21
Views
0
CrossRef citations to date
0
Altmetric
Review

Role of G protein-Coupled Vasoactive Intestinal Peptide Receptors in HIV Integration

Pages 741-753 | Published online: 09 Jun 2011

Bibliography

  • Gottlieb MS , SchroffR, SchankerHM et al.: Pneumocystis carinii pneumonia and mucosal candidiasis in previously healthy homosexual men: evidence of a new acquired cellular immunodeficiency.N. Engl. J. Med.305 , 1425–1431 (1981).
  • Rerks-Ngam S , PitisuttihumP, NitayaphanS et al.: Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand.N. Engl. J. Med.361 , 2209–2220 (2009).
  • McKinnon LR , CardCM: HIV vaccine efficacy trials: a brief history, and options for going forward.AIDS Rev.12 , 209–217 (2010).
  • Voelker R : HIV drug resistance.JAMA284 , 169 (2000).
  • Mocroft A , MillerV, ChiesiA et al.: Virological failure among patients on HAART from across Europe: results from the EuroSIDA study.Antivir. Ther.5 , 107–112 (2000).
  • Mansky LM , BernardLC: 3´-azido-3´deoxythymidine (AZT) and AZT-resistant reverse transcriptase can increase the in vivo mutation rate of human immunodeficiency virus type 1.J. Virol.74 , 9532–9539 (2000).
  • Dalgleish AG , BeverleyPC, ClaphamPR et al.: The CD4(T4) antigen is an essential component of the receptor for the AIDS retrovirus.Nature312 , 763–767 (1984).
  • Klatzmann D , ChampagneS, ChamaretJ et al.: T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV.Nature312 , 767–768 (1984).
  • Alkhatib G , CombadiereC, BroderCC et al.: CC CKR5: a RANTES, MIP-1α, MIPβ receptor as a fusion cofactor for macrophage tropic HIV-1.Science272 , 1955–1958 (1996).
  • Choe H , FarzanM, SunY et al.: The β-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates.Cell85 , 1135–1148 (1996).
  • Deng H , LiuR, EllmeierW et al.: Identification of a major co-receptor for primary isolates of HIV-1.Nature381 , 661–666 (1996).
  • Doranz BJ , RuckerJ, YiY et al.: A dual-tropic primary HIV-1 isolate that uses fusin and the β-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors.Cell85 , 1149–1158 (1996).
  • Dragic T , LitwinV, AllawayGP et al.: HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5.Nature381 , 667–673 (1996).
  • Feng Y , BroderCC, KennedeyPE, BergerEA: HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor.Science272 , 872–877 (1996).
  • Wang JH , JanasAM, OlsonWJ et al.: CD4 coexpression regulates DC-SIGN-mediated transmission of human immunodeficiency virus type 1.J. Virol.81 , 2497–2507 (2007).
  • Hatsukari I , SinghP, HitosugiN et al.: DEC-205-mediated internalization of HIV-1 results in the establishment of silent infection in renal tubular cells.J. Am. Soc. Nephrol.18 , 780–787 (2007).
  • Lund N , BranchDR, MylvaganamM et al.: A novel soluble mimic of the glycolipid, globotriaosyl inhibits HIV infection.AIDS20 , 333–343 (2006).
  • Lund N , Olsson,ML, RamkumarS et al.: The human PK histo-blood group antigen provides protection against HIV-1 infection.Blood113 , 4980–4991 (2009).
  • Harrison AL , OlssonML, JonesRB et al.: A synthetic globotriaosylceramide analogue inhibits HIV-1 infection in vitro by two mechanisms.Glycoconj. J.27 , 515–524 (2010).
  • Arriaga ME , CarrJ, LiP et al.: Interaction between HIV-1 and APOBEC3 sub-family of proteins.Curr. HIV Res.4 , 401–409 (2006).
  • Cohen OJ , KinterA, FauciAS: Host factors in the pathogenesis of HIV disease.Immunol. Rev.159 , 31–48 (1997).
  • Tremblay MJ , Fortin J-F, Cantin R: The acquisition of host-encoded proteins by nascent HIV-1. Immunol. Today19 , 346–351 (1998).
  • Cantin R , Fortin J-F, Lamontagne G et al.: The acquisition of host-derived major histocompatibility complex class II glycoproteins by human immunodeficiency virus type 1 accelerates the process of virus entry and infection in human T-lymphoid cells. Blood90 , 1091–1100 (1997).
  • Fortin J -F, Cantin R, Lamontagne G et al.: Host-derived ICAM-1 glycoproteins incorporated on human immunodeficiency virus type 1 are biologically active and enhance viral infectivity. J. Virol.71 , 3588–3596 (1997).
  • Henderson LE , SowderR, CopelandTD et al.: Direct identification of class II histocompatibility DR proteins in preparations of human T-cell lymphotropic virus type III.J. Virol.61 , 629–632 (1987).
  • Phipps DJ , YousefiS, BranchDR: Increased enzymatic activity of the T-cell antigen receptor-associated Fyn protein tyrosine kinase in asymptomatic patients infected with the human immunodeficiency virus.Blood90 , 3603–3612 (1997).
  • Yousefi S , MaXZ, SinglaR et al.: HIV-1 infection is facilitated in T cells by decreasing p56lck protein tyrosine kinase activity.Clin. Exp. Immunol.133 , 78–90 (2003).
  • Branch DR , ValentaLJE, YousefiS et al.: VPAC1 is a cellular neuroendocrine receptor expressed on T cells that actively facilitates productive HIV-1 infection.AIDS16 , 309–319 (2002).
  • Bokaei PB , MaXZ, SakacD, BranchDR: HIV-1 integration is inhibited by stimulation of the VPAC2 neuroendocrine receptor.Virology362 , 38–49 (2007).
  • Said SI , MuttV: Polypeptide with broad biological activity: isolation from small intestine.Science169 , 1217–1218 (1970).
  • Goetzl EJ , SreedharanSP: Mediators of communication and adaptation in the neuroendocrine and immune systems.FASEB J.6 , 2646–2652 (1992).
  • Ganea D : Regulatory effects of vasoactive-intestinal-peptide on cytokine production in central and peripheral lymphoid organs.Adv. Neuroimmunol.6 , 61–74 (1996).
  • Goetzl EJ , XiaMH, IngramDA et al.: Neuropeptide signaling of lymphocytes in immunological responses.Int. Arch. Allergy Immunol.107 , 202–204 (1995).
  • McConalogue K , FurnessJB: Gastrointestinal neurotransmitters.Baillieres Clin. Endocrinol. Metab.8 , 51–76 (1994).
  • Waschek JA , EllisonJ, BravoDT et al.: Embryonic expression of vasoactive intestinal peptide (VIP) and VIP receptor genes.J. Neurochem.66 , 1762–1765 (1996).
  • Graber M , BurgunderJM: Ontogeny of vasoactive intestinal peptide gene expression in rat brain.Anat. Embryol. (Berl.)194 , 595–605 (1996).
  • Berson JF , DomsRW: Structure–function studies of the HIV-1 coreceptors.Semin. Immunol.10 , 237–248 (1998).
  • Unutmaz D , KewalRamaniVN, LittmanDR: G protein-coupled receptors in HIV and SIV entry: new perspectives on lentivirus–host interactions and on the utility of animal models.Semin. Immunol.10 , 225–236 (1998).
  • Post GR , BrownJH: G protein-coupled receptors and signaling pathways regulating growth responses.FASEB J.10 , 741–749 (1996).
  • Harmar AJ , ArimuraA, GozesI et al.: International union of pharmacology. XVIII. Nomenclature of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide.Pharmacol. Rev.50 , 265–270 (1998).
  • Ulrich CD , HoltmannM, MillerLJ: Secretin and vasoactive intestinal peptide receptors: members of a unique family of G protein-coupled receptors.Gastroenterology114 , 382–397 (1998).
  • Dickson L , FinlaysonK: VPAC and PAC receptors: from ligands to function.Pharmacol. Ther.121 , 294–316 (2009).
  • Ishihara T , ShigemotoR, MoriK et al.: Functional expression and tissue distribution of a novel receptor for vasoactive intestinal polypeptide.Neuron8 , 811–819 (1992).
  • Sreedharan SP , PatelDR, Huang J-X et al.: Cloning and functional expression of a human neuroendocrine vasoactive intestinal peptide receptor. Biochem. Biophys. Res. Commun.193 , 546–553 (1993).
  • Lutz EM , ShewardWJ, WestKM et al.: The VIP2 receptor: molecular characterisation of a cDNA encoding a novel receptor for vasoactive intestinal peptide.FEBS Lett.334 , 3–8 (1993).
  • Svoboda M , TastenoyM, Van Rampelbergh J et al.: Molecular cloning and functional characterization of a human VIP receptor from SUP-T1 lymphoblasts. Biochem. Biophys. Res. Commun.205 , 1617–1624 (1994).
  • Goetzl EJ , PankhaniyaRR, GaufoGO et al.: Selectivity of effects of vasoactive intestinal peptide on macrophages and lymphocytes in compartmental immune responses.Ann. NY Acad. Sci.840 , 540–550 (1998).
  • Lara-Marquez M , O‘DorisioM, O‘DorisioT et al.: Selective gene expression and activation-dependent regulation of vasoactive intestinal peptide receptor type 1 and type 2 in human T cells.J. Immunol.166 , 2522–2530 (2001).
  • Bokaei PB , MaXZ, ByczynskiB et al.: Identification and characterization of five-transmembrane isoforms of human vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide receptors.Genomics88 , 791–800 (2006).
  • Nicole P , DuK, CouvineauA et al.: Site-directed mutagenesis of human vasoactive intestinal peptide receptor subtypes VIP1 and VIP2: evidence for difference in the structure–function relationship.J. Pharmacol. Exp. Ther.284 , 744–750 (1998).
  • Gourlet P , VandermeersA, VertongenP et al.: Development of high affinity selective VIP1 receptor agonists.Peptides18 , 1539–1545 (1997).
  • Robberecht P , WaelbroeckM, DehayeJP et al.: Evidence that helodermin, a newly extracted peptide from Gila monster venom, is a member of the secretin/VIP/PHI family of peptides with an original pattern of biological properties.FEBS Lett.166 , 277–282 (1984).
  • Robberecht P , GourletP, VertongenP et al.: Characterization of the VIP receptor from SUP T1 lymphoblasts.Adv. Neuroimmunol.6 , 49–57 (1996).
  • Gourlet P , VertongenP, VandermeedrsA et al.: The long-acting vasoactive intestinal polypeptide agonist RO 25-1553 is highly selective for the VIP2 receptor subclass.Peptides18 , 403–408 (1997).
  • Xia M , GaufoGO, WangQ et al.: Transfection of specific inhibition of HuT 78 human T cell chemotaxis by type I vasoactive intestinal peptide receptors.J. Immunol.157 , 1132–1138 (1996).
  • Murphy TJ , AlexanderRW, GriendlingKK et al.: Isolation of a cDNA encoding the vascular type-1 angiotensin II receptor.Nature351 , 233–236 (1991).
  • Mukoyama M , NakajimaM, HoriuchiM et al.: Expression cloning of type 2 angiotensin II receptor reveals a unique class of seven-transmembrane receptors.J. Biol. Chem.268 , 24539–24542 (1993).
  • Alexandre D , VaudryH, GrumolatoL et al.: Novel splice variants of type I pituitary adenylate cyclase-activating polypeptide receptor in frog exhibit altered adenylate cyclase stimulation and differential relative abundance.Endocrinology143 , 2680–2692 (2002).
  • Chaudhary P , BaumannTK: Expression of VPAC2 receptor and PAC1 receptor splice variants in the trigeminal ganglion of the adult rat.Brain Res. Mol. Brain Res.104 , 137–142 (2002).
  • Perron A , SarretP, GendronL, StrohT, BeaudetA: Identification and functional characterization of a 5-transmembrane domain variant isoform of the NTS2 neurotensin receptor in rat central nervous system.J. Biol. Chem.280 , 10219–10227 (2005).
  • Scott DJ , LayfieldS, YanY et al.: Characterization of novel splice variants of LGR7 and LGR8 reveals that receptor signaling is mediated by their unique low density lipoprotein class A modules.J. Biol. Chem.281 , 34942–34954 (2006).
  • Grinninger C , WangW, OskouiKB, VoiceJK, GoetzlEJ: A natural variant type II G protein-coupled receptor for vasoactive intestinal peptide with altered function.J. Biol. Chem.279 , 40259–40262 (2004).
  • Pert CB , RuffMR, HillJM: AIDS as a neuropeptide disorder: peptide T, VIP, and the HIV receptor.Psychopharmacol. Bull.24 , 315–319 (1988).
  • Veazey RS , DeMariaM, ChalifouzLV et al.: Gastrointestinal tract as a major site of CD4+ T cell depletion and viral replication in SIV infection.Science280 , 427–431 (1998).
  • Mehandru S , PolesMA, Tenner-RaczK et al.: Mechanisms of gastrointestinal CD4+ T-cell depletion during acute and early human immunodeficiency virus type 1 infection.J. Virol.81 , 599–612 (2007).
  • Gilles A , MiqauelisA, LuisJ, FaureE: Activation of transcription from the human immunodeficiency virus type 1 (HIV-1) long terminal repeat by the vasoactive intestinal peptide (VIP).Ital. J. Biochem.47 , 101–110 (1998).
  • Delgado M , Munoz-EliasEJ, GomarizRP, GaneaD: Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide prevent inducible nitric oxide synthase transcription in macrophages by inhibiting NF-κB and IF regulatory factor 1 activation.J. Immunol.162 , 4685–4696 (1999).
  • Veljkovic V , MetlasR, DaniloV et al.: Natural autoantibodies cross-react with a peptide derived from the second conserved region of HIV-1 envelope glycoprotein gp120.Biochem. Biophys. Res. Commun.196 , 1019–1024 (1993).
  • Veljkovic V , MetlasR, RaspopovicJ et al.: Spectral and sequence similarity between vasoactive intestinal peptide and the second conserved region of human immunodeficiency virus type 1 envelope glycoprotein (gp120): possible consequences on prevention and therapy of AIDS.Biochem. Biophys. Res. Commun.189 , 705–710 (1992).
  • Veljkovic V , MetlasR, JevtovicD, StringerWW: The role of passive immunization in HIV-positive patients: a case report.Chest120 , 662–666 (2001).
  • Veljkovic N , BranchDR, MetlasR et al.: Antibodies reactive with the C-terminus of the second conserved region of HIV-1gp120 as possible prognostic marker and therapeutic agent for HIV disease.J. Clin. Virol.31(Suppl. 1) , S39–S44 (2004).
  • Djordjevic A , VeljkovicM, AntoniS et al.: The presence of antibodies recognizing a peptide derived from the second conserved region of HIV-1 gp120 correlates with non-progressive HIV infection.Curr. HIV Res.5 , 443–448 (2007).
  • Gallay P , SwinglerS, SongJ, BushmanF, TronoD: HIV nuclear import is governed by the phosphotyrosine-mediated binding of matrix to the core domain of integrase.Cell83 , 569–576 (1995).
  • Gallay P , SwinglerS, AikenC, TronoD: HIV-1 infection of nondividing cells: C-terminal tyrosine phosphorylation of the viral matrix protein is a key regulator.Cell80 , 379–388 (1995).
  • Camaur D , GallayP, SwinglerS, TronoD: Human immunodeficiency virus matrix tyrosine phosphorylation: characterization of the kinase and its substrate requirements.J. Virol.71 , 6834–6841 (1997).
  • Koh SW : Signal transduction through the vasoactive intestinal peptide receptor stimulates phosphorylation of the tyrosine kinase pp60c-Src.Biochem. Biophys. Res. Commun.174 , 452–458 (1991).
  • Dikic I , TokiwaG, LevS, CourtneidgeSA, SchlessingerJ: A role for Pyk2 and Src in linking G-protein-coupled receptors with MAP kinase activation.Nature383 , 547–550 (1996).
  • Davis CB , KikicI, UnutmazD et al.: Signal transduction due to HIV-1 envelope interactions with chemokine receptors CSCR4 or CCR5.J. Exp. Med.186 , 1793–1798 (1997).
  • Stevenson M , StanwickTL, DempseyMP, LamonicaCA: HIV-1 replication is controlled at the level of T cell activation and proviral integration.EMBO J.9 , 1551–1560 (1990).
  • Bovolenta C , StanwickTL, DempseyMP, LamonicaCA: HIV infection and signal transduction.J. Biol. Regul. Homeost. Agents12 , 63–66 (1998).
  • Phipps DJ , ReadSE, PiovesanJP, MillsGB, BranchDR: HIV infection in vitro enhances the activity of Src-family protein tyrosine kinases.AIDS10 , 1191–1198 (1996).
  • Ziegler RJ : HIV-1 gp120 effects on signal transduction processes and cytokines: increased Src-family protein tyrosine kinase activity.J. NeuroAIDS1 , 51–71 (1997).
  • Yang X , GabuzdaD: Regulation of human immunodeficiency virus type 1 infectivity by the ERK mitogen-activated protein kinase signalling pathway.J. Virol.73 , 3460–3466 (1999).
  • Stantchev TS , MarkovicI, TelfordWG, ClouseKA, BroderCC: The tyrosine kinase inhibitor genistein blocks HIV-1 infection in primary human macrophages.Virus Res.123 , 178–189 (2007).
  • Fortin JF , BarbeauB, RobichaudGA, ParéME, LemieuxAM, TremblayMJ: Regulation of nuclear factor of activated T cells by phophotyrosyl-specific phosphatase activity: a positive effect on HIV-1 long terminal repeat-driven transcription and a possible implication of SHP-1.Blood97 , 2390–2400 (2001).
  • Ouellet M , BarbeauB, TremblayMJ: Protein tyrosyl phosphatases in T cell activation: implication for human immunodeficiency virus transcriptional activity.Prog. Nucleic Acid Res. Mol. Biol.73 , 69–105 (2003).
  • Kim MO , SuhHS, SiQ, TermanBI, LeeSC: Anti-CD45RO suppresses human immunodeficiency virus type 1 replication in microglia: role of Hck tyrosine kinase and implications for AIDS dementia.J. Virol.80 , 62–72 (2006).
  • Do HT , BaarsW, BornsK, WindhagenA, SchwinzerR: The 77C>G mutation in the human CD45 (PRPRC) gene leads to increased intensity of TCR signaling in T cell lines from healthy individuals and patients with multiple sclerosis.J. Immunol.176 , 931–938 (2006)
  • Ma XZ , JinT, SakacD et al.: Abnormal splicing of SHP-1 protein tyrosine phosphatase in human T cells. Implications for lymphomagenesis.Exp. Hematol.31 , 131–142 (2003).
  • Florio T : Somatostatin/somatostatin receptor signaling: phosphotyrosine phosphatases.Mol. Cell. Endocrinol.286 , 40–48 (2008).
  • Mitchell D , O‘MearaSJ, GaffneyA, CreanJK, KinsellaBT, GodsonC: The lipoxin A4 receptor is coupled to SHP-2 activation: implications for regulation of receptor tyrosine kinases.J. Biol. Chem.282 , 15606–15618 (2007).
  • Lee YH , MungunsukhO, TutinoRL, MarquezAP, DayRM: Angiotensin-II-induced apoptosis requires regulation of nucleolin and Bcl-xL by SHP-2 in primary lung endothelial cells.J. Cell Sci.123 , 1634–1643 (2010).
  • Branch DR : Neuropeptide receptors: novel targets for HIV/AIDS therapeutics.Pharmaceuticals4 , 485–493 (2011).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.