370
Views
0
CrossRef citations to date
0
Altmetric
Research Article

GSTP, GSTT1, XRCC1 and CASP8 Genetic Variations are Associated with Human Papillomavirus in Women with Cervical Cancer From Zimbabwe

ORCID Icon, , , , &
Pages 19-32 | Received 30 Aug 2023, Accepted 31 Jan 2024, Published online: 26 Feb 2024

References

  • Espinoza H , HaKT , PhamTT , EspinozaJL. Genetic predisposition to persistent human papillomavirus-infection and virus-induced cancers. Microorgansism9(10), 2092 (2021).
  • Brouwer AF , CampredonLP , WallineHMet al. Incidence and clearance of oral and cervicogenital HPV infection: longitudinal analysis of the MHOC cohort study. BMJ Open12(1), 1–9 (2022).
  • Suresh A , SureshP , BiswasRet al. Prevalence of high-risk HPV and its genotypes-implications in the choice of prophylactic HPV vaccine. J. Med. Virol.93(8), 5188–5192 (2021).
  • National Cancer Institutes . HPV and Cancer (2023). https://www.cancer.gov/about-cancer/causes-prevention/risk/infectious-agents/hpv-and-cancer#
  • Centres for Disease Control and Prevention . Human papillomavirus (HPV): HPV fact sheet (2023). https://www.cdc.gov/std/hpv/stdfact-hpv.htm
  • Torres-Ibarra L , CuzickJ , LorinczATet al. Comparison of HPV-16 and HPV-18 genotyping and cytological testing as Triage testing within human papillomavirus-based screening in Mexico. JAMA Network Open2(11), e1915781 (2019).
  • Riethmuller D , SchaelJP , MouginC. Epidemiologie et histoire naturelle de l’infection genitale a papillomavirus human. Gynecol. Obstet. Fertil.30, 139–146 (2002).
  • McBride AA . Oncogenic human papillomaviruses. Philoso Trans. R. Soc. B B Biol. Sci.372, 20160273 (2017).
  • Sijuan T , XiaofenY , LiZet al. Polymorphic variants conferring genetic risk to cervical lesions support GSTs as important associated loci. Medicine98(41), e17487 (2019).
  • Hou J , GuY , HouWet al. P53 codon 72 polymorphism, human papillomavirus infection and their interaction to oral carcinoma susceptibility. BMC Genet.16, 72 (2015).
  • Storey A , ThomasM , KalitaAet al. Role of a p53 polymorphism in the development of human papillomavirus-associated cancer. Nature393, 229–234 (1998).
  • Yang X , ChengY , LiC. The role of TLRs in cervical cancer with HPV infection: a review. Signal Transd. Targ. Ther.2, 17055 (2017).
  • Babakhani F , AzadTM , KandoriNet al. Detection of HPV genotypes and their association with p53 codon 72 polymorphism in prostate cancer. Future Virology12(6), 1–12 (2017).
  • Rotaru TV , RotaruLI , LapochikinaNP. Genetic predisposition for cervical cancer. Rotaru14(2), 208–218 (2020).
  • Bortolli APR , VieiraVK , StefanskiEE , LazarottoAK , LucioLC. Relationship between GSTM1 and GSTT1 polymorphisms and HPV infection: a systematic review. Mol. Biol. Rep.48(9), 6631–6636 (2021).
  • Kuguyo O , TsikaiN , ThomfordNEet al. Genetic susceptibility for cervical cancer in African populations: what are the host genetic drivers? Omics 22(7), 1–22 (2018).
  • Bajpai D , BanerjeeA , PathakS , ThakurB , JainSK , SinghN. Single nucleotide polymorphisms in the DNA repair genes in HPV-positive cervical cancer. EJCP25, 224–291 (2016).
  • Jiang N , XieF , ChenL , ChenF , SuiL. The effect of TLR4 on the growth and local inflammatory microenvironment of HPV-related cervical cancer in vivo. Infect. Agents and Cancer15(12), 1–10 (2020).
  • Chinchai T , PoovorawanY. Polymorphisms in TP53 (rs1042522), p16 (rs11515 and rs3088440) and NQO1 (rs1800566) genes in Thai cervical cancer patients with HPV16 infection. Asian Pacific J Cancer Preven.14(1), 341–346 (2013).
  • Modiano JF , BellgrauD. Fas Ligand based immunotherapy: a potent and effective neoadjuvant with checkpoint inhibitor properties, or a systematically toxic promoter of tumor growth (2016). http://www.discoverymedicine.com/Jaime-F-Modiano/2016/02/fas-ligand-based-immunotherapy-a-potent-and-effective-neoadjuvant-with-checkpoint-inhibitor-properties-or-a-systemically-toxic-promoter-of-tumor-growth/
  • Munoz-Fontela C , MandinovaA , AaronsonSA , LeeSW. Emerging roles of p53 and other tumor suppressor genes in immune regulation. Nat. Rev. Immunol.16(12), 741–750 (2016).
  • Yamada A , ArakakiR , SaitoM , KudoY , IshimaruN. Dual role of Fas/FasL-mediated signal in peripheral immune tolerance. Front Immunol.8, 403 (2017).
  • Jin Y , QiuS , ShaoN , ZhengJ. Association of toll-like receptor gene polymorphisms and its interaction with HPV infection in determining the susceptibility of cervical cancer in Chinese Han population. Mamm. Genome28, 213–219 (2017).
  • Phuthong S , Settheetham-IshidaW , NatphopsukS , IshidaT. Genetic polymorphism of the Glutathione S-transferase Pi 1 (GSTP1) and susceptibility to cervical cancer in Human Papilloma Virus infected Northeastern Thai Women. Asian Pac. J. Cancer Prev.19(2), 381–385 (2018).
  • Fan S , KellyDE , BeltrameMH. African evolutionary history inferred from whole genome sequence data of 44 indigenous African populations. Genom. Biol.20, 82 (2019).
  • Adebamowo SN , AdeyemoAA. ACCME research group as part of the H3Africa. Classical HLA alleles as associated with prevalent and persistent cervical high-risk HPV infection in African women. Hum. Immunol.80(9), 723–730 (2020).
  • Stanzcuk GA , SibandaGA , PerreyCet al. Cancer of the uterine cervix may be significantly associated with a gene polymorphism coding for increased IL-10 production. Int. J. Cancer94, 792–794 (2001).
  • Stanczuk GA , TswanaSA , BergstromS , SibandaEN. Polymorphism in codons 10 and 25 of the transforming growth factor-beta (TGF-B1) gene in patients with invasive squamous cell carcinoma of the uterine cervix. Eur. J. Immunogent.29, 417–421 (2002).
  • Stanczuk GA , SibandaEN , TswanaSA , BergstromS. Polymorphism at the -308-promoter position of the tumor necrosis factor-alpha (TNF-alpha) gene and cervical cancer. Int. J. Gynecol. Cancer13, 146–153 (2003).
  • Kouamou V , Chin’ombeN , MatimbaAet al. P53 codon 72 polymorphism and the risk of cervical cancer in Zimbabwean women. Int. J. Trop Disease Health15, 1–6 (2016).
  • Kuguyo O , ChambweN , NhachiCFB , TsikaiN , DandaraC , MatimbaA. A cervical cancer biorepository for pharmacogenomics research in Zimbabwe. BMC Cancer22, 1320 (2022).
  • Kuguyo O , DubeMandishora RS , ThomfordNEet al. High-risk HPV genotypes in Zimbabwean women with cervical cancer: comparative analyzes between HIV-negative and HIV-positive women. PLOS ONE16(9), e0257324 (2021).
  • Chatterjee A , GuptaS. The multifaceted role of glutathione S-transferases in cancer. Cancer Lett.433, 33–42 (2018).
  • Safarinejad MR , ShafieiN , SafarineijadSH. Glutathione S-transferase gene polymorphisms (GSTM1, GSTT1, GSTP1) and prostate cancer: a case-control study in Tehran, Iran. Prost. Cancer Prostatic Dis.14, 105–113 (2011).
  • Khatami A , SalavatihaZ , RazizadehMH. Bladder cancer and human papillomavirus association: a systematic review and meta-analysis. Inf.Agent. Cancer17(3), 1–9 (2022).
  • Sobti RC , KaurS , KaurP , SinghJ , GuptaI , JainVet al. Interaction of passive smoking with GST (GSTM1, GSTT1 and GSTP1) genotypes in the risk of cervical cancer India. Cancer Genet. Cytogenet.166, 117–123 (2006).
  • Jee SH , LeeJE , KimSet al. GSTP1 polymorphism, cigarette smoking and cervical cancer risk in Korean women. Yonsei. Med. J.43, 712–716 (2002).
  • Ouedraogo TWC , DjigmaFW , IdaniBet al. Impact of glutathione S-transferase genes polymorphisms on human papillomavirus infection and precancerous lesions in West African women. Int. J. Genet. Mol. Biol.12(2), 59–70 (2020).
  • Kiran B , KarcukanM , OzanHet al. GST (GSTM1, GSTT1 and GSTP1) polymorphisms in the genetic susceptibility of Turkish patients to cervical cancer. J. Gynecol. Oncol.21(3), 169–173 (2010).
  • Palma S , NovelliF , PaduaLet al. Interaction between glutathione-S-transferase polymorphisms, smoking habit and HPV infection in cervical cancer risk. J. Cancer Res. Clin. Oncol.136, 1101–1109 (2010).
  • Phuthong S , Settheetham-IshidaW , NatphopsukS , IshidaT. Genetic polymorphism of the Glutathione S-transferase Pi 1 (GSTP1) and susceptibility to cervical cancer in human papilloma virus infected Northeastern Thai women. Asian Pac. J. Cancer Prev.19(2), 381–385 (2018).
  • Sherry ST , WardM , SirotkinK. DbSNP – database for Single Nucleotide Polymorphisms and other classes of minor genetic variation. Genome Res.9, 677–679 (1999).
  • Vaccarella S , FranceschiS , SnijdersPJFet al. Concurrent infection with multiple human papillomavirus types : pooled analysis of the IARC HPV prevalence surveys. Cancer Epidemiol. Biomarkers Prev.19(2), 503–510 (2010).
  • Chatuverdi AK , KatkiHA , HildesheimAet al. Human papillomavirus infection with multiple types: pattern of coinfection and risk of cervical disease. J. Infect. Dis.203(7), 910–920 (2011).
  • Liu GC , ZhouYF , SuXC , ZhangJ. Interaction between TP53 and XRCC1 increases susceptibility to cervical cancer development: a case control study. BMC Cancer19(24), (2019).
  • Thompson LH , SchildD. Recombinational DNA repair and human disease. Mutat. Res.509(1–2), 49–78 (2002).
  • Tang Q , CaglayanM. The scaffold protein XRCC1 stabilizes the formation of polß/gap DNA and ligase IIIa/nick DNA complexes in base excision repair. JBC297(3), 101025 (2021).
  • Iftner T , ElbelM , SchoppBet al. Interference of papillomavirus E6 protein with single-strand break repair by interaction with XRCC1. EMBO J.21(17), 4741–4748 (2002).
  • Colacino-Silva F , deOliveria Kleine JP , SalzgeberMBet al. Polymorphic DNA repair genes XRCC1 and XRRC3 and the risk for cervical cancer in Brazilian patients. Brz. J. Oncol.13(43), 1–8 (2017).
  • Zhang X , JiangLP , YinY , WangYD. XRCC1 and XPD genetic polymorphisms and clinical outcomes of gastric cancer patients treated with oxaliplatin-based chemotherapy: a meta-analysis. Tumor. Biol.35(6), 5637–5645 (2014).
  • Tungteakkhun SS , FilippovaM , FodorN , Duerkensen-HughesPJ. The full-length isoform of human papillomavirus 16 E6 and ots splice variant E6* bind to different sites on the procaspase 8 death effector domain. J. Virol.84(3), 1453–1463 (2010).
  • Yuan CH , FilippovaM , TungteakkhunSS , Duerksen-HughesPJ , KrstenanskyJL. Small molecule inhibitors of HPV16-E6 interaction with caspase 8. Bioorg. Med. Chem. Lett.22, 2125–2129 (2012).
  • Manzo-Merino J , MassimiP , LizanoM , BanksL. The human papillomavirus (HPV) E6 oncoproteins promotes nuclear localization of active caspase 8. Virology450, 146–152 (2014).
  • Chatterjee K , WilliamsonAL , HoffmanM , DandaraC. CASP8 promoter polymorphism is associated with high-risk HPV types and abnormal cytology but not with cervical cancer. J. Med. Virol.83(4), 630–636 (2011).
  • Uzunparmak B , GaoM , LindemannAet al. Loss of caspase-8 function in combination with SMAC mimetic treatment sensitizes head and neck squamous carcinoma to radiation through induction to necroptosis. JCI Insight5(23), e139837 (2020).
  • Garnett TO , FilippovaM , Duerksen-HughesPJ. Accelerated degradation of FADD and procaspase 8 in cells expressing human papillomavirus 16 E6 impairs TRIL-mediated apoptosis. Cell Death Differ.13(11), 1915–1926 (2006).
  • Yuan RT , YoungS , LiangJ , SchmidMC , MielgoA , StupackDA. Caspase-8 isoform 6 promotes death effector filament formation independent of microtubules. Apoptosis17(3), 229–235 (2012).
  • Shang Q , PengJ , ZhouY , ChenQ , XuH. Association of human papillomavirus with oral lichen planus and oral leukoplakia: a meta-analysis. J. Evid Based Dent. Pract.20(4), 101485 (2020).
  • Pegoraro R , MoodleyJ , NaikerS , LanningP , RomL. The p53 codon 72 polymorphism in black South African women and the risk of cervical cancer. Br. J. Obstet. Gynaecol.107, 1164–1165 (2000).
  • Settheetham-Ishida W , YuenyaoP , TassaneeyakulWet al. Selected risk factors, human papillomavirus infection and the p53 codon 72 polymorphism in patients with squamous intraepithelial lesions in Northeastern Thailand. Asian Pac. J. Cancer Prev.7(1), 113–118 (2006).
  • Assoumou SZ , BoumbaAL , Ndjoyi-MbiguinoA , KhattabiA , EnnajiMM. The preliminary study of p53 codon 72 polymorphism and risk of cervical carcinoma in Gabonese women. Med. Oncol.32, 281–287 (2015).
  • Hayes VM , HofstraRM , BuysCH , HollemaH , vander Zee AG. Homozygous arginine-72 in wild type p53 and risk of cervical cancer. Lancet352(9142), 1756 (1998).
  • Helland A , LangerodA , JohnsenH , OlsenAO , SkovlundE , Borresen-DaleAL. P53 polymorphism and risk of cervical cancer. Nature396(6711), 530–531 (1998).
  • Malcolm EK , BaberGB , BoydJC , StolerMH. Polymorphism at codon 72 of p53 is not associated with cervical cancer risk. Mod. Pathol.13, 373–378 (2000).
  • Koshiol J , HildesheimA , GonzalezPet al. Common genetic variation in TP53 and risk of human papillomavirus persistence and progression to CIN3/cancer revisited. Biomarkers Prev.18(5), 1631–1637 (2009).
  • Hu W , FengZ , ModicaIet al. Gene amplifications in well-differentiated pancreatic neuroendocrine tumors inactivate the p53 pathway. Gen. Cancer1(4), 360–368 (2010).
  • Chansaenroj J , TheamboonlersA , JunyangdikulPet al. Polymorphisms in TP53 (rs1042522), p16 (rs11515 and rs3088440) and NQO1 (rs1800566) genes in Thai cervical cancer patients with HPV16 infections. Asian Pac. J. Cancer Prev.14(1), 341–346 (2013).
  • Ma Y , KongJ , YanGet al. NQO1 overexpression is associated with prognosis in squamous cell carcinoma of the uterine cervix. BMC Cancer14(414), 1–9 (2014).
  • Shrestha S , WangC , AissaniB , WilsonCM , TangJ , KaslowRA. Interleukin-10 gene (IL10) polymorphisms and human papillomavirus clearance among immunosuppressed adolescents. Cancer Epidemiol. Biomarkers Prev.16, 1626–1632 (2007).
  • Bahramabadi R , DairiS , IranpurMet al. TLR4: An important molecule participating in eitheranti-human papillomavirus immune responses or development of its related cancer. Viral Immunology 32(10), 1–12 (2019).
  • Al Bosale AH , MashkinaEV Association between TP53, MDM2 and NQo1 genepolymorphisms and viral load among women with human papillomavirus. Vavilovskii Zhurnal Genet Selektsii26(1), 59–64 (2022).
  • Rigalli JP , ReichelM , TocchettiGMet al. Human papilloma virus (HPV) proteins E6 and E7up-regulate ABC transporters oropharyngeal carcinoma. Involvement the nonsense-mediated decay (NMD) pathway. Cancer Letters428(1), 69–76 (2018).