149
Views
0
CrossRef citations to date
0
Altmetric
Review

From Virus-like Particles to Engineered Exosomes for a New Generation of Vaccines

Pages 473-482 | Published online: 17 May 2012

References

  • Roy P , NoadR. Virus-like particles as a vaccine delivery system: myths and facts. Adv. Exp. Med. Biol.655 , 145–158 (2009).
  • Herbst-Kralovetz M , MasonHS, ChenQ. Norwalk virus-like particles as vaccines. Expert Rev. Vaccines9(3) , 299–307 (2010).
  • El-Kamary SS , PasettiMF, MendelmanPM et al. Adjuvanted intranasal Norwalk virus-like particle vaccine elicits antibodies and antibody-secreting cells that express homing receptors for mucosal and peripheral lymphoid tissues. J. Infect. Dis. 202(11) , 1649–1658 (2010).
  • Velasquez LS , ShiraS, BertaAN et al. Intranasal delivery of Norwalk virus-like particles formulated in an in situ gelling, dry powder vaccine. Vaccine 29(32) , 5221–5231 (2011).
  • Walpita P , BarrJ, ShermanM, BaslerCF, WangL. Vaccine potential of Nipah virus-like particles. PLoS One6(4) , E18437 (2011).
  • McGinnes LW , PantuaH, LaliberteJP, GravelKA, JainS, MorrisonTG. Assembly and biological and immunological properties of Newcastle disease virus-like particles. J. Virol.84(9) , 4513–4523 (2010).
  • Lee DH , ParkJK, LeeYN et al. H9N2 avian influenza virus-like particle vaccine provides protective immunity and a strategy for the differentiation of infected from vaccinated animals. Vaccine 29(23) , 4003–4007 (2011).
  • Wu CY , YehYC, YangYC et al. Mammalian expression of virus-like particles for advanced mimicry of authentic influenza virus. PLoS One 5(3) , E9784 (2010).
  • Quan FS , VunnavaA, CompansRW, KangSM. Virus-like particle vaccine protects against 2009 H1N1 pandemic influenza virus in mice. PLoS One5(2) , E9161 (2010).
  • Pushko P , PearceMB, AhmadA et al. Influenza virus-like particle can accommodate multiple subtypes of hemagglutinin and protect from multiple influenza types and subtypes. Vaccine 29(35) , 5911–5918 (2011).
  • Khurana S , WuJ, VermaN. H5N1 virus-like particle vaccine elicits cross-reactive neutralizing antibodies that preferentially bind to the oligomeric form of influenza virus hemagglutinin in humans. J. Virol.85(21) , 10945–10954 (2011).
  • Tang XC , LuHR, RossTM. Baculovirus-produced influenza virus-like particles in mammalian cells protect mice from lethal influenza challenge. Viral Immunol.24(4) , 311–319 (2011).
  • Warfield KL , AmanMJ. Advances in virus-like particle vaccines for filoviruses. J. Infect. Dis.204(Suppl. 3) , S1053–S1059 (2011).
  • Ruiss R , JochumS, WannerG, ReisbachG, HammerschmidtW, ZeidlerR. A virus-like particle-based Epstein–Barr virus vaccine. J. Virol.85(24) , 13105–13113 (2011).
  • Ohtaki N , TakahashiH, KanekoK et al. Immunogenicity and efficacy of two types of West Nile virus-like particles different in size and maturation as a second-generation vaccine candidate. Vaccine 28(40) , 6588–6596 (2010).
  • Zhang S , LiangM, GuW et al. Vaccination with dengue virus-like particles induces humoral and cellular immune responses in mice. Virol. J. 8 , 333 (2011).
  • Akahata W , YangZY, AndersenH et al. A virus-like particle vaccine for epidemic chikungunya virus protects nonhuman primates against infection. Nat. Med. 16(3) , 334–338 (2010).
  • Quan FS , KimY, LeeS et al. Virus like particle vaccine induces protection against respiratory syncytial virus infection in mice. J. Infect. Dis. 204(7) , 987–995 (2011).
  • McGinnes LW , GravelKA, FinbergRW et al. Assembly and immunological properties of Newcastle disease virus-like particles containing the respiratory syncytial virus F and G proteins. J. Virol. 85(1) , 366–377 (2011).
  • Liu YV , MassareMJ, BarnardDL et al. Chimeric severe acute respiratory syndrome coronavirus (SARS-CoV) S glycoprotein and influenza matrix 1 efficiently form virus-like particles (VLPs) that protect mice against challenge with SARS-CoV. Vaccine 29(38) , 6606–6613 (2011).
  • Ma Y , LiJ. Vesicular stomatitis virus as a vector to deliver virus-like particles of human norovirus: a new vaccine candidate against an important noncultivable virus. J. Virol.85(6) , 2942–2952 (2011).
  • Klamp T , SchumacherJ, HuberG et al. Highly specific auto-antibodies against claudin-18 isoform 2 induced by a chimeric HBcAg virus-like particle vaccine kill tumor cells and inhibit the growth of lung metastases. Cancer Res. 71(2) , 516–527 (2011).
  • Chackerian B . Virus-like particle based vaccines for Alzheimer disease. Hum. Vaccin.6(11) , 926–930 (2010).
  • Tumban E , PeabodyJ, PeabodyDS, ChackerianB. A pan-HPV vaccine based on bacteriophage PP7 VLPs displaying broadly cross-neutralizing epitopes from the HPV minor capsid protein, L2. PLoS One6(8) , E23310 (2011).
  • Röhn TA , RalveniusWT, PaulJ et al. A virus-like particle-based anti-nerve growth factor vaccine reduces inflammatory hyperalgesia: potential long-term therapy for chronic pain. J. Immunol. 186(3) , 1769–1780 (2011).
  • Caldeira Jdo C , MedfordA, KinesRC et al. Immunogenic display of diverse peptides, including a broadly cross-type neutralizing human papillomavirus L2 epitope, on virus-like particles of the RNA bacteriophage PP7. Vaccine 28(27) , 4384–4393 (2010).
  • Spohn G , JenningsGT, MartinaBE et al. A VLP-based vaccine targeting domain III of the West Nile virus E protein protects from lethal infection in mice. Virol. J. 7 , 146 (2010).
  • Brown SD , FiedlerJD, FinnMG. Assembly of hybrid bacteriophage Qβ virus-like particles. Biochemistry48(47) , 11155–11157 (2009).
  • Tan M , HuangP, XiaM et al. Norovirus P particle, a novel platform for vaccine development and antibody production. J. Virol. 85(2) , 753–764 (2010).
  • Middelberg AP , Rivera-HernandezT, WibowoN et al. A microbial platform for rapid and low-cost virus-like particle and capsomere vaccines. Vaccine 29(41) , 7154–7162 (2011).
  • Montefiori DC , SafritJT, LydySL et al. Induction of neutralizing antibodies and gag-specific cellular immune responses to an R5 primary isolate of human immunodeficiency virus type 1 in rhesus macaques. J. Virol. 75(13) , 5879–5890 (2001).
  • Deml L , KratochwilG, OsterriederN, KnüchelR, WolfH, WagnerR. Increased incorporation of chimeric human immunodeficiency virus type 1 gp120 proteins into Pr55gag virus-like particles by an Epstein–Barr virus gp220/350-derived transmembrane domain. Virology235(1) , 10–25 (1997).
  • Kattenbeck B , von Poblotzki A, Rohrhofer A, Wolf H, Modrow S. Inhibition of human immunodeficiency virus type 1 particle formation by alterations of defined amino acids within the C terminus of the capsid protein. J. Gen. Virol.78(Pt 10) , 2489–2496 (1997).
  • Yao XJ , KobingerG, DandacheS, RougeauN, CohenE. HIV-1 Vpr-chloramphenicol acetyltransferase fusion proteins: sequence requirement for virion incorporation and analysis of antiviral effect. Gene Ther.6(9) , 1590–1599 (1999).
  • McDonald D , VodickaMA, LuceroG et al. Visualization of the intracellular behavior of HIV in living cells. J. Cell. Biol. 159(3) , 441–452 (2002).
  • Cavrois M , De Noronha C, Greene WC. A sensitive and specific enzyme-based assay detecting HIV-1 virion fusion in primary T lymphocytes. Nat. Biotechnol.20(11) , 1151–1154 (2002).
  • Peretti S , SchiavoniI, PuglieseK, FedericoM. Cell death induced by the herpes simplex virus-1 thymidine kinase delivered by human immunodeficiency virus-1-based virus-like particles. Mol. Ther.12(6) , 1185–1196 (2005).
  • Di Bonito P , GrassoF, MochiS et al. Anti-tumor CD8+ T cell immunity elicited by HIV-1-based virus-like particles incorporating HPV-16 E7 protein. Virology 395(1) , 45–55 (2009).
  • Sistigu A , BracciL, ValentiniM et al. Strong CD8+ T cell antigenicity and immunogenicity of large foreign proteins incorporated in HIV-1 VLPs able to induce a Nef-dependent activation/maturation of dendritic cells. Vaccine 29(18) , 3465–3475 (2011).
  • Buonaguro L , ViscianoML, TorneselloML, TagliamonteM, BiryahwahoB, BuonaguroFM. Induction of systemic and mucosal cross-clade neutralizing antibodies in BALB/c mice immunized with human immunodeficiency virus type 1 clade A virus-like particles administered by different routes of inoculation. J. Virol.79(11) , 7059–7067 (2005).
  • Garrone P , FluckigerAC, MangeotPE et al. A prime-boost strategy using virus-like particles pseudotyped for HCV proteins triggers broadly neutralizing antibodies in macaques. Sci. Transl. Med. 3(94) , 94ra71 (2011).
  • Yewdell JW , NorburyCC, BenninkJR. Mechanisms of exogenous antigen presentation by MHC class I molecules in vitro and in vivo: implications for generating CD8+ T cell responses to infectious agents, tumors, transplants, and vaccines. Adv. Immunol.73 , 1–77 (1999).
  • Marsac D , LoiratD, PetitC, SchwartzO, MichelML. Enhanced presentation of major histocompatibility complex class I-restricted human immunodeficiency virus type 1 (HIV-1) Gag-specific epitopes after DNA immunization with vectors coding for vesicular stomatitis virus glycoprotein-pseudotyped HIV-1 Gag particles. J. Virol.76 , 7544–7553 (2002).
  • Buseyne F , Le Gall S, Boccaccio C et al. MHC-I-restricted presentation of HIV-1 virion antigens without viral replication. Nat. Med.7(3) , 344–349 (2001).
  • Segura MM , GarnierA, DurocherY, AnsorgeS, KamenA. New protocol for lentiviral vector mass production. Methods Mol. Biol.614 , 39–52 (2010).
  • György B , SzabóTG, PásztóiM et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol. Life Sci. 68(16) , 2667–2688 (2011).
  • Booth AM , FangY, FallonJK, YangJM, HildrethJE, GouldSJ. Exosomes and HIV Gag bud from endosome-like domains of the T cell plasma membrane. J. Cell. Biol.172(6) , 923–935 (2006).
  • Mathivanan S , JiH, SimpsonRJ. Exosomes: extracellular organelles important in intercellular communication. J. Proteomics73(10) , 1907–1920 (2010).
  • Skog J , WürdingerT, van Rijn S et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat. Cell Biol.10(12) , 1470–1476 (2008).
  • Gibbings DJ , CiaudoC, ErhardtM, VoinnetO. Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat. Cell Biol.11(9) , 1143–1149 (2009).
  • Tan A , De La Peña H, Seifalian AM. The application of exosomes as a nanoscale cancer vaccine. Int. J. Nanomed.5 , 889–900 (2010).
  • Chaput N , ThéryC. Exosomes: immune properties and potential clinical implementations. Semin. Immunopathol.33(5) , 419–440 (2010).
  • Bhatnagar S , SchoreyJS. Exosomes released from infected macrophages contain Mycobacterium avium glycopeptidolipids and are proinflammatory. J. Biol. Chem.282(35) , 25779–25789 (2007).
  • Yang C , KimSH, BiancoNR, RobbinsPD. Tumor-derived exosomes confer antigen-specific immunosuppression in a murine delayed-type hypersensitivity model. PLoS One6(8) , E22517 (2011).
  • Andreola G , RivoltiniL, CastelliC. Induction of lymphocyte apoptosis by tumor cell secretion of FasL-bearing microvesicles. J. Exp. Med.195(10) , 1303–1316 (2002).
  • Szajnik M , CzystowskaM, SzczepanskiMJ, MandapathilM, WhitesideTL. Tumor-derived microvesicles induce, expand and up-regulate biological activities of human regulatory T cells (Treg). PLoS One5(7) , E11469 (2010).
  • Ashiru O , BoutetP, Fernández-MessinaL et al. Natural killer cell cytotoxicity is suppressed by exposure to the human NKG2D ligand MICA*008 that is shed by tumor cells in exosomes. Cancer Res. 70(2) , 481–489 (2010).
  • Muratori C , CavallinLE, KrätzelK et al. Massive secretion by T cells is caused by HIV Nef in infected cells and by Nef transfer to bystander cells. Cell Host Microbe 6(3) , 218–230 (2009).
  • Flanagan J , MiddeldorpJ, SculleyT. Localization of the Epstein–Barr virus protein LMP 1 to exosomes. J. Gen. Virol.84(Pt 7) , 1871–1879 (2003).
  • Keryer-Bibens C , Pioche-DurieuC, VillemantC et al. Exosomes released by EBV-infected nasopharyngeal carcinoma cells convey the viral latent membrane protein 1 and the immunomodulatory protein galectin 9. BMC Cancer 6 , 283 (2006).
  • Kim SH , LechmanER, BiancoN et al. Exosomes derived from IL-10 treated dendritic cells can suppress inflammation and collagen-induced arthritis. J. Immunol. 174(10) , 6440–6448 (2005).
  • Kim SH , BiancoN, Menon et al. Exosomes derived from genetically modified DC expressing FasL are anti-inflammatory and immunosoppressive. Mol. Ther.13(2) , 289–300 (2006).
  • Xie Y , BaiO, ZhangH, LiW, XiangJ. Tumor necrosis factor gene-engineered J558 tumor cell-released exosomes stimulate tumor antigen P1A-specific CD8+ CTL responses and antitumor immunity. Cancer Biother. Radiopharm.25(1) , 21–28 (2010).
  • Dai S , WeiD, WuZ et al. Phase I clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal cancer. Mol. Ther. 16(4) , 782–790 (2008).
  • Escudier B , DorvalT, ChaputN et al. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of the first Phase I clinical trial. J. Transl. Med. 3(1) , 10 (2005).
  • Morse MA , GarstJ, OsadaT et al. A Phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. J. Transl. Med. 3(1) , 9 (2005).
  • Nguyen DG , BoothA, GouldSJ, HildrethJE. Evidence that HIV budding in primary macrophages occurs through the exosome release pathway. J. Biol. Chem.278(52) , 52347–52354 (2003).
  • Mori Y , KoikeM, MoriishiE et al. Human herpesvirus-6 induces MVB formation, and virus egress occurs by an exosomal release pathway. Traffic 9(10) , 1728–1742 (2008).
  • Usami Y , PopovS, PopovaE, InoueM, WeissenhornW, G Göttlinger H. The ESCRT pathway and HIV-1 budding. Biochem. Soc. Trans.37(Pt 1) , 181–184 (2009).
  • Chazal N , GerlierD. Virus entry, assembly, budding, and membrane rafts. Microbiol. Mol. Biol. Rev.67(2) , 226–237 (2003).
  • Simons K , SampaioJL. Membrane organization and lipid rafts. Cold Spring Harb. Perspect. Biol.3(10) , A004697 (2011).
  • de Gassart A , GeminardC, FevrierB, RaposoG, VidalM. Lipid raft-associated protein sorting in exosomes. Blood102(13) , 4336–4344 (2003).
  • Gould SJ , BoothAM, HildrethJE. The Trojan exosome hypothesis. Proc. Natl Acad. Sci. USA100(19) , 10592–10597 (2003).
  • Fang Y , WuN, GanX, YanW, MorrellJC, GouldSJ. Higher-order oligomerization targets plasma membrane proteins and HIV gag to exosomes. PLoS Biol.5(6) , E158 (2007).
  • Lenassi M , CagneyG, LiaoM et al. HIV Nef is secreted in exosomes and triggers apoptosis in bystander CD4+ T cells. Traffic 11(1) , 110–122 (2010).
  • Foster JL , DenialSJ, TempleBR, GarciaJV. Mechanisms of HIV-1 Nef function and intracellular signaling. J. Neuroimmune Pharmacol.6(2) , 230–246 (2011).
  • Brügger B , GlassB, HaberkantP, LeibrechtI, WielandFT, KräusslichHG. The HIV lipidome: a raft with an unusual composition. Proc. Natl Acad. Sci. USA103(8) , 2641–2646 (2006).
  • Parolini I , FedericiC, RaggiC et al. Microenvironmental pH is a key factor for exosome traffic in tumor cells. J. Biol. Chem. 284(49) , 34211–34222 (2009).
  • Feng D , ZhaoWL, YeYY et al. Cellular internalization of exosomes occurs through phagocytosis. Traffic 11(5) , 675–687 (2010).
  • Lamparski HG , Metha-DamaniA, YaoJY et al. Production and characterization of clinical grade exosomes derived from dendritic cells. J. Immunol. Methods 270(2) , 211–226 (2002).
  • Krishnamachari Y , GearySM, LemkeCD, SalemAK. Nanoparticle delivery systems in cancer vaccines. Pharm. Res.28(2) , 215–236 (2011).
  • Ruiss R , JochumS, MocikatR, HammerschmidtW, ZeilderR. EBV-gp350 confers B-cell tropism to tailored exosomes and is a neo-antigen in normal and malignant B cells-A new option for the treatment of B-CLL. PLoS One6(10) , E25294 (2011).
  • Zhang J , ZhangY, LuoC, XiaY, ChenH, WuX. Glycosyl-phosphatidylinositol-anchored interleukin-2 expressed on tumor-derived exosomes induces antitumor immune response in vitro. Tumori96(3) , 452–459 (2010).
  • Zhang Y , LuoCL, HeBC, ZhangJM, ChengG, WuHX. Exosomes derived from IL-12-anchored renal cancer cells increase induction of specific antitumor response in vitro: a novel vaccine for renal cell carcinoma. Int. J. Oncol.36(1) , 133–140 (2010).
  • Delcayre A , EstellesA, SperindeJ. Exosome display technology: applications to the development of new diagnostics and therapeutics. Blood Cells Mol. Dis.35(2) , 158–168 (2005).
  • Hartman ZC , WeiJ, GlassOK et al. Increasing vaccine potency through exosome antigen targeting. Vaccine 29(50) , 9361–9367 (2011).
  • Xiu F , CaiZ, YangY, WangX, WangJ, CaoX. Surface anchorage of superantigen SEA promotes induction of specific antitumor immune response by tumor-derived exosomes. J. Mol. Med.85(5) , 511–521 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.