36
Views
0
CrossRef citations to date
0
Altmetric
Review

Molecular Mechanisms of HIV-1 Infection in Neonatal Target Cells

Pages 489-503 | Published online: 17 May 2012

References

  • Cooper ER , NugentRP, DiazC et al. After AIDS clinical trial 076: the changing pattern of zidovudine use during pregnancy, and the subsequent reduction in the vertical transmission of human immunodeficiency virus in a cohort of infected women and their infants. Women and Infants Transmission Study Group. J. Infect. Dis. 174 , 1207–1211 (1996).
  • Gordon DE , Ghazaryan,LR, MaslakJ et al. Projections of diagnosed HIV infection in children and adolescents in New York State. Paediatr. Perinat. Epidemiol. 26(2) , 131–139 (2011).
  • Scarlatti G . Mother-to-child transmission of HIV-1: advances and controversies of the twentieth centuries. AIDS Rev.6 , 67–78 (2004).
  • Ahmad N . The vertical transmission of human immunodeficiency virus type 1: molecular and biological properties of the virus. Crit. Rev. Clin. Lab. Sci.42(1) , 1–34 (2005).
  • Ahmad N , MatalaE, YedavalliVRK, HahnT, HusainM. Characterization of HIV-1 involved in maternal–fetal transmission. Adv. Animal Virol.351–370 (2000).
  • Ahmad N . Molecular mechanisms of HIV-1 vertical transmission and pathogenesis in infants. Adv. Pharmacol.56 , 453–508 (2008).
  • Ahmad N . Molecular mechanisms of HIV-1 vertical transmission and pathogenesis in infants. Adv. Pharmacol.56 , 453–508 (2008).
  • Ahmad N . Molecular mechanisms of HIV-1 mother-to-child transmission and infection in neonatal target cells. Life Sci.88(21–22) , 980–986 (2010).
  • Ahmad N , BaroudyBM, BakerRC, ChappeyC. Genetic analysis of human immunodeficiency virus type 1 envelope V3 region isolates from mothers and infants after perinatal transmission. J. Virol.69(2) , 1001–1012 (1995).
  • Hahn T , AhmadN. Genetic characterization of HIV type 1 gag p17 matrix genes in isolates from infected mothers lacking perinatal transmission. AIDS Res. Hum. Retroviruses17(17) , 1673–1680 (2001).
  • Hahn T , MatalaE, ChappeyC, AhmadN. Characterization of mother-infant HIV type 1 gag p17 sequences associated with perinatal transmission. AIDS Res. Hum. Retroviruses15(10) , 875–888 (1999).
  • Hahn T , RamakrishnanR, AhmadN. Evaluation of genetic diversity of human immunodeficiency virus type 1 NEF gene associated with vertical transmission. J. Biomed. Sci.10(4) , 436–450 (2003).
  • Husain M , HahnT, YedavalliVR, AhmadN. Characterization of HIV type 1 tat sequences associated with perinatal transmission. AIDS Res. Hum. Retroviruses17(8) , 765–773 (2001).
  • Matala E , CrandallKA, BakerRC, AhmadN. Limited heterogeneity of HIV type 1 in infected mothers correlates with lack of vertical transmission. AIDS Res. Hum. Retroviruses16(15) , 1481–1489 (2000).
  • Matala E , HahnT, YedavalliVR, AhmadN. Biological characterization of HIV type 1 envelope V3 regions from mothers and infants associated with perinatal transmission. AIDS Res. Hum. Retroviruses17(18) , 1725–1735 (2001).
  • Mehta R , RamakrishnanR, DoktorK, SundaravaradanS, AhmadN. Genetic characterization of HIV type 1 long terminal repeat following vertical transmission. AIDS Res. Hum. Retroviruses24(3) , 437–445 (2008).
  • Mehta R , SundaravaradanV, AhmadN. Mutations generated in human immunodeficiency virus type 1 long terminal repeat during vertical transmission correlate with viral gene expression. Virology375 , 170–181 (2008).
  • Ramakrishnan R , HussainM, HolzerA, MehtaR, SundaravaradanV, AhmadN. Evaluations of HIV type 1 rev gene diversity and functional domains following perinatal transmission. AIDS Res. Hum. Retroviruses21(12) , 1035–1045 (2005).
  • Ramakrishnan R , MehtaR, SundaravaradanV, DavisT, AhmadN. Characterization of HIV-1 envelope gp41 genetic diversity and functional domains following perinatal transmission. Retrovirology4(3) , 42 (2006).
  • Sundaravaradan V , HahnT, AhmadN. Conservation of functional domains and limited heterogeneity of HIV-1 reverse transcriptase gene following vertical transmission. Retrovirology26(2) , 36 (2005).
  • Wellensiek BP , SundaravaradanV, RamakrishnanR, AhmadN. Molecular characterization of the HIV-1 gag nucleocapsid gene associated with vertical transmission. Retrovirology6(3) , 21 (2006).
  • Yedavalli VR , ChappeyC, MatalaE, AhmadN. Conservation of an intact vif gene of human immunodeficiency virus type 1 during maternal-fetal transmission. J. Virol.72(2) , 1092–1102 (1998).
  • Yedavalli VR , ChappeyC, AhmadN. Maintenance of an intact human immunodeficiency virus type 1 vpr gene following mother-to-infant transmission. J. Virol.72(8) , 6937–6943 (1998).
  • Yedavalli VR , AhmadN. Low conservation of functional domains of HIV type 1 vif and vpr genes in infected mothers correlates with lack of vertical transmission. AIDS Res. Hum. Retroviruses17(10) , 911–923 (2001).
  • Yedavalli VR , HusainM, HorodnerA, AhmadN. Molecular characterization of HIV type 1 vpu genes from mothers and infants after perinatal transmission. AIDS Res. Hum. Retroviruses17(11) , 1089–1098 (2001).
  • Little K , ThorneC, LuoC et al. Disease progression in children with vertically-acquired HIV infection in sub-Saharan Africa: reviewing the need for HIV treatment. Curr. HIV Res. 5(2) , 139–153 (2007).
  • MaWhinney S , PaganoM, ThomasP. Age at AIDS diagnosis for children with perinatally acquired HIV. J. Acquir. Immune Defic. Syndr.6(10) , 1139–1144 (1993).
  • Chakraborty R . HIV-1 infection in children: a clinical and immunologic overview. Curr. HIV Res.3(1) , 31–41 (2005).
  • Rogers MF , ThomasPA, StarcherET, NoaMC, BushTJ, JaffeHW. Acquired immunodeficiency syndrome in children: report of the Centers for Disease Control National Surveillance, 1982 to 1985. Pediatrics79(6) , 1008–1014 (1987).
  • Tiemessen CT , KuhnL. Immune pathogenesis of pediatric HIV-1 infection. Curr. HIV/AIDS Rep.3(1) , 13–19 (2006).
  • Clement LT . Isoforms of the CD45 common leukocyte antigen family: markers for human T-cell differentiation. J. Clin. Immunol.12(1) , 1–10 (1992).
  • Sundaravaradan V , SaxenaSK, RamakrishnanR, YedavalliVRK, HarrisDT, AhmadN. Differential HIV-1 replication in neonatal and adult blood mononuclear cells is influenced at the level of HIV-1 gene expression. Proc. Natl Acad. Sci. USA103(31) , 11701–11706 (2006).
  • Harris DT , SchumacherMJ, LocascioJ et al. Phenotypic and functional immaturity of human umbilical cord blood T lymphocytes. Proc. Natl Acad. Sci. USA 89(21) , 10006–10010 (1992).
  • Mo H , MonardS, PollackH et al. Expression patterns of the HIV type 1 coreceptors CCR5 and CXCR4 on CD4+ T cells and monocytes from cord and adult blood. AIDS Res. Hum. Retroviruses 14(7) , 607–617 (1998).
  • Steiner K , MalhotraI, MungaiP, MuchiriE, DentE, KingCL. In utero activation of fetal memory T cells alters host regulatory gene expression and affects HIV susceptibility. Virology425(1) , 23–30 (2012).
  • Marthas ML , van Rompay KK, Otsyula M et al. Viral factors determine progression to AIDS in simian immunodeficiency virus-infected newborn rhesus macaques. J. Virol.69(7) , 4198–4205 (1995).
  • Koup RA , WilsonCB. Clinical immunology of HIV-infected children. In: Pediatric AIDS: The Challenge of HIV Infection in Infants, Children, and Adolescents. Pizzo PA, Wilfert CM. (Eds). Lippincott Williams and Wilkins, PA, USA. 158–165 (1993).
  • Lohman BL , SlykerJA, RichardsonBA et al. Longitudinal assessment of human immunodeficiency virus type 1 (HIV-1)-specific gamma interferon responses during the first year of life in HIV-1-infected infants. J. Virol. 79(13) , 8121–8130 (2005).
  • Cao Y , KrogstadP, KorberBT et al. Maternal HIV-1 viral load and vertical transmission of infection: the Ariel Project for the prevention of HIV transmission from mother to infant. Nat. Med. 3(5) , 549–552 (1997).
  • Tugizova SM , HerreraaR, VeluppillaibP et al. Differential transmission of HIV traversing fetal oral/intestinal epithelia and adult oral epithelia. J. Virol. 86(5) 2556–2570 (2012).
  • Tugizov SM , HerreraR, VeluppillaiP et al. HIV is inactivated after transepithelial migration via adult oral epithelial cells but not fetal epithelial cells. Virology 409(2) , 211–222 (2011).
  • Wolinsky SM , WikeCM, KorberBT et al. Selective transmission of human immunodeficiency virus type-1 variants from mothers to infants. Science 255(5048) , 1134–1137 (1992).
  • Sleasman JW , AleixoLF, MortonA, Skoda-SmithS, GoodenowMM. CD4+ memory T cells are the predominant population of HIV-1-infected lymphocytes in neonates and children. AIDS10(13) , 1477–1484 (1996).
  • Zaitseva MB , LeeS, RabinRL et al. CXCR4 and CCR5 on human thymocytes: biological function and role in HIV-1 infection. J. Immunol. 161(6) , 3103–3113 (1998).
  • Connor RI , ChenBK, ChoeS, LandauNR. Vpr is required for efficient replication of human immunodeficiency virus type-1 in mononuclear phagocytes. Virology206(2) , 935–944 (1995).
  • Abrams EJ , WeedonJ, SteketeeRW et al. Association of human immunodeficiency virus (HIV) load early in life with disease progression among HIV-infected infants. New York City Perinatal HIV Transmission Collaborative Study Group. J. Infect. Dis. 178(1) , 101–108 (1998).
  • Henrard DR , PhillipsJF, MuenzLR et al.Natural history of HIV-1 cell-free viremia. JAMA274(7) , 554–558 (1995).
  • Schroder AR , ShinnP, ChenH et al. HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110(4) , 521–529 (2002).
  • Prescott SL , JonesCA. Cord blood memory responses: are we being naive? Clin. Exp. Allergy31(11) , 1653–1656 (2001).
  • Ullum H , LepriAC, VictorJ, SkinhojP, PhillipsAN, PedersenBK. Increased losses of CD4+CD45RA+ cells in late stages of HIV infection is related to increased risk of death: evidence from a cohort of 347 HIV-infected individuals. AIDS11(12) , 1479–1485 (1997).
  • Zhu T , MoH, WangN et al. Genotypic and phenotypic characterization of HIV-1 patients with primary infection. Science 261(5125) , 1179–1181 (1993).
  • Blaak H , van‘t Wout AB, Brouwer M, Hooibrink B, Hovenkamp E, Schuitemaker H. In vivo HIV-1 infection of CD45RA+CD4+ T cells is established primarily by syncytium-inducing variants and correlates with the rate of CD4+ T cell decline. Proc. Natl Acad. Sci. USA97(3) , 1269–1274 (2000).
  • Ahmad N , MehtaR, HarrisDT. HIV-1 replication and gene expression occur at higher levels in neonatal naive and memory T-lymphocytes compared with adult blood cells. Virology413 , 39–46 (2011).
  • Famularo G , MorettiS, MarcelliniS, NuceraE, De Simone C. CD8 lymphocytes in HIV infection: helpful and harmful. J. Clin. Lab. Immunol.49(1) , 15–32 (1997).
  • Le Borgne S , FévrierM, CallebautC, LeeSP, RivièreY. CD8+-cell antiviral factor activity is not restricted to human immunodeficiency virus (HIV)-specific T cells and can block HIV replication after initiation of reverse transcription. J. Virol.74(10) , 4456–4464 (2000).
  • Sundaravaradan V , MehtaR, HarrisDT, ZackJA, AhmadN. Differential expression and interaction of host factors augment HIV-1 gene expression in neonatal mononuclear cells. Virology400(1) , 32–43 (2010).
  • Nicholson JK , BrowningSW, HengelRL et al. CCR5 and CXCR4 expression on memory and naive T cells in HIV-1 infection and response to highly active antiretroviral therapy. J. Acquir. Immune Defic. Syndr. 27(2) , 105–115 (2001).
  • Schnittman SM , LaneHC, GreenhouseJ, JustementJS, BaselerM, FauciAS. Preferential infection of CD4+ memory T cells by human immunodeficiency virus type 1: evidence for a role in the selective T-cell functional defects observed in infected individuals. Proc. Natl Acad. Sci. USA87(16) , 6058–6062 (1990).
  • Spina CA , PrinceHE, RichmanDD. Preferential replication of HIV-1 in the CD45RO memory cell subset of primary CD4 lymphocytes in vitro. J. Clin. Invest.99(7) , 1774–1785 (1997).
  • Riley JL , LevineBL, CraigheadN et al. Naive and memory CD4 T cells differ in their susceptibilities to human immunodeficiency virus type 1 infection following CD28 costimulation: implicatip6s for transmission and pathogenesis. J. Virol. 72(10) , 8273–8280 (1998).
  • Copeland KF . Modulation of HIV-1 transcription by cytokines and chemokines. Mini Rev. Med. Chem.5(12) , 1093–1101 (2005).
  • Gaynor R . Cellular transcription factors involved in the regulation of HIV-1 gene expression. AIDS6(4) , 347–363 (1992).
  • Molle D , MaiuriP, BoireauS et al. A real-time view of the TAR:Tat:P-TEFb complex at HIV-1 transcription sites. Retrovirology 4 , 36 (2007).
  • Roebuck KA , SaifuddinM. Regulation of HIV-1 transcription. Gene Expr.8(2) , 67–84 (1999).
  • Stevens M , De Clercq E, Balzarini J. The regulation of HIV-1 transcription: molecular targets for chemotherapeutic intervention. Med. Res. Rev.26(5) , 595–625 (2006).
  • Sheppard KA , RoseDW, HaqueZK et al. Transcriptional activation by NF-kappaB requires multiple coactivators. Mol. Cell Biol. 19(9) , 6367–6378 (1999).
  • van‘t Wout AB , LehrmanGK, MikheevaSA et al. Cellular gene expression upon human immunodeficiency virus type 1 infection of CD4+-T-cell lines. J. Virol. 77(2) , 1392–1402 (2003).
  • Zhou M , NekhaiS, BharuchaDC et al. TFIIH inhibits CDK9 phosphorylation during human immunodeficiency virus type 1 transcription. J. Biol. Chem. 276(48) , 44633–44640 (2001).
  • Piereira LA , BentleyK, PeetersA, ChurchillMJ, DeaconNJ. A compilation of cellular transcription factor interactions with the HIV-1 LTR promoter. Nucleic Acids Res.28(3) , 663–668 (2000).
  • Nabel G , BaltimoreD. An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature326(6114) , 711–713 (1987).
  • Cereseto A , ManganaroL, GutierrezMI et al. Acetylation of HIV-1 integrase by p300 regulates viral integration. EMBO J. 24(17) , 3070–3081 (2005).
  • Coull JJ , RomerioF, SunJM et al. The human factors YY1 and LSF repress the human immunodeficiency virus type 1 long terminal repeat via recruitment of histone deacetylase 1. J. Virol. 74(15) , 6790–6799 (2000).
  • Topper M , LuoY, ZhadinaM, MohammedK, SmithL, MuesingMA. Posttranslational acetylation of the human immunodeficiency virus type 1 integrase carboxyl-terminal domain is dispensable for viral replication. J. Virol81(6) , 3012–3017 (2007).
  • Bosinger SE , HosiawaKA, CameronMJ et al. Gene expression profiling of host response in models of acute HIV infection. J. Immunol. 173(11) , 6858–6863 (2004).
  • Kohler JJ , TuttleDL, CoberleyCR, SleasmanJW, GoodenowMM. Human immunodeficiency virus type 1 (HIV-1) induces activation of multiple STATs in CD4+ cells of lymphocyte or monocyte/macrophage lineages. J. Leukoc. Biol.73(3) , 407–416 (2003).
  • Buckner AE , TesmerVM, BinaM. Regulation of HIV-1 transcription by NF-IL6 in activated Jurkat T cells. Virus Res.89(1) , 53–63 (2002).
  • El Kharroubi A , PirasG, ZensenR, MartinMA. Transcriptional activation of the integrated chromatin-associated human immunodeficiency virus type 1 promoter. Mol. Cell Biol.18(5) , 2535–2544 (1998).
  • He G , MargolisDM. Counterregulation of chromatin deacetylation and histone deacetylase occupancy at the integrated promoter of human immunodeficiency virus type 1 (HIV-1) by the HIV-1 repressor YY1 and HIV-1 activator Tat. Mol. Cell Biol.22(9) , 2965–2973 (2002).
  • Kedzierska K , CroweSM, TurvilleS, CunninghamAL. The influence of cytokines, chemokines and their receptors on HIV-1 replication in monocytes and macrophages. Rev. Med. Virol.13(1) , 39–56 (2003).
  • Furia B , DengL, WuK et al. Enhancement of nuclear factor-kappa B acetylation by coactivator p300 and HIV-1 Tat proteins. J. Biol. Chem. 277(7) , 4973–4980 (2002).
  • Munkanta M , HandemaR, KasaiH et al. Predominance of three NF-kappaB binding sites in the long terminal repeat region of HIV Type 1 subtype C isolates from Zambia. AIDS Res. Hum. Retroviruses 21 , 901–906 (2005).
  • Sundaravaradan S , DasS, RamakrishnanR et al. Role of HIV-1 subtype C envelope V3 to V5 regions in viral entry, coreceptor utilization and replication efficiency in primary T-lymphocytes and monocyte-derived macrophages. Virol. J. 4 , 126 (2007).
  • Mehendale SM , BollingerRC, KulkarniSS et al. Rapid disease progression in human immunodeficiency virus type 1-infected seroconverters in India. AIDS Res. Hum. Retroviruses 18 , 1175–1179 (2002).
  • Overbaugh J , KreissJ, PossM et al. Studies of human immunodeficiency virus type 1 mucosal viral shedding and transmission in Kenya. J. Infect. Dis. 179(Suppl. 3) , S401–S404 (1999).
  • Liou LY , HerrmannCH, RiceAP. HIV-1 infection and regulation of Tat function in macrophages. Int. J. Biochem. Cell Biol.36(9) , 1767–1775 (2004).
  • Rice AP , HerrmannCH. Regulation of TAK/P-TEFb in CD4+ T lymphocytes and macrophages. Curr. HIV Res.1(4) , 395–404 (2003).
  • Margolis DM , SomasundaranM, GreenMR. Human transcription factor YY1 represses human immunodeficiency virus type 1 transcription and virion production. J. Virol.68(2) , 905–910 (1994).
  • Kedar PS , ArdenK, FoyleM, PopeJH, ZeichnerSL. Umbilical cord blood mononuclear cell HIV-1 LTR binding activities. J. Biomed. Sci.4(5) , 217–228 (1997).
  • Ruocco MR , ChenX, AmbrosinoC et al. Regulation of HIV-1 long terminal repeats by interaction of C/EBP(NF-IL6) and NF-kappaB/Rel transcription factors. J. Biol. Chem. 271(37) , 22479–22486 (1996).
  • Tesmer VM , BinaM. Regulation of HIV-1 gene expression by NF-IL6. J. Mol. Biol.262(3) , 327–335 (1996).
  • Poli G , KinterAL, FauciAS. Interleukin 1 induces expression of the human immunodeficiency virus alone and in synergy with interleukin 6 in chronically infected U1 cells: inhibition of inductive effects by the interleukin 1 receptor antagonist. Proc. Natl Acad. Sci. USA91(1) , 108–112 (1994).
  • Horvath CM . The JAK–STAT pathway stimulated by interleukin 6. Sci. STKE2004(260) , tr9 (2004).
  • Reich NC , LiuL. Tracking STAT nuclear traffic. Nat. Rev. Immunol.6(8) , 602–612 (2006).
  • Ghorpade A , HolterS, BorgmannK, PersidskyR, WuL. HIV-1 and IL-1 beta regulate Fas ligand expression in human astrocytes through the NF-kappa B pathway. J. Neuroimmunol.141(1–2) , 141–149 (2003).
  • Akira S , IsshikiH, NakajimaT et al. A nuclear factor for the IL-6 gene (NF-IL6). Chem. Immunol. 51 , 299–322 (1992).
  • Kinter AL , BiswasP, AlfanoM et al. Interleukin-6 and glucocorticoids synergistically induce human immunodeficiency virus type-1 expression in chronically infected U1 cells by a long terminal repeat independent post-transcriptional mechanism. Mol. Med. 7(10) , 668–678 (2001).
  • Tovo A , de Martino M, Gabiano C et al. Prognostic factors and survival in children with perinatal HIV-1 infection. The Italian register for HIV infections in children. Lancet339(8804) , 1249–1253 (1992).
  • Wellensiek BP , RamakrishnanR, SundaravaradanV, MehtaR, HarrisDT, AhmadN. Differential HIV-1 integration targets more actively transcribed host genes in neonatal than adult blood mononuclear cells. Virology385(1) , 28–38 (2009).
  • Holmes-Son ML , AppaRS, ChowSA. Molecular genetics and target site specificity of retroviral integration. Adv. Genet.43 , 33–69 (2001).
  • Han Y , LassenK, MonieD et al. Resting CD4+ T cells from human immunodeficiency virus type 1 (HIV-1)-infected individuals carry integrated HIV-1 genomes within actively transcribed host genes. J. Virol. 78(12) , 6122–6133 (2004).
  • Liu H , DowEC, AroraR et al. Integration of human immunodeficiency virus type 1 in untreated infection occurs preferentially within genes. J. Virol. 80(15) , 7765–7768 (2006).
  • Vincent KA , York-HigginsD, QuirogaM, BrownPO. Host sequences flanking the HIV provirus. Nucleic Acids Res.18(20) , 6045–6047 (1990).
  • Ciuffi A , LlanoM, PoeschlaE et al. A role for LEDGF/p75 in targeting HIV DNA integration. Nat. Med. 11(12) , 1287–1289 (2005).
  • Shun MC , RaghavendraNK, VandegraaffN et al. LEDGF/p75 functions downstream from preintegration complex formation to effect gene-specific HIV-1 integration. Genes Dev. 21(14) , 1767–1778 (2007).
  • Corbeil J , SheeterD, GeniniD et al. Temporal gene regulation during HIV-1 infection of human CD4+ T cells. Genome Res. 11(7) , 1198–1204 (2001).
  • Jordan A , DefechereuxP, VerdinE. The site of HIV-1 integration in the human genome determines basal transcriptional activity and response to Tat transactivation. EMBO J.20(7) , 1726–1738 (2001).
  • Tsyba L , RynditchAV, BoeriE, JabbariK, BernardiG. Distribution of HIV-1 in the genomes of AIDS patients. Cell. Mol. Life Sci.61(6) , 721–726 (2004).
  • Sorin M , YungE, WuX, KalpanaGV. HIV-1 replication in cell lines harboring INI1/hSNF5 mutations. Retrovirology3 , 56 (2006).
  • Cereseto A , ManganaroL, GutierrezMI et al. Acetylation of HIV-1 integrase by p300 regulates viral integration. EMBO J. 24(17) , 3070–3081 (2005).
  • Lin CW , EngelmanA. The barrier-to-autointegration factor is a component of functional human immunodeficiency virus type 1 preintegration complexes. J. Virol.77(8) , 5030–5036 (2003).
  • Mulder LC , ChakrabartiLA, MuesingMA. Interaction of HIV-1 integrase with DNA repair protein hRad18. J. Biol. Chem.277(30) , 27489–27493 (2002).
  • Al-Harthi L , RoebuckKA. Human immunodeficiency virus type-1 transcription: role of the 5‘-untranslated leader region (review). Int. J. Mol. Med.1(5) , 875–881 (1998).
  • Pessler F , CronRQ. Reciprocal regulation of the nuclear factor of activated T cells and HIV-1. Genes Immun.5(3) , 158–167 (2004).
  • Bassuk AG , AnandappaRT, LeidenJM. Physical interactions between Ets and NF-kappaB/NFAT proteins play an important role in their cooperative activation of the human immunodeficiency virus enhancer in T cells. J. Virol.71(5) , 3563–3573 (1997).
  • Cereseto A , ManganaroL, GutierrezMI et al. Acetylation of HIV-1 integrase by p300 regulates viral integration. EMBO J. 24(17) , 3070–3081 (2005).
  • van‘t Wout AB , LehrmanGK, MikheevaSA et al. Cellular gene expression upon human immunodeficiency virus type 1 infection of CD4+-T-cell lines. J. Virol. 77(2) , 1392–1402 (2003).
  • Barr SD , CiuffiA, LeipzigJ, ShinnP, EckerJR, BushmanFD. HIV integration site selection: targeting in macrophages and the effects of different routes of viral entry. Mol. Ther.14(2) , 218–225 (2006).
  • Liu H , Dow,EC, Arora et al. Integration of human immunodeficiency virus type 1 in untreated infection occurs preferentially within genes. J. Virol.80(15) , 7765–7768 (2006).
  • Levine BL , HumeauLM, BoyerJ et al. Gene transfer in humans using a conditionally replicating lentiviral vector. Proc. Natl Acad. Sci. USA 103(46) , 17372–17377 (2006).
  • Lander ES , LintonLM, BirrenB et al. Initial sequencing and analysis of the human genome. Nature 409(6822) , 860–921 (2001).
  • Venter JC , AdamsMD, MyersEW et al. The sequence of the human genome. Science 291(5507) , 1304–1351 (2001).
  • Diop G , HirtzigT, DoH et al. Exhaustive genotyping of the interferon alpha receptor 1 (IFNAR1) gene and association of an IFNAR1 protein variant with AIDS progression or susceptibility to HIV-1 infection in a French AIDS cohort. Biomed. Pharmacother. 60(9) , 569–577 (2006).
  • Kacani L , StoiberH, SpethC et al. Complement-dependent control of viral dynamics in pathogenesis of human immunodeficiency virus and simian immunodeficiency virus infection. Mol. Immunol. 38(2–3) , 241–247 (2001).
  • Missé D , YsselH, TrabattoniD et al. IL-22 participates in an innate anti-HIV-1 host-resistance network through acute-phase protein induction. J. Immunol. 178(1) , 407–415 (2007).
  • Torre D , PuglieseA. Interleukin-18: a proinflammatory cytokine in HIV-1 infection. Curr. HIV Res.4(4) , 423–430 (2006).
  • Bukrinsky MI , SharovaN, DempseyMP et al. Active nuclear import of human immunodeficiency virus type 1 preintegration complexes. Proc. Natl Acad. Sci. USA 89(14) , 6580–6584 (1992).
  • Karn J . Tackling Tat. J. Mol. Biol.293(2) , 235–254 (1999).
  • Duan L , OzakiI, OakesJW, TaylorJP, KhaliliK, PomerantzRJ. The tumor suppressor protein p53 strongly alters human immunodeficiency virus type 1 replication. J. Virol.68(7) , 4302–4313 (1994).
  • Doerre S , SistaP, SunSC, BallardDW, GreeneWC. The c-rel protooncogene product represses NF-kappa B p65-mediated transcriptional activation of the long terminal repeat of type 1 human immunodeficiency virus. Proc. Natl Acad. Sci. USA90(3) , 1023–1027 (1993).
  • Sundaravaradan V , MehtaR, HarrisDT, ZackJA, AhmadN. Differential expression and interaction of host factors augment HIV-1 gene expression in neonatal mononuclear cells. Virology400(1) , 32–43 (2010).
  • Wellensiek BP , RamakrishnanR, SundaravaradanV, MehtaR, HarrisDT, AhmadN. Differential HIV-1 integration targets more actively transcribed host genes in neonatal than adult blood mononuclear cells. Virology385(1) , 28–38 (2008).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.