvey A , TemperaI , TsaiKet al. An atlas of the Epstein–Barr virus transcriptome and epigenome reveals host-virus regulatory interactions. Cell Host Microbe12(2), 233–245 (2012).
  • Mckenzie J , El-GuindyA. Epstein–Barr virus lytic cycle reactivation. Curr. Top. Microbiol. Immunol.391, 237–261 (2015).
  • Hadinoto V , ShapiroM , SunCC , Thorley-LawsonDA. The dynamics of EBV shedding implicate a central role for epithelial cells in amplifying viral output. PLoS Pathog.5(7), e1000496 (2009).
  • Miller G , El-GuindyA , CountrymanJ , YeJ , GradovilleL. Lytic cycle switches of oncogenic human gammaherpesviruses. Adv. Cancer Res.97, 81–109 (2007).
  • Schaeffner M , Mrozek-GorskaP , BuschleAet al. BZLF1 interacts with chromatin remodelers promoting escape from latent infections with EBV. Life Sci Alliance2(2), e201800108 (2019).
  • Long X , YangZ , LiY , SunQ , LiX , KuangE. BRLF1-dependent viral and cellular transcriptomes and transcriptional regulation during EBV primary infection in B lymphoma cells. Genomics113(4), 2591–2604 (2021).
  • Gorrini C , HarrisIS , MakTW. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov.12(12), 931–947 (2013).
  • Galadari S , RahmanA , PallichankandyS , ThayyullathilF. Reactive oxygen species and cancer paradox: to promote or to suppress?Free Radic. Biol. Med.104, 144–164 (2017).
  • Tu W , WangH , LiS , LiuQ , ShaH. The anti-inflammatory and anti-oxidant mechanisms of the Keap1/Nrf2/ARE signaling pathway in chronic diseases. Aging Dis.10(3), 637–651 (2019).
  • Ahmed SM , LuoL , NamaniA , WangXJ , TangX. Nrf2 signaling pathway: pivotal roles in inflammation. Biochim. Biophys. Acta, Mol. Basis Dis.1863(2), 585–597 (2017).
  • Tonelli C , ChioIIC , TuvesonDA. Transcriptional regulation by Nrf2. Antioxid. Redox Signal.29(17), 1727–1745 (2018).
  • Ramezani A , NahadMP , FaghihlooE. The role of Nrf2 transcription factor in viral infection. J. Cell. Biochem.119(8), 6366–6382 (2018).
  • Wang L , HowellMEA , McPeakBet al. LIMD1 is induced by and required for LMP1 signaling, and protects EBV-transformed cells from DNA damage-induced cell death. Oncotarget9(5), 6282–6297 (2018).
  • Wang L , HowellMEA , Sparks-WallaceAet al. p62-mediated selective autophagy endows virus-transformed cells with insusceptibility to DNA damage under oxidative stress. PLoS Pathog.15(4), e1007541 (2019).
  • Yun SM , KimYS , HurDY. LMP1 and 2A induce the expression of Nrf2 through Akt signaling pathway in Epstein–Barr virus-transformed B cells. Transl. Oncol.12(5), 775–783 (2019).
  • Cao JY , MansouriS , FrappierL. Changes in the nasopharyngeal carcinoma nuclear proteome induced by the EBNA1 protein of Epstein–Barr virus reveal potential roles for EBNA1 in metastasis and oxidative stress responses. J. Virol.86(1), 382–394 (2012).
  • Wang J , NagyN , MasucciMG. The Epstein–Barr virus nuclear antigen-1 upregulates the cellular antioxidant defense to enable B-cell growth transformation and immortalization. Oncogene39(3), 603–616 (2020).
  • Krishna G , PillaiVS , GopiP , NairAS , VeettilMV. Epstein–Barr virus infection controls the concentration of the intracellular antioxidant glutathione by upregulation of the glutamate transporter EAAT3 in tumor cells. Virus Genes59(1), 55–66 (2023).
  • Ma X , YangL , XiaoLet al. Down-regulation of EBV-LMP1 radio-sensitizes nasal pharyngeal carcinoma cells via NF-κB regulated ATM expression. PLOS ONE6(11), e24647 (2011).
  • Gilardini Montani MS , SantarelliR , FalcinelliLet al. EBV up-regulates PD-L1 on the surface of primary monocytes by increasing ROS and activating TLR signaling and STAT3. J. Leukoc. Biol.104(4), 821–832 (2018).
  • Nash A , RyanEJ. The oncogenic gamma herpesviruses Epstein–Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) hijack retinoic acid-inducible gene I (RIG-I) facilitating both viral and tumour immune evasion. Tumour Virus Res.14, DOI:10.1016/j.tvr.2022.200246 (2022).
  • Rehwinkel J , GackMU. RIG-I-like receptors: their regulation and roles in RNA sensing. Nat. Rev. Immunol.20(9), 537–551 (2020).
  • Rosemarie Q , SugdenB. Epstein–Barr virus: how its lytic phase contributes to oncogenesis. Microorganisms8(11), 1824 (2020).
  • Fitzsimmons L , CartlidgeR , ChangCet al. EBV BCL-2 homologue BHRF1 drives chemoresistance and lymphomagenesis by inhibiting multiple cellular pro-apoptotic proteins. Cell Death Differ.27(5), 1554–1568 (2020).
  • Jones RJ , SeamanWT , FengWHet al. Roles of lytic viral infection and IL-6 in early versus late passage lymphoblastoid cell lines and EBV-associated lymphoproliferative disease. Int. J. Cancer121(6), 1274–1281 (2007).
  • Hsu M , WuSY , ChangSSet al. Epstein–Barr virus lytic transactivator Zta enhances chemotactic activity through induction of interleukin-8 in nasopharyngeal carcinoma cells. J. Virol.82(7), 3679–3688 (2008).
  • Feng J , ChenQ , ZhangPet al. Latent membrane protein 1 promotes tumorigenesis through upregulation of PGC1β signaling pathway. Stem Cell Rev. Rep.17(4), 1486–1499 (2021).
  • Shumilov A , TsaiMH , SchlosserYTet al. Epstein–Barr virus particles induce centrosome amplification and chromosomal instability. Nat. Commun.8, DOI:10.1038/ncomms14257 (2017).
  • Wu CC , FangCY , HuangSY , ChiuSH , LeeCH , ChenJY. Perspective: contribution of Epstein–Barr virus (EBV) reactivation to the carcinogenicity of nasopharyngeal cancer cells. Cancers (Basel)10(4), 120 (2018).
  • Levine B , KroemerG. Autophagy in the pathogenesis of disease. Cell132(1), 27–42 (2008).
  • Levine B , MizushimaN , VirginHW. Autophagy in immunity and inflammation. Nature469(7330), 323–335 (2011).
  • Thorburn A . Autophagy and disease. J. Biol. Chem.293(15), 5425–5430 (2018).
  • Cirone M . EBV and KSHV infection dysregulates autophagy to optimize viral replication, prevent immune recognition and promote tumorigenesis. Viruses10(11), 599 (2018).
  • Gargouri B , Van PeltJ , ElFeki Ael F , AttiaH , LassouedS. Induction of Epstein–Barr virus (EBV) lytic cycle in vitro causes oxidative stress in lymphoblastoid B cell lines. Mol. Cell. Biochem.324(1–2), 55–63 (2009).
  • Torii Y , KawadaJI , MurataT , YoshiyamaH , KimuraH , ItoY. Epstein–Barr virus infection-induced inflammasome activation in human monocytes. PLOS ONE12(4), e0175053 (2017).
  • Farina A , PeruzziG , LacconiVet al. Epstein–Barr virus lytic infection promotes activation of toll-like receptor 8 innate immune response in systemic sclerosis monocytes. Arthritis Res. Ther.19(1), 39 (2017).
  • Galluzzi L , Bravo-SanPedro JM , KroemerG. Defective autophagy initiates malignant transformation. Mol. Cell62(4), 473–474 (2016).
  • Granato M , SantarelliR , FarinaAet al. Epstein–Barr virus blocks the autophagic flux and appropriates the autophagic machinery to enhance viral replication. J. Virol.88(21), 12715–12726 (2014).
  • Gutowski M , KowalczykS. A study of free radical chemistry: their role and pathophysiological significance. Acta Biochim. Pol.60(1), 1–16 (2013).
  • Lassoued S , BenAmeur R , AyadiW , GargouriB , BenMansour R , AttiaH. Epstein–Barr virus induces an oxidative stress during the early stages of infection in B lymphocytes, epithelial, and lymphoblastoid cell lines. Mol. Cell. Biochem.313(1–2), 179–186 (2008).
  • Cerimele F , BattleT , LynchRet al. Reactive oxygen signaling and MAPK activation distinguish Epstein–Barr Virus (EBV)-positive versus EBV-negative Burkitt's lymphoma. Proc. Natl Acad. Sci. U. S. A.102(1), 175–179 (2005).
  • Valavanidis A , VlachogianniT , FiotakisC. 8-hydroxy-2′-deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. J. Environ. Sci. Health Pt. C-Environ. Carcinog. Ecotoxicol. Rev.27(2), 120–139 (2009).
  • Hu J , LiY , LiHet al. Targeting Epstein–Barr virus oncoprotein LMP1-mediated high oxidative stress suppresses EBV lytic reactivation and sensitizes tumors to radiation therapy. Theranostics10(26), 11921–11937 (2020).
  • Kieser A , SterzKR. The latent membrane protein 1 (LMP1). Curr. Top. Microbiol. Immunol.391, 119–149 (2015).
  • Xiao L , HuZY , DongXet al. Targeting Epstein–Barr virus oncoprotein LMP1-mediated glycolysis sensitizes nasopharyngeal carcinoma to radiation therapy. Oncogene33(37), 4568–4578 (2014).
  • Wang L , NingS. New look of EBV LMP1 signaling landscape. Cancers (Basel)13(21), 5451 (2021).
  • Marchi S , PatergnaniS , MissiroliSet al. Mitochondrial and endoplasmic reticulum calcium homeostasis and cell death. Cell Calcium69, 62–72 (2018).
  • Ochoa CD , WuRF , TeradaLS. ROS signaling and ER stress in cardiovascular disease. Mol. Asp. Med.63, 18–29 (2018).
  • Hetz C , ChevetE , OakesSA. Proteostasis control by the unfolded protein response. Nat. Cell Biol.17(7), 829–838 (2015).
  • He J , LiuL , TangFet al. Paradoxical effects of DNA tumor virus oncogenes on epithelium-derived tumor cell fate during tumor progression and chemotherapy response. Signal Transduct. Target. Ther.6(1), 408 (2021).
  • Yiu CY , ChiuYJ , LinTP. The ethyl acetate subfraction of polygonum cuspidatum root containing emodin affect EBV gene expression and Induce EBV-positive cells apoptosis. Biol. Pharm. Bull.44(12), 1837–1842 (2021).
  • Sun J , HuC , ZhuYet al. LMP1 increases expression of NADPH oxidase (NOX) and its regulatory subunit p22 in NP69 nasopharyngeal cells and makes them sensitive to a treatment by a NOX inhibitor. PLOS ONE10(8), e0134896 (2015).
  • Kawanishi S , OhnishiS , MaN , HirakuY , OikawaS , MurataM. Nitrative and oxidative DNA damage in infection-related carcinogenesis in relation to cancer stem cells. Gene Environ.38, 26 (2016).
  • Soldan SS , AndersonEM , FraseDMet al. EBNA1 inhibitors have potent and selective antitumor activity in xenograft models of Epstein–Barr virus-associated gastric cancer. Gastric Cancer24(5), 1076–1088 (2021).
  • Gruhne B , SompallaeR , MarescottiD , KamranvarSA , GastaldelloS , MasucciMG. The Epstein–Barr virus nuclear antigen-1 promotes genomic instability via induction of reactive oxygen species. Proc. Natl Acad. Sci. U. S. A.106(7), 2313–2318 (2009).
  • Zhang L , LiaoY , TangL. MicroRNA-34 family: a potential tumor suppressor and therapeutic candidate in cancer. J. Exp. Clin. Cancer Res.38(1), 53 (2019).
  • Iwakiri D . Multifunctional non-coding Epstein–Barr virus encoded RNAs (EBERs) contribute to viral pathogenesis. Virus Res.212, 30–38 (2016).
  • Kitagawa N , GotoM , KurozumiKet al. Epstein–Barr virus-encoded poly(A)(-) RNA supports Burkitt's lymphoma growth through interleukin-10 induction. EMBO J.19(24), 6742–6750 (2000).
  • Chávez MD , TseHM. Targeting mitochondrial-derived reactive oxygen species in T cell-mediated autoimmune diseases. Front. Immunol.12, DOI:10.3389/fimmu.2021.703972 (2021).
  • Ali A , OhashiM , CascoAet al. Rta is the principal activator of Epstein–Barr virus epithelial lytic transcription. PLOS Pathog.18(9), e1010886 (2022).
  • Godfrey A , OsbornK , SinclairAJ. Interaction sites of the Epstein–Barr virus Zta transcription factor with the host genome in epithelial cells. Access Microbiol.3(11), DOI:10.1099/acmi.0.000282 (2021).
  • Tornesello ML , AnnunziataC , TorneselloAL , BuonaguroL , BuonaguroFM. Human oncoviruses and p53 tumor suppressor pathway deregulation at the origin of human cancers. Cancers (Basel)10(7), 213 (2018).
  • Huang SY , FangCY , TsaiCHet al. N-methyl-N'-nitro-N-nitrosoguanidine induces and cooperates with 12-O-tetradecanoylphorbol-1,3-acetate/sodium butyrate to enhance Epstein–Barr virus reactivation and genome instability in nasopharyngeal carcinoma cells. Chem. Biol. Interact.188(3), 623–634 (2010).
  • Li R , WangL , LiaoGet al. SUMO binding by the Epstein–Barr virus protein kinase BGLF4 is crucial for BGLF4 function. J. Virol.86(10), 5412–5421 (2012).
  • Li R , ZhuJ , XieZet al. Conserved herpesvirus kinases target the DNA damage response pathway and TIP60 histone acetyltransferase to promote virus replication. Cell Host Microbe10(4), 390–400 (2011).
  • Hagemeier SR , BarlowEA , MengQ , KenneySC. The cellular ataxia telangiectasia-mutated kinase promotes Epstein–Barr virus lytic reactivation in response to multiple different types of lytic reactivation-inducing stimuli. J. Virol.86(24), 13360–13370 (2012).
  • Zhang H , WongJP , NiG , CanoP , DittmerDP , DamaniaB. Mitochondrial protein, TBRG4, modulates KSHV and EBV reactivation from latency. PLOS Pathog.18(11), e1010990 (2022).
  • Hong SW , NohMH , KimYSet al. APX-115A, a pan-NADPH oxidase inhibitor, induces caspase-dependent cell death by suppressing NOX4-ROS signaling in EBV-infected retinal epithelial cells. Curr. Eye Res.45(9), 1136–1143 (2020).
  • Moore A , BeidlerJ , HongMY. Resveratrol and depression in animal models: a systematic review of the biological mechanisms. Molecules23(9), 2197 (2018).
  • Pannu N , BhatnagarA. Resveratrol: from enhanced biosynthesis and bioavailability to multitargeting chronic diseases. Biomed. Pharmacother.109, 2237–2251 (2019).
  • De Leo A , ArenaG , LacannaE , OlivieroG , ColavitaF , MattiaE. Resveratrol inhibits Epstein Barr virus lytic cycle in Burkitt's lymphoma cells by affecting multiple molecular targets. Antiviral Res.96(2), 196–202 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.