1,474
Views
0
CrossRef citations to date
0
Altmetric
Review

HSV, Axonal Transport and Alzheimer‘s Disease: in Vitro and in Vivo Evidence for Causal Relationships

Pages 885-899 | Published online: 21 Sep 2012

References

  • Roizman B , KnipeD. Herpes simplex viruses and their replication. In: Fields Virology. Knipe D, Howley P (Eds). Lippincott Williams & Wilkins, PA, USA 2399–2461 (2001).
  • Su YH , MoxleyMJ, NgAK et al. Stability and circularization of herpes simplex virus type 1 genomes in quiescently infected PC12 cultures. J. Gen. Virol. 83(Pt 12) , 2943–2950 (2002).
  • Mellerick DM , FraserNW. Physical state of the latent herpes simplex virus genome in a mouse model system: evidence suggesting an episomal state. Virology158(2) , 265–275 (1987).
  • Farooq AV , ShuklaD. Corneal latency and transmission of herpes simplex virus-1. Future Virol.6(1) , 101–108 (2011).
  • Bearer EL . Perspectives on herpes-APP interactions. Aging Cell3(2) , 81–84 (2004).
  • Itzhaki RF , DobsonCB, WozniakMA. Commentary on ‘Fast anterograde transport of herpes simplex virus: role for the amyloid precursor protein of Alzheimer‘s disease‘ by Prasanna Satpute-Krishnan et al. Aging Cell2(6) , 305–318 (2003). Aging Cell3(2) , 79–80 (2004).
  • Cheng SB , FerlandP, WebsterP, BearerEL. Herpes simplex virus dances with amyloid precursor protein while exiting the cell. PLoS One6(3) , e17966 (2011).
  • Xu F , LeeFK, MorrowRA et al. Seroprevalence of herpes simplex virus type 1 in children in the United States. J. Pediatr. 151(4) , 374–377 (2007).
  • Xu F , SternbergMR, KottiriBJ et al. Trends in herpes simplex virus type 1 and type 2 seroprevalence in the United States. JAMA 296(8) , 964–973 (2006).
  • Peter JB , SevallJS. Review of 3200 serially received CSF samples submitted for type-specific HSV detection by PCR in the reference laboratory setting. Mol. Cell. Probes15(3) , 177–182 (2001).
  • Ball MJ , MathewsR, SteinerI et al. Latent HSV 1 virus in trigeminal ganglia: the optimal site for linking prevention of Alzheimer‘s disease to vaccination. Neurobiol. Aging 22(5) , 705–709; discussion 717–719 (2001).
  • Pevenstein SR , WilliamsRK, McChesneyD, MontEK, SmialekJE, StrausSE. Quantitation of latent varicella-zoster virus and herpes simplex virus genomes in human trigeminal ganglia. J. Virol.73(12) , 10514–10518 (1999).
  • Hill JM , BallMJ, NeumannDM et al. The high prevalence of herpes simplex virus type 1 DNA in human trigeminal ganglia is not a function of age or gender. J. Virol. 82(16) , 8230–8234 (2008).
  • Jamieson GA , MaitlandNJ, WilcockGK, YatesCM, ItzhakiRF. Herpes simplex virus type 1 DNA is present in specific regions of brain from aged people with and without senile dementia of the Alzheimer type. J. Pathol.167(4) , 365–368 (1992).
  • Hemling N , RoyttaM, RinneJ et al. Herpesviruses in brains in Alzheimer‘s and Parkinson‘s diseases. Ann. Neurol. 54(2) , 267–271 (2003).
  • Mori I , KimuraY, NaikiH et al. Reactivation of HSV-1 in the brain of patients with familial Alzheimer‘s disease. J. Med. Virol. 73(4) , 605–611 (2004).
  • Jamieson GA , MaitlandNJ, WilcockGK, CraskeJ, ItzhakiRF. Latent herpes simplex virus type 1 in normal and Alzheimer‘s disease brains. J. Med. Virol.33(4) , 224–227 (1991).
  • Bertrand P , GuillaumeD, HellauerK et al. Distribution of herpes simplex virus type 1 DNA in selected areas of normal and Alzheimer‘s disease brains: a PCR study. Neurodegeneration2 , 201–208 (1993).
  • Lin WR , WozniakMA, WilcockGK, ItzhakiRF. Cytomegalovirus is present in a very high proportion of brains from vascular dementia patients. Neurobiol. Dis.9(1) , 82–87 (2002).
  • Wozniak MA , MeeAP, ItzhakiRF. Herpes simplex virus type 1 DNA is located within Alzheimer‘s disease amyloid plaques. J. Pathol.217(1) , 131–138 (2009).
  • Sanders VJ , FelisanSL, WaddellAE et al. Presence of herpes simplex DNA in surgical tissue from human epileptic seizure foci detected by polymerase chain reaction: preliminary study. Arch. Neurol. 54(8) , 954–960 (1997).
  • Sanders VJ , FelisanS, WaddellA, TourtellotteWW. Detection of herpesviridae in postmortem multiple sclerosis brain tissue and controls by polymerase chain reaction. J. Neurovirol.2(4) , 249–258 (1996).
  • Itzhaki RF , LinWR, ShangD, WilcockGK, FaragherB, JamiesonGA. Herpes simplex virus type 1 in brain and risk of Alzheimer‘s disease. Lancet349(9047) , 241–244 (1997).
  • Svensson A , TunbackP, NordstromI, PadyukovL, ErikssonK. Polymorphisms in TLR3 confers natural resistance to HSV-2 infection. J. Gen. Virol.93(Pt 8) , 1717–1724 (2012).
  • Moraru M , CisnerosE, Gomez-LozanoN et al. Host genetic factors in susceptibility to herpes simplex type 1 virus infection: contribution of polymorphic genes at the interface of innate and adaptive immunity. J. Immunol. 188(9) , 4412–4420 (2012).
  • Demontis D , NyegaardM, ButtenschonHN et al. Association of GRIN1 and GRIN2A-D with schizophrenia and genetic interaction with maternal herpes simplex virus-2 infection affecting disease risk. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 156B(8) , 913–922 (2011).
  • Chatterjee K , DandaraC, GyllenstenU et al. A Fas gene polymorphism influences herpes simplex virus type 2 infection in South African women. J. Med. Virol. 82(12) , 2082–2086 (2010).
  • Kriesel JD , JonesBB, MatsunamiN et al. C21orf91 genotypes correlate with herpes simplex labialis (cold sore) frequency: description of a cold sore susceptibility gene. J. Infect. Dis. 204(11) , 1654–1662 (2011).
  • Beffert U , BertrandP, ChampagneD, GauthierS, PoirierJ. HSV-1 in brain and risk of Alzheimer‘s disease. Lancet351(9112) , 1330–1331 (1998).
  • Guzman-Sanchez F , ValdiviesoF, BurgosJS. Aging-related neurostructural, neuropathological, and behavioral changes associated with herpes simplex virus type 1 brain infection in mice. J. Alzheimers Dis.30(4) , 779–790 (2012).
  • Lin W -R, Wozniak MA, Esiri MM, Klenerman P, Itzhaki RF. Herpes simplex encephalitis: involvement of apolipoprotein E. J. Neurol. Neurosurg. Psychiatry70 , 117–119 (2001).
  • Eshleman E , ShahzadA, CohrsRJ. Varicella zoster virus latency. Future Virol.6(3) , 341–355 (2011).
  • Gilden DH , Kleinschmidt-DemastersBK, LaguardiaJJ, MahalingamR, CohrsRJ. Neurologic complications of the reactivation of varicella-zoster virus. N. Engl. J. Med.342(9) , 635–645 (2000).
  • Gilden DH , MahalingamR, CohrsRJ, TylerKL. Herpesvirus infections of the nervous system. Nat. Clin. Pract. Neurol.3(2) , 82–94 (2007).
  • Itzhaki RF , WozniakMA. Herpes simplex virus type 1, apolipoprotein E, and cholesterol: a dangerous liaison in Alzheimer‘s disease and other disorders. Prog. Lipid Res.45(1) , 73–90 (2006).
  • Wozniak MA , ShipleySJ, DobsonCB et al. Does apolipoprotein E determine outcome of infection by varicella zoster virus and by Epstein Barr virus? Eur. J. Hum. Genet. 15(6) , 672–678 (2007).
  • Opsahl ML , KennedyPG. Investigating the presence of human herpesvirus 7 and 8 in multiple sclerosis and normal control brain tissue. J. Neurol. Sci.240(1–2) , 37–44 (2006).
  • Honjo K , Van Reekum R, Verhoeff NP. Alzheimer‘s disease and infection: do infectious agents contribute to progression of Alzheimer‘s disease? Alzheimers Dement.5(4) , 348–360 (2009).
  • Tavazzi E , WhiteMK, KhaliliK. Progressive multifocal leukoencephalopathy: clinical and molecular aspects. Rev. Med. Virol.22(1) , 18–32 (2012).
  • Miklossy J . Alzheimer‘s disease - a neurospirochetosis. Analysis of the evidence following Koch‘s and Hill‘s criteria. J. Neuroinflammation8 , 90 (2011).
  • Miklossy J , KhaliliK, GernL et al. Borrelia burgdorferi persists in the brain in chronic lyme neuroborreliosis and may be associated with Alzheimer disease. J. Alzheimers Dis.6(6) , 639–649; discussion 673–681 (2004).
  • Ushijima Y , LuoC, GoshimaF, YamauchiY, KimuraH, NishiyamaY. Determination and analysis of the DNA sequence of highly attenuated herpes simplex virus type 1 mutant HF10, a potential oncolytic virus. Microbes Infect.9(2) , 142–149 (2007).
  • Szpara ML , ParsonsL, EnquistLW. Sequence variability in clinical and laboratory isolates of herpes simplex virus 1 reveals new mutations. J. Virol.84(10) , 5303–5313 (2010).
  • McGeoch DJ , CunninghamC, McintyreG, DolanA. Comparative sequence analysis of the long repeat regions and adjoining parts of the long unique regions in the genomes of herpes simplex viruses types 1 and 2. J. Gen. Virol.72(Pt 12) , 3057–3075 (1991).
  • Mcgeoch DJ , DolanA, DonaldS, BrauerDH. Complete DNA sequence of the short repeat region in the genome of herpes simplex virus type 1. Nucleic Acids Res.14(4) , 1727–1745 (1986).
  • Aurelius E . Herpes simplex encephalitis. Early diagnosis and immune activation in the acute stage and during long-term follow-up. Scand. J. Infect. Dis. Suppl. 89 , 3–62 (1993).
  • Kaufman HE , AzcuyAM, VarnellED, SloopGD, ThompsonHW, HillJM. HSV-1 DNA in tears and saliva of normal adults. Invest. Ophthalmol. Vis. Sci.46(1) , 241–247 (2005).
  • Cohrs RJ , MehtaSK, SchmidDS, GildenDH, PiersonDL. Asymptomatic reactivation and shed of infectious varicella zoster virus in astronauts. J. Med. Virol.80(6) , 1116–1122 (2008).
  • Nagel MA , ChoeA, CohrsRJ et al. Persistence of varicella zoster virus DNA in saliva after herpes zoster. J. Infect. Dis. 204(6) , 820–824 (2011).
  • Elion GB , FurmanPA, FyfeJA, De Miranda P, Beauchamp L, Schaeffer HJ. Selectivity of action of an antiherpetic agent, 9-(2-hydroxyethoxymethyl) guanine. Proc. Natl Acad. Sci. USA74(12) , 5716–5720 (1977).
  • Fyfe JA , KellerPM, FurmanPA, MillerRL, ElionGB. Thymidine kinase from herpes simplex virus phosphorylates the new antiviral compound, 9-(2-hydroxyethoxymethyl)guanine. J. Biol. Chem.253(24) , 8721–8727 (1978).
  • Schaeffer HJ , BeauchampL, De Miranda P, Elion GB, Bauer DJ, Collins P. 9-(2-hydroxyethoxymethyl) guanine activity against viruses of the herpes group. Nature272(5654) , 583–585 (1978).
  • Elion GB . Acyclovir: discovery, mechanism of action, and selectivity. J. Med. Virol. (Suppl. 1) , 2–6 (1993).
  • De Clercq E , KrajewskaE, DescampsJ, TorrencePF. Anti-herpes activity of deoxythymidine analogues: specific dependence on virus-induced deoxythymidine kinase. Mol. Pharmacol.13(5) , 980–984 (1977).
  • Whitley RJ . The use of antiviral drugs during the neonatal period. Clin. Perinatol.39(1) , 69–81 (2012).
  • Lin WR , WozniakMA, CooperRJ, WilcockGK, ItzhakiRF. Herpesviruses in brain and Alzheimer‘s disease. J. Pathol.197(3) , 395–402 (2002).
  • Brown WD , BearerEL, DonahueJE. Chronic active herpes simplex type 2 encephalitis in an asymptomatic immunocompetent child. J. Child Neurol.25(7) , 901–908 (2010).
  • Kimberlin DW , WhitleyRJ, WanW et al. Oral acyclovir suppression and neurodevelopment after neonatal herpes. N. Engl. J. Med. 365(14) , 1284–1292 (2011).
  • Jankowsky JL , SluntHH, GonzalesV et al. Persistent amyloidosis following suppression of Abeta production in a transgenic model of Alzheimer disease. PLoS Med. 2(12) , e355 (2005).
  • Bearer EL , BreakefieldXO, SchubackD, ReeseTS, LavailJH. Retrograde axonal transport of herpes simplex virus: evidence for a single mechanism and a role for tegument. Proc. Natl Acad. Sci. USA97(14) , 8146–8150 (2000).
  • Bearer EL , Satpute-KrishnanP. The role of the cytoskeleton in the life cycle of viruses and intracellular bacteria: tracks, motors, and polymerization machines. Curr. Drug Targets Infect. Disord.2(3) , 247–264 (2002).
  • Satpute-Krishnan P , DegiorgisJA, BearerEL. Fast anterograde transport of herpes simplex virus: role for the amyloid precursor protein of alzheimer‘s disease. Aging Cell2(6) , 305–318 (2003).
  • Snyder A , BruunB, BrowneHM, JohnsonDC. A herpes simplex virus gD-YFP fusion glycoprotein is transported separately from viral capsids in neuronal axons. J. Virol.81(15) , 8337–8340 (2007).
  • Snyder A , PolcicovaK, JohnsonDC. Herpes simplex virus gE/gI and US9 proteins promote transport of both capsids and virion glycoproteins in neuronal axons. J. Virol.82(21) , 10613–10624 (2008).
  • Snyder A , WisnerTW, JohnsonDC. Herpes simplex virus capsids are transported in neuronal axons without an envelope containing the viral glycoproteins. J. Virol.80(22) , 11165–11177 (2006).
  • Antinone SE , ZaichickSV, SmithGA. Resolving the assembly state of herpes simplex virus during axon transport by live-cell imaging. J. Virol.84(24) , 13019–13030 (2010).
  • Negatsch A , GranzowH, MareschC et al. Ultrastructural analysis of virion formation and intraaxonal transport of herpes simplex virus type 1 in primary rat neurons. J. Virol. 84(24) , 13031–13035 (2010).
  • Alconada A , BauerU, SodeikB, HoflackB. Intracellular traffic of herpes simplex virus glycoprotein gE: characterization of the sorting signals required for its trans-Golgi network localization. J. Virol.73 , 377–387 (1999).
  • Ibiricu I , HuiskonenJT, DohnerK, BradkeF, SodeikB, GrunewaldK. Cryo electron tomography of herpes simplex virus during axonal transport and secondary envelopment in primary neurons. PLoS Pathog.7(12) , e1002406 (2011).
  • Radtke K , KienekeD, WolfsteinA et al. Plus- and minus-end directed microtubule motors bind simultaneously to herpes simplex virus capsids using different inner tegument structures. PLoS Pathog. 6(7) , e1000991 (2010).
  • Turcotte S , LetellierJ, LippeR. Herpes simplex virus type 1 capsids transit by the trans-Golgi network, where viral glycoproteins accumulate independently of capsid egress. J. Virol.79(14) , 8847–8860 (2005).
  • Cunningham AL , DiefenbachRJ, Miranda-SaksenaM et al. The cycle of human herpes simplex virus infection: virus transport and immune control. J. Infect. Dis. 194Suppl 1 , S11–18 (2006).
  • Diefenbach RJ , Miranda-SaksenaM, DouglasMW, CunninghamAL. Transport and egress of herpes simplex virus in neurons. Rev. Med. Virol.18(1) , 35–51 (2007).
  • Holland DJ , Miranda-SaksenaM, BoadleRA, ArmatiP, CunninghamAL. Anterograde transport of herpes simplex virus proteins in axons of peripheral human fetal neurons: an immunoelectron microscopy study. J. Virol.73(10) , 8503–8511 (1999).
  • Miranda-Saksena M , ArmatiP, BoadleRA, HollandDJ, CunninghamAL. Anterograde transport of herpes simplex virus type 1 in cultured, dissociated human and rat dorsal root ganglion neurons. J. Virol.74(4) , 1827–1839 (2000).
  • Penfold ME , ArmatiP, CunninghamAL. Axonal transport of herpes simplex virions to epidermal cells: evidence for a specialized mode of virus transport and assembly. Proc. Natl Acad. Sci. USA91(14) , 6529–6533 (1994).
  • Kristensson K , LyckeE, RoyttaM, SvennerholmB, VahlneA. Neuritic transport of herpes simplex virus in rat sensory neurons in vitro. Effects of substances interacting with microtubular function and axonal flow [nocodazole, taxol and erythro-9–3-(2-hydroxynonyl)adenine]. J. Gen. Virol.67(Pt 9) , 2023–2028 (1986).
  • Lycke E , HamarkB, JohanssonM, KrotochwilA, LyckeJ, SvennerholmB. Herpes simplex virus infection of the human sensory neuron. An electron microscopy study. Arch. Virol.101(1–2) , 87–104 (1988).
  • Lycke E , KristenssonK, SvennerholmB, VahlneA, ZieglerR. Uptake and transport of herpes simplex virus in neurites of rat dorsal root ganglia cells in culture. J. Gen. Virol.65(Pt 1) , 55–64 (1984).
  • Lavail JH , TauscherAN, SucherA, HarrabiO, BrandimartiR. Viral regulation of the long distance axonal transport of herpes simplex virus nucleocapsid. Neuroscience146(3) , 974–985 (2007).
  • Lee GE , MurrayJW, WolkoffAW, WilsonDW. Reconstitution of herpes simplex virus microtubule-dependent trafficking in vitro. J. Virol.80(9) , 4264–4275 (2006).
  • Satpute-Krishnan P , DegiorgisJA, ConleyMP, JangM, BearerEL. A peptide zipcode sufficient for anterograde transport within amyloid precursor protein. Proc. Natl Acad. Sci. USA103(44) , 16532–16537 (2006).
  • Mcgraw HM , AwasthiS, WojcechowskyjJA, FriedmanHM. Anterograde spread of herpes simplex virus type 1 requires glycoprotein E and glycoprotein I but not Us9. J. Virol.83(17) , 8315–8326 (2009).
  • O‘Regan KJ , BucksMA, MurphyMA, WillsJW, CourtneyRJ. A conserved region of the herpes simplex virus type 1 tegument protein VP22 facilitates interaction with the cytoplasmic tail of glycoprotein E (gE). Virology358(1) , 192–200 (2007).
  • Saldanha CE , LubinskiJ, MartinC et al. Herpes simplex virus type 1 glycoprotein E domains involved in virus spread and disease. J. Virol. 74(15) , 6712–6719 (2000).
  • Wang F , TangW, McGrawHM, BennettJ, EnquistLW, FriedmanHM. Herpes simplex virus type 1 glycoprotein E is required for axonal localization of capsid, tegument, and membrane glycoproteins. J. Virol.79(21) , 13362–13372 (2005).
  • Wang F , ZumbrunEE, HuangJ, SiH, MakarounL, FriedmanHM. Herpes simplex virus type 2 glycoprotein E is required for efficient virus spread from epithelial cells to neurons and for targeting viral proteins from the neuron cell body into axons. Virology405(2) , 269–279 (2010).
  • Dingwell KS , DoeringLC, JohnsonDC. Glycoproteins E and I facilitate neuron-to-neuron spread of herpes simplex virus. J. Virol.69(11) , 7087–7098 (1995).
  • Farnsworth A , JohnsonDC. Herpes simplex virus gE/gI must accumulate in the trans-Golgi network at early times and then redistribute to cell junctions to promote cell-cell spread. J. Virol.80(7) , 3167–3179 (2006).
  • Farnsworth A , WisnerTW, JohnsonDC. Cytoplasmic residues of herpes simplex virus glycoprotein gE required for secondary envelopment and binding of tegument proteins VP22 and UL11 to gE and gD. J. Virol.81(1) , 319–331 (2007).
  • Huber MT , TomazinR, WisnerT, BonameJ, JohnsonDC. Human cytomegalovirus US7, US8, US9, and US10 are cytoplasmic glycoproteins, not found at cell surfaces, and US9 does not mediate cell-to-cell spread. J. Virol.76(11) , 5748–5758 (2002).
  • Lyman MG , FeierbachB, CuranovicD, BisherM, EnquistLW. Pseudorabies virus Us9 directs axonal sorting of viral capsids. J. Virol.81(20) , 11363–11371 (2007).
  • Taylor MP , KramerT, LymanMG, KratchmarovR, EnquistLW. Visualization of an alphaherpesvirus membrane protein that is essential for anterograde axonal spread of infection in neurons. MBio3(2) , pii: e00063-12 (2012).
  • De Chiara G , MarcocciME, CivitelliL et al. APP processing induced by herpes simplex virus type 1 (HSV-1) yields several APP fragments in human and rat neuronal cells. PLoS One 5(11) , e13989 (2010).
  • Piacentini R , CivitelliL, RipoliC et al. HSV-1 promotes Ca2+ -mediated APP phosphorylation and Abeta accumulation in rat cortical neurons. Neurobiol. Aging 32(12) , 2323.e13–e26 (2011).
  • Santana S , RecueroM, BullidoMJ, ValdiviesoF, AldudoJ. Herpes simplex virus type I induces the accumulation of intracellular beta-amyloid in autophagic compartments and the inhibition of the non-amyloidogenic pathway in human neuroblastoma cells. Neurobiol. Aging33(2) , 430 e19–e33 (2012).
  • Wozniak MA , ItzhakiRF, ShipleySJ, DobsonCB. Herpes simplex virus infection causes cellular beta-amyloid accumulation and secretase upregulation. Neurosci. Lett.429(2–3) , 95–100 (2007).
  • Muresan V , MuresanZ. Is abnormal axonal transport a cause, a contributing factor or a consequence of the neuronal pathology in Alzheimer‘s disease? Future Neurol.4(6) , 761–773 (2009).
  • Muresan V , VarvelNH, LambBT, MuresanZ. The cleavage products of amyloid-beta precursor protein are sorted to distinct carrier vesicles that are independently transported within neurites. J. Neurosci.29(11) , 3565–3578 (2009).
  • Braak H , ThalDR, GhebremedhinE, Del Tredici K. Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J. Neuropathol. Exp. Neurol.70(11) , 960–969 (2011).
  • Braak H , ThalDR, MatschkeJ, GhebremedhinE, Del Tredici K. Age-related appearance of dendritic inclusions in catecholaminergic brainstem neurons. Neurobiol. Aging doi:10.1016/j.neurobiolaging.2012.02.031 (2012) (Epub ahead of print).
  • Carter CJ . Interactions between the products of the Herpes simplex genome and Alzheimer‘s disease susceptibility genes: relevance to pathological-signalling cascades. Neurochem. Int.52(6) , 920–934 (2008).
  • Wozniak MA , FrostAL, PrestonCM, ItzhakiRF. Antivirals reduce the formation of key Alzheimer‘s disease molecules in cell cultures acutely infected with herpes simplex virus type 1. PLoS One6(10) , e25152 (2011).
  • Feart C , HelmerC, FleuryH et al. Association between IgM anti-herpes simplex virus and plasma amyloid-beta levels. PLoS One 6(12) , e29480 (2011).
  • Soscia SJ , KirbyJE, WashicoskyKJ et al. The Alzheimer‘s disease-associated amyloid beta-protein is an antimicrobial peptide. PLoS One 5(3) , e9505 (2010).
  • Miklossy J . Emerging roles of pathogens in Alzheimer disease. Expert Rev. Mol. Med.13 , e30 (2011).
  • Panza F , FrisardiV, ImbimboBP, SeripaD, SolfrizziV, PilottoA. Monoclonal antibodies against beta-amyloid (Abeta) for the treatment of Alzheimer‘s disease: the Abeta target at a crossroads. Expert Opin. Biol. Ther.11(6) , 679–686 (2011).
  • Jonsson T , AtwalJK, SteinbergS et al. A mutation in APP protects against Alzheimer‘s disease and age-related cognitive decline. Nature 488(7409) , 96–99 (2012).
  • Hill AB . The environment and disease: association or causation? Proc. R. Soc. Med.58 , 295–300 (1965).
  • Fredericks DN , RelmanDA. Sequence-based identification of microbial pathogens: a reconsideration of Koch‘s postulates. Clin. Microbiol. Rev.9(1) , 18–33 (1996).
  • Letenneur L , PeresK, FleuryH et al. Seropositivity to herpes simplex virus antibodies and risk of Alzheimer‘s disease: a population-based cohort study. PLoS One 3(11) , e3637 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.