42
Views
0
CrossRef citations to date
0
Altmetric
Review

Tale of a Tegument Transactivator: The Past, Present and Future of Human CMV pp71

&
Pages 855-869 | Published online: 21 Sep 2012

References

  • Boeckh M , GeballeAP. Cytomegalovirus: pathogen, paradigm, and puzzle. J. Clin. Invest.121(5) , 1673–1680 (2011).
  • Reeves M , SinclairJ. Aspects of human cytomegalovirus latency and reactivation. Curr. Top. Microbiol. Immunol.325 , 297–313 (2008).
  • Goodrum F , CavinessK, ZagalloP. Human cytomegalovirus persistence. Cell. Microbiol.14(5) , 644–655 (2012).
  • Mocarski E , ShenkT, PassR. Cytomegaloviruses. In: Fields Virology, Howley P (Ed.). Lippincott, PA, USA, 2701–2772 (2007).
  • Mendelson M , MonardS, SissonsP, SinclairJ. Detection of endogenous human cytomegalovirus in CD34+ bone marrow progenitors. J. Gen. Virol.77(Pt 12) , 3099–3102 (1996).
  • Hahn G , JoresR, MocarskiES. Cytomegalovirus remains latent in a common precursor of dendritic and myeloid cells. Proc. Natl Acad. Sci. USA95(7) , 3937–3942 (1998).
  • Sindre H , TjoonnfjordGE, RollagH et al. Human cytomegalovirus suppression of and latency in early hematopoietic progenitor cells. Blood 88(12) , 4526–4533 (1996).
  • Maciejewski JP , BrueningEE, DonahueRE, MocarskiES, YoungNS, St Jeor SC. Infection of hematopoietic progenitor cells by human cytomegalovirus. Blood80(1) , 170–178 (1992).
  • Cheshier SH , MorrisonSJ, LiaoX, WeissmanIL. In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. Proc. Natl Acad. Sci. USA96(6) , 3120–3125 (1999).
  • Murphy E , YuD, GrimwoodJ et al. Coding potential of laboratory and clinical strains of human cytomegalovirus. Proc. Natl Acad. Sci. USA 100(25) , 14976–14981 (2003).
  • Kalejta RF . Tegument proteins of human cytomegalovirus. Microbiol. Mol. Biol. Rev.72(2) , 249–265 (2008).
  • Bresnahan WA , ShenkTE. UL82 virion protein activates expression of immediate early viral genes in human cytomegalovirus-infected cells. Proc. Natl Acad. Sci. USA97(26) , 14506–14511 (2000).
  • Liu B , StinskiMF. Human cytomegalovirus contains a tegument protein that enhances transcription from promoters with upstream ATF and AP-1 cis-acting elements. J. Virol.66(7) , 4434–4444 (1992).
  • Chee MS , BankierAT, BeckS et al. Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD169. Curr. Top. Microbiol. Immunol. 154 , 125–169 (1990).
  • Sarov I , AbadyI. The morphogenesis of human cytomegalovirus. Isolation and polypeptide characterization of cytomegalovirions and dense bodies. Virology66(2) , 464–473 (1975).
  • Irmiere A , GibsonW. Isolation and characterization of a noninfectious virion-like particle released from cells infected with human strains of cytomegalovirus. Virology130(1) , 118–133 (1983).
  • Nowak B , SullivanC, SarnowP et al. Characterization of monoclonal antibodies and polyclonal immune sera directed against human cytomegalovirus virion proteins. Virology 132(2) , 325–338 (1984).
  • Roby C , GibsonW. Characterization of phosphoproteins and protein kinase activity of virions, noninfectious enveloped particles, and dense bodies of human cytomegalovirus. J. Virol.59(3) , 714–727 (1986).
  • Hensel GM , MeyerHH, BuchmannI et al. Intracellular localization and expression of the human cytomegalovirus matrix phosphoprotein pp71 (ppUL82): evidence for its translocation into the nucleus. J. Gen. Virol. 77(Pt 12) , 3087–3097 (1996).
  • Nowak B , GmeinerA, SarnowP, LevineAJ, FleckensteinB. Physical mapping of human cytomegalovirus genes: identification of DNA sequences coding for a virion phosphoprotein of 71 kDa and a viral 65-kDa polypeptide. Virology134(1) , 91–102 (1984).
  • Ruger B , KlagesS, WallaB et al. Primary structure and transcription of the genes coding for the two virion phosphoproteins pp65 and pp71 of human cytomegalovirus. J. Virol. 61(2) , 446–453 (1987).
  • Gatherer D , SeirafianS, CunninghamC et al. High-resolution human cytomegalovirus transcriptome. Proc. Natl Acad. Sci. USA 108(49) , 19755–19760 (2011).
  • Bego M , MaciejewskiJ, KhaiboullinaS, PariG, St Jeor S. Characterization of an antisense transcript spanning the UL81–82 locus of human cytomegalovirus. J. Virol.79(17) , 11022–11034 (2005).
  • Murphy E , ShenkT. Human cytomegalovirus genome. Curr. Top. Microbiol. Immunol.325 , 1–19 (2008).
  • Dal Monte P , BessiaC, RipaltiA et al. Stably expressed antisense RNA to cytomegalovirus UL83 inhibits viral replication. J. Virol. 70(4) , 2086–2094 (1996).
  • Bego MG , KeyesLR, MaciejewskiJ, St Jeor SC. Human cytomegalovirus latency-associated protein LUNA is expressed during HCMV infections in vivo. Arch. Virol.156(10) , 1847–1851 (2011).
  • Reeves MB , SinclairJH. Analysis of latent viral gene expression in natural and experimental latency models of human cytomegalovirus and its correlation with histone modifications at a latent promoter. J. Gen. Virol.91(Pt 3) , 599–604 (2010).
  • Umbach JL , KramerMF, JurakI, KarnowskiHW, CoenDM, CullenBR. MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature454(7205) , 780–783 (2008).
  • Davison AJ , StowND. New genes from old: redeployment of dUTPase by herpesviruses. J. Virol.79(20) , 12880–12892 (2005).
  • Lewis PW , ElsaesserSJ, NohKM, StadlerSC, AllisCD. Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres. Proc. Natl Acad. Sci. USA107(32) , 14075–14080 (2010).
  • Michaelson JS . The Daxx enigma. Apoptosis5(3) , 217–220 (2000).
  • Hofmann H , SindreH, StammingerT. Functional interaction between the pp71 protein of human cytomegalovirus and the PML-interacting protein human Daxx. J. Virol.76(11) , 5769–5783 (2002).
  • Ishov AM , VladimirovaOV, MaulGG. Daxx-mediated accumulation of human cytomegalovirus tegument protein pp71 at ND10 facilitates initiation of viral infection at these nuclear domains. J. Virol.76(15) , 7705–7712 (2002).
  • Kalejta RF , BechtelJT, ShenkT. Human cytomegalovirus pp71 stimulates cell cycle progression by inducing the proteasome-dependent degradation of the retinoblastoma family of tumor suppressors. Mol. Cell. Biol.23(6) , 1885–1895 (2003).
  • Lee SH , KalejtaRF, KerryJ et al. BclAF1 restriction factor is neutralized by proteasomal degradation and microRNA repression during human cytomegalovirus infection. Proc. Natl Acad. Sci. USA 109(24) , 9575–9580 (2012).
  • Maere S , HeymansK, KuiperM. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics21(16) , 3448–3449 (2005).
  • Schierling K , StammingerT, MertensT, WinklerM. Human cytomegalovirus tegument proteins ppUL82 (pp71) and ppUL35 interact and cooperatively activate the major immediate–early enhancer. J. Virol.78(17) , 9512–9523 (2004).
  • Phillips SL , BresnahanWA. Identification of binary interactions between human cytomegalovirus virion proteins. J. Virol.85(1) , 440–447 (2010).
  • To A , BaiY, ShenA et al. Yeast two hybrid analyses reveal novel binary interactions between human cytomegalovirus-encoded virion proteins. PLoS One 6(4) , e17796 (2011).
  • Marshall KR , RowleyKV, RinaldiA et al. Activity and intracellular localization of the human cytomegalovirus protein pp71. J. Gen. Virol. 83(Pt 7) , 1601–1612 (2002).
  • Shen W , WestgardE, HuangL et al. Nuclear trafficking of the human cytomegalovirus pp71 (ppUL82) tegument protein. Virology 376(1) , 42–52 (2008).
  • Penkert RR , KalejtaRF. Nuclear localization of tegument-delivered pp71 in human cytomegalovirus-infected cells is facilitated by one or more factors present in terminally differentiated fibroblasts. J. Virol.84(19) , 9853–9863 (2010).
  • Saffert R , PenkertR, KalejtaR. Cellular and viral control over the initial events of human cytomegalovirus experimental latency in CD34+ cells. J. Virol.84(11) , 5594–5604 (2010).
  • Saffert RT , KalejtaRF. Human cytomegalovirus gene expression is silenced by Daxx-mediated intrinsic immune defense in model latent infections established in vitro. J. Virol.81(17) , 9109–9120 (2007).
  • La Boissiere S , HughesT, O‘HareP. HCF-dependent nuclear import of VP16. EMBO J.18(2) , 480–489 (1999).
  • Spaete RR , MocarskiES. Regulation of cytomegalovirus gene expression: alpha and beta promoters are trans activated by viral functions in permissive human fibroblasts. J. Virol.56(1) , 135–143 (1985).
  • Stinski MF , RoehrTJ. Activation of the major immediate early gene of human cytomegalovirus by cis-acting elements in the promoter-regulatory sequence and by virus-specific trans-acting components. J. Virol.55(2) , 431–441 (1985).
  • Baldick CJ Jr, Marchini A, Patterson CE, Shenk T. Human cytomegalovirus tegument protein pp71 (ppUL82) enhances the infectivity of viral DNA and accelerates the infectious cycle. J. Virol.71(6) , 4400–4408 (1997).
  • Borst EM , HahnG, KoszinowskiUH, MesserleM. Cloning of the human cytomegalovirus (HCMV) genome as an infectious bacterial artificial chromosome in Escherichia coli: a new approach for construction of HCMV mutants. J. Virol.73(10) , 8320–8329 (1999).
  • Paredes AM , YuD. Human cytomegalovirus: bacterial artificial chromosome (BAC) cloning and genetic manipulation. Curr. Protoc. Microbiol. Chapter 14, Unit 14E.4 (2012).
  • Biegalke BJ . Human cytomegalovirus US3 gene expression is regulated by a complex network of positive and negative regulators. Virology261(2) , 155–164 (1999).
  • Chau NH , VansonCD, KerryJA. Transcriptional regulation of the human cytomegalovirus US11 early gene. J. Virol.73(2) , 863–870 (1999).
  • Homer EG , RinaldiA, NichollMJ, PrestonCM. Activation of herpesvirus gene expression by the human cytomegalovirus protein pp71. J. Virol.73(10) , 8512–8518 (1999).
  • Preston CM , NichollMJ. Human cytomegalovirus tegument protein pp71 directs long-term gene expression from quiescent herpes simplex virus genomes. J. Virol.79(1) , 525–535 (2005).
  • Schmolke S , KernHF, DrescherP, JahnG, PlachterB. The dominant phosphoprotein pp65 (UL83) of human cytomegalovirus is dispensable for growth in cell culture. J. Virol.69(10) , 5959–5968 (1995).
  • Cantrell SR , BresnahanWA. Interaction between the human cytomegalovirus UL82 gene product (pp71) and hDaxx regulates immediate–early gene expression and viral replication. J. Virol.79(12) , 7792–7802 (2005).
  • Hume AJ , FinkelJS, KamilJP, CoenDM, CulbertsonMR, KalejtaRF. Phosphorylation of retinoblastoma protein by viral protein with cyclin-dependent kinase function. Science320(5877) , 797–799 (2008).
  • Kalejta RF , ShenkT. Proteasome-dependent, ubiquitin-independent degradation of the Rb family of tumor suppressors by the human cytomegalovirus pp71 protein. Proc. Natl Acad. Sci. USA100(6) , 3263–3268 (2003).
  • Saffert RT , KalejtaRF. Inactivating a cellular intrinsic immune defense mediated by Daxx is the mechanism through which the human cytomegalovirus pp71 protein stimulates viral immediate–early gene expression. J. Virol.80(8) , 3863–3871 (2006).
  • Cantrell SR , BresnahanWA. Human cytomegalovirus (HCMV) UL82 gene product (pp71) relieves hDaxx-mediated repression of HCMV replication. J. Virol.80(12) , 6188–6191 (2006).
  • Preston CM , NichollMJ. Role of the cellular protein hDaxx in human cytomegalovirus immediate–early gene expression. J. Gen. Virol.87(Pt 5) , 1113–1121 (2006).
  • Woodhall DL , GrovesIJ, ReevesMB, WilkinsonG, SinclairJH. Human Daxx-mediated repression of human cytomegalovirus gene expression correlates with a repressive chromatin structure around the major immediate early promoter. J. Biol. Chem.281(49) , 37652–37660 (2006).
  • Kalejta RF . Functions of human cytomegalovirus tegument proteins prior to immediate early gene expression. Curr. Top. Microbiol. Immunol.325 , 101–115 (2008).
  • Hwang J , KalejtaRF. Human cytomegalovirus protein pp71 induces Daxx SUMOylation. J. Virol.83(13) , 6591–6598 (2009).
  • Lukashchuk V , McFarlaneS, EverettRD, PrestonCM. Human cytomegalovirus protein pp71 displaces the chromatin-associated factor ATRX from nuclear domain 10 at early stages of infection. J. Virol.82(24) , 12543–12554 (2008).
  • Slobedman B , CaoJZ, AvdicS et al. Human cytomegalovirus latent infection and associated viral gene expression. Future Microbiol. 5(6) , 883–900 (2010).
  • Keyes LR , BegoMG, SolandM, St Jeor S. Cyclophilin A is required for efficient human cytomegalovirus DNA replication and reactivation. J. Gen. Virol.93(Pt 4) , 722–732 (2012).
  • Liu X , YuanJ, WuAW, McGonagillPW, GalleCS, MeierJL. Phorbol ester-induced human cytomegalovirus major immediate–early (MIE) enhancer activation through PKC-delta, CREB, and NF-kappaB desilences MIE gene expression in quiescently infected human pluripotent NTera2 cells. J. Virol.84(17) , 8495–8508 (2010).
  • Goodrum F , JordanCT, TerhuneSS, HighK, ShenkT. Differential outcomes of human cytomegalovirus infection in primitive hematopoietic cell subpopulations. Blood104(3) , 687–695 (2004).
  • Reeves MB , LehnerPJ, SissonsJG, SinclairJH. An in vitro model for the regulation of human cytomegalovirus latency and reactivation in dendritic cells by chromatin remodelling. J. Gen. Virol.86(Pt 11) , 2949–2954 (2005).
  • Groves IJ , SinclairJH. Knockdown of hDaxx in normally non-permissive undifferentiated cells does not permit human cytomegalovirus immediate–early gene expression. J. Gen. Virol.88(Pt 11) , 2935–2940 (2007).
  • Michaelson JS , BaderD, KuoF, KozakC, LederP. Loss of Daxx, a promiscuously interacting protein, results in extensive apoptosis in early mouse development. Genes Dev.13(15) , 1918–1923 (1999).
  • Penkert RR , KalejtaRF. Tegument protein control of latent herpesvirus establishment and animation. Herpesviridae2(1) , 3 (2011).
  • Thompson RL , PrestonCM, SawtellNM. De novo synthesis of VP16 coordinates the exit from HSV latency in vivo. PLoS Pathog.5(3) , e1000352 (2009).
  • Kalejta RF , ShenkT. Manipulation of the cell cycle by human cytomegalovirus. Front. Biosci.7 , d295–d306 (2002).
  • Kalejta RF , ShenkT. The human cytomegalovirus UL82 gene product (pp71) accelerates progression through the G1 phase of the cell cycle. J. Virol.77(6) , 3451–3459 (2003).
  • Kalejta RF , BrideauAD, BanfieldBW, BeavisAJ. An integral membrane green fluorescent protein marker, Us9-GFP, is quantitatively retained in cells during propidium iodide-based cell cycle analysis by flow cytometry. Exp. Cell Res.248(1) , 322–328 (1999).
  • Kalejta RF , ShenkT, BeavisAJ. Use of a membrane-localized green fluorescent protein allows simultaneous identification of transfected cells and cell cycle analysis by flow cytometry. Cytometry29(4) , 286–291 (1997).
  • Grana X , GarrigaJ, MayolX. Role of the retinoblastoma protein family, pRB, p107 and p130 in the negative control of cell growth. Oncogene17(25) , 3365–3383 (1998).
  • Trimarchi JM , LeesJA. Sibling rivalry in the E2F family. Nat. Rev. Mol. Cell. Biol.3(1) , 11–20 (2002).
  • Adams PD . Regulation of the retinoblastoma tumor suppressor protein by cyclin/cdks. Biochim. Biophys. Acta1471(3) , M123–M133 (2001).
  • Hume AJ , KalejtaRF. Regulation of the retinoblastoma proteins by the human herpesviruses. Cell Div.4 , 1 (2009).
  • Hwang J , WinklerL, KalejtaRF. Ubiquitin-independent proteasomal degradation during oncogenic viral infections. Biochim. Biophys. Acta1816(2) , 147–157 (2011).
  • Hwang J , KalejtaRF. Proteasome-dependent, ubiquitin-independent degradation of Daxx by the viral pp71 protein in human cytomegalovirus-infected cells. Virology367(2) , 334–338 (2007).
  • Schulman BA , HarperJW. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat. Rev. Mol. Cell. Biol.10(5) , 319–331 (2009).
  • Salvat C , AcquavivaC, ScheffnerM, RobbinsI, PiechaczykM, Jariel-EncontreI. Molecular characterization of the thermosensitive E1 ubiquitin-activating enzyme cell mutant A31N-ts20. Requirements upon different levels of E1 for the ubiquitination/degradation of the various protein substrates in vivo. Eur. J. Biochem.267(12) , 3712–3722 (2000).
  • Salsman J , JagannathanM, PaladinoP et al. Proteomic profiling of the human cytomegalovirus UL35 gene products reveals a role for UL35 in the DNA repair response. J. Virol. 86(2) , 806–820 (2012).
  • Tavalai N , PapiorP, RechterS, StammingerT. Nuclear domain 10 components promyelocytic leukemia protein and hDaxx independently contribute to an intrinsic antiviral defense against human cytomegalovirus infection. J. Virol.82(1) , 126–137 (2008).
  • Wethkamp N , HanenbergH, FunkeS et al. Daxx-beta and Daxx-gamma, two novel splice variants of the transcriptional co-repressor Daxx. J. Biol. Chem. 286(22) , 19576–19588 (2011).
  • Powers C , DefilippisV, MalouliD, FruhK. Cytomegalovirus immune evasion. Curr. Top. Microbiol. Immunol.325 , 333–359 (2008).
  • Neefjes J , JongsmaML, PaulP, BakkeO. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat. Rev. Immunol.11(12) , 823–836 (2011).
  • Lemmermann NA , BohmV, HoltappelsR, ReddehaseMJ. In vivo impact of cytomegalovirus evasion of CD8 T-cell immunity: facts and thoughts based on murine models. Virus Res.157(2) , 161–174 (2011).
  • Trgovcich J , CebullaC, ZimmermanP, SedmakDD. Human cytomegalovirus protein pp71 disrupts major histocompatibility complex class I cell surface expression. J. Virol.80(2) , 951–963 (2006).
  • Das S , PellettPE. Spatial relationships between markers for secretory and endosomal machinery in human cytomegalovirus-infected cells versus those in uninfected cells. J. Virol.85(12) , 5864–5879 (2011).
  • Sanchez V , GreisKD, SztulE, BrittWJ. Accumulation of virion tegument and envelope proteins in a stable cytoplasmic compartment during human cytomegalovirus replication: characterization of a potential site of virus assembly. J. Virol.74(2) , 975–986 (2000).
  • Van Domselaar R , PhilippenLE, QuadirR, WiertzEJ, KummerJA, BovenschenN. Noncytotoxic inhibition of cytomegalovirus replication through NK cell protease granzyme M-mediated cleavage of viral phosphoprotein 71. J. Immunol.185(12) , 7605–7613 (2010).
  • Chowdhury D , LiebermanJ. Death by a thousand cuts: granzyme pathways of programmed cell death. Annu. Rev. Immunol.26 , 389–420 (2008).
  • Knickelbein JE , KhannaKM, YeeMB, BatyCJ, KinchingtonPR, HendricksRL. Noncytotoxic lytic granule-mediated CD8+ T cell inhibition of HSV-1 reactivation from neuronal latency. Science322(5899) , 268–271 (2008).
  • Tavalai N , StammingerT. Intrinsic cellular defense mechanisms targeting human cytomegalovirus. Virus Res.157(2) , 128–133 (2011).
  • Zydek M , UeckerR, TavalaiN, StammingerT, HagemeierC, WiebuschL. General blockade of human cytomegalovirus immediate–early mRNA expression in the S/G2 phase by a nuclear, Daxx- and PML-independent mechanism. J. Gen. Virol.92(Pt 12) , 2757–2769 (2011).
  • Sinclair J . Chromatin structure regulates human cytomegalovirus gene expression during latency, reactivation and lytic infection. Biochim. Biophys. Acta1799(3–4) , 286–295 (2010).
  • Soroceanu L , CobbsCS. Is HCMV a tumor promoter? Virus Res.157(2) , 193–203 (2011).
  • Noriega V , RedmannV, GardnerT, TortorellaD. Diverse immune evasion strategies by human cytomegalovirus. Immunol. Res. doi:10.1007/s12026-012-8304-8 (2012) (Epub ahead of print).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.