52
Views
0
CrossRef citations to date
0
Altmetric
Review

Viral Genome Maintenance and Latent Replication of Human Gammaherpesviruses

&
Pages 545-559 | Published online: 31 May 2013

References

  • Cesarman E , ChangY, MoorePS, SaidJW, KnowlesDM. Kaposi‘s sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N. Engl. J. Med.332(18) , 1186–1191 (1995).
  • Chang Y , CesarmanE, PessinMSet al. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi‘s sarcoma. Science 266(5192) , 1865–1869 (1994).
  • Soulier J , GrolletL, OksenhendlerEet al. Kaposi‘s sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman‘s disease. Blood 86(4) , 1276–1280 (1995).
  • Epstein MA , AchongBG, BarrYM. Virus particles in cultured lymphoblasts from burkitt‘s lymphoma. Lancet1(7335) , 702–703 (1964).
  • Levine PH , AblashiDV, BerardCW, CarbonePP, WaggonerDE, MalanL. Elevated antibody titers to Epstein–Barr virus in Hodgkin‘s disease. Cancer27(2) , 416–421 (1971).
  • Henle G , HenleW. Immunofluorescence in cells derived from Burkitt‘s lymphoma. J. Bacteriol.91(3) , 1248–1256 (1966).
  • Zur Hausen H , Schulte-HolthausenH, KleinGet al. EBV DNA in biopsies of Burkitt tumours and anaplastic carcinomas of the nasopharynx. Nature 228(5276) , 1056–1058 (1970).
  • Ueda K , SakakibaraS, OhsakiE, YadaK. Lack of a mechanism for faithful partition and maintenance of the KSHV genome. Virus Res.122(1–2) , 85–94 (2006).
  • Cesarman E , MoorePS, RaoPH, InghiramiG, KnowlesDM, ChangY. In vitro establishment and characterization of two acquired immunodeficiency syndrome-related lymphoma cell lines (BC-1 and BC-2) containing Kaposi‘s sarcoma-associated herpesvirus-like (KSHV) DNA sequences. Blood86(7) , 2708–2714 (1995).
  • Adams A . Replication of latent Epstein–Barr virus genomes in Raji cells. J. Virol.61(5) , 1743–1746 (1987).
  • Yates JL , GuanN. Epstein–Barr virus-derived plasmids replicate only once per cell cycle and are not amplified after entry into cells. J. Virol.65(1) , 483–488 (1991).
  • Ballestas ME , ChatisPA, KayeKM. Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. Science284(5414) , 641–644 (1999).
  • Gardella T , MedveczkyP, SairenjiT, MulderC. Detection of circular and linear herpesvirus DNA molecules in mammalian cells by gel electrophoresis. J. Virol.50(1) , 248–254 (1984).
  • Yates J , WarrenN, ReismanD, SugdenB. A cis-acting element from the Epstein–Barr viral genome that permits stable replication of recombinant plasmids in latently infected cells. Proc. Natl Acad. Sci. USA81(12) , 3806–3810 (1984).
  • Staskus KA , ZhongW, GebhardKet al. Kaposi‘s sarcoma-associated herpesvirus gene expression in endothelial (spindle) tumor cells. J. Virol. 71(1) , 715–719 (1997).
  • Zhong W , WangH, HerndierB, GanemD. Restricted expression of Kaposi sarcoma-associated herpesvirus (human herpesvirus 8) genes in Kaposi sarcoma. Proc. Natl Acad. Sci. USA93(13) , 6641–6646 (1996).
  • Chang Y , MoorePS, TalbotSJet al. Cyclin encoded by KS herpesvirus. Nature 382(6590) , 410 (1996).
  • Thome M , SchneiderP, HofmannKet al. Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature 386(6624) , 517–521 (1997).
  • Muralidhar S , PumferyAM, HassaniMet al. Identification of kaposin (open reading frame K12) as a human herpesvirus 8 (Kaposi‘s sarcoma-associated herpesvirus) transforming gene. J. Virol. 72(6) , 4980–4988 (1998).
  • Lubyova B , PithaPM. Characterization of a novel human herpesvirus 8-encoded protein, vIRF-3, that shows homology to viral and cellular interferon regulatory factors. J. Virol.74(17) , 8194–8201 (2000).
  • Kellam P , BoshoffC, WhitbyD, MatthewsS, WeissRA, TalbotSJ. Identification of a major latent nuclear antigen, LNA-1, in the human herpesvirus 8 genome. J. Hum. Virol.1(1) , 19–29 (1997).
  • Rivas C , ThlickAE, ParraviciniC, MoorePS, ChangY. Kaposi‘s sarcoma-associated herpesvirus LANA2 is a B-cell-specific latent viral protein that inhibits p53. J. Virol.75(1) , 429–438 (2001).
  • Krishnan HH , NaranattPP, SmithMS, ZengL, BloomerC, ChandranB. Concurrent expression of latent and a limited number of lytic genes with immune modulation and antiapoptotic function by Kaposi‘s sarcoma-associated herpesvirus early during infection of primary endothelial and fibroblast cells and subsequent decline of lytic gene expression. J. Virol.78(7) , 3601–3620 (2004).
  • Lan K , KuppersDA, VermaSC, RobertsonES. Kaposi‘s sarcoma-associated herpesvirus-encoded latency-associated nuclear antigen inhibits lytic replication by targeting RTA: a potential mechanism for virus-mediated control of latency. J. Virol.78(12) , 6585–6594 (2004).
  • Lan K , KuppersDA, VermaSC, SharmaN, MurakamiM, RobertsonES. Induction of Kaposi‘s sarcoma-associated herpesvirus latency-associated nuclear antigen by the lytic transactivator RTA: a novel mechanism for establishment of latency. J. Virol.79(12) , 7453–7465 (2005).
  • Toth Z , MaglinteDT, LeeSHet al. Epigenetic analysis of KSHV latent and lytic genomes. PLoS Pathog. 6(7) , e1001013 (2010).
  • Gao SJ , KingsleyL, LiMet al. KSHV antibodies among Americans, Italians and Ugandans with and without Kaposi‘s sarcoma. Nat. Med. 2(8) , 925–928 (1996).
  • Kedes DH , OperskalskiE, BuschM, KohnR, FloodJ, GanemD. The seroepidemiology of human herpesvirus 8 (Kaposi‘s sarcoma-associated herpesvirus): distribution of infection in KS risk groups and evidence for sexual transmission. Nat. Med.2(8) , 918–924 (1996).
  • Simpson GR , SchulzTF, WhitbyDet al. Prevalence of Kaposi‘s sarcoma associated herpesvirus infection measured by antibodies to recombinant capsid protein and latent immunofluorescence antigen. Lancet 348(9035) , 1133–1138 (1996).
  • Lennette ET , BlackbournDJ, LevyJA. Antibodies to human herpesvirus type 8 in the general population and in Kaposi‘s sarcoma patients. Lancet348(9031) , 858–861 (1996).
  • Dittmer D , LagunoffM, RenneR, StaskusK, HaaseA, GanemD. A cluster of latently expressed genes in Kaposi‘s sarcoma-associated herpesvirus. J. Virol.72(10) , 8309–8315 (1998).
  • Talbot SJ , WeissRA, KellamP, BoshoffC. Transcriptional analysis of human herpesvirus-8 open reading frames 71, 72, 73, K14, and 74 in a primary effusion lymphoma cell line. Virology257(1) , 84–94 (1999).
  • Kedes DH , LagunoffM, RenneR, GanemD. Identification of the gene encoding the major latency-associated nuclear antigen of the Kaposi‘s sarcoma-associated herpesvirus. J. Clin. Invest.100(10) , 2606–2610 (1997).
  • Russo JJ , BohenzkyRA, ChienMCet al. Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc. Natl Acad. Sci. USA 93(25) , 14862–14867 (1996).
  • Barbera AJ , BallestasME, KayeKM. The Kaposi‘s sarcoma-associated herpesvirus latency-associated nuclear antigen 1 N terminus is essential for chromosome association, DNA replication, and episome persistence. J. Virol.78(1) , 294–301 (2004).
  • Cotter MA 2nd, Subramanian C, Robertson ES. The Kaposi‘s sarcoma-associated herpesvirus latency-associated nuclear antigen binds to specific sequences at the left end of the viral genome through its carboxy-terminus. Virology291(2) , 241–259 (2001).
  • Ballestas ME , KayeKM. Kaposi‘s sarcoma-associated herpesvirus latency-associated nuclear antigen 1 mediates episome persistence through cis-acting terminal repeat (TR) sequence and specifically binds TR DNA. J. Virol.75(7) , 3250–3258 (2001).
  • Garber AC , HuJ, RenneR. Latency-associated nuclear antigen (LANA) cooperatively binds to two sites within the terminal repeat, and both sites contribute to the ability of LANA to suppress transcription and to facilitate DNA replication. J. Biol. Chem.277(30) , 27401–27411 (2002).
  • Hu J , GarberAC, RenneR. The latency-associated nuclear antigen of Kaposi‘s sarcoma-associated herpesvirus supports latent DNA replication in dividing cells. J. Virol.76(22) , 11677–11687 (2002).
  • Lim C , SohnH, LeeD, GwackY, ChoeJ. Functional dissection of latency-associated nuclear antigen 1 of Kaposi‘s sarcoma-associated herpesvirus involved in latent DNA replication and transcription of terminal repeats of the viral genome. J. Virol.76(20) , 10320–10331 (2002).
  • Ye FC , ZhouFC, YooSM, XieJP, BrowningPJ, GaoSJ. Disruption of Kaposi‘s sarcoma-associated herpesvirus latent nuclear antigen leads to abortive episome persistence. J. Virol.78(20) , 11121–11129 (2004).
  • Dhar SK , YoshidaK, MachidaYet al. Replication from oriP of Epstein–Barr virus requires human ORC and is inhibited by geminin. Cell 106(3) , 287–296 (2001).
  • Verma SC , ChoudhuriT, KaulR, RobertsonES. Latency-associated nuclear antigen (LANA) of Kaposi‘s sarcoma-associated herpesvirus interacts with origin recognition complexes at the LANA binding sequence within the terminal repeats. J. Virol.80(5) , 2243–2256 (2006).
  • Ohsaki E , UedaK, SakakibaraS, DoE, YadaK, YamanishiK. Poly(ADP-ribose) polymerase 1 binds to Kaposi‘s sarcoma-associated herpesvirus (KSHV) terminal repeat sequence and modulates KSHV replication in latency. J. Virol.78(18) , 9936–9946 (2004).
  • Stedman W , DengZ, LuF, LiebermanPM. ORC, MCM, and histone hyperacetylation at the Kaposi‘s sarcoma-associated herpesvirus latent replication origin. J. Virol.78(22) , 12566–12575 (2004).
  • Grundhoff A , GanemD. Inefficient establishment of KSHV latency suggests an additional role for continued lytic replication in Kaposi sarcoma pathogenesis. J. Clin. Invest.113(1) , 124–136 (2004).
  • Friborg J Jr, Kong W, Hottiger MO, Nabel GJ. p53 inhibition by the LANA protein of KSHV protects against cell death. Nature402(6764) , 889–894 (1999).
  • Borah S , VermaSC, RobertsonES. ORF73 of herpesvirus Saimiri, a viral homolog of Kaposi‘s sarcoma-associated herpesvirus, modulates the two cellular tumor suppressor proteins p53 and pRb. J. Virol.78(19) , 10336–10347 (2004).
  • Radkov SA , KellamP, BoshoffC. The latent nuclear antigen of Kaposi sarcoma-associated herpesvirus targets the retinoblastoma–E2F pathway and with the oncogene Hras transforms primary rat cells. Nat. Med.6(10) , 1121–1127 (2000).
  • Ottinger M , ChristallaT, NathanK, BrinkmannMM, Viejo-BorbollaA, SchulzTF. Kaposi‘s sarcoma-associated herpesvirus LANA-1 interacts with the short variant of BRD4 and releases cells from a BRD4- and BRD2/RING3-induced G1 cell cycle arrest. J. Virol.80(21) , 10772–10786 (2006).
  • Liu J , MartinHJ, LiaoG, HaywardSD. The Kaposi‘s sarcoma-associated herpesvirus LANA protein stabilizes and activates c-Myc. J. Virol.81(19) , 10451–10459 (2007).
  • Verma SC , BorahS, RobertsonES. Latency-associated nuclear antigen of Kaposi‘s sarcoma-associated herpesvirus up-regulates transcription of human telomerase reverse transcriptase promoter through interaction with transcription factor SP1. J. Virol.78(19) , 10348–10359 (2004).
  • Lim C , GwackY, HwangS, KimS, ChoeJ. The transcriptional activity of cAMP response element-binding protein-binding protein is modulated by the latency associated nuclear antigen of Kaposi‘s sarcoma-associated herpesvirus. J. Biol. Chem.276(33) , 31016–31022 (2001).
  • Lu J , VermaSC, MurakamiMet al. Latency-associated nuclear antigen of Kaposi‘s sarcoma-associated herpesvirus (KSHV) upregulates survivin expression in KSHV-associated B-lymphoma cells and contributes to their proliferation. J. Virol. 83(14) , 7129–7141 (2009).
  • Bajaj BG , VermaSC, LanK, CotterMA, WoodmanZL, RobertsonES. KSHV encoded LANA upregulates Pim-1 and is a substrate for its kinase activity. Virology351(1) , 18–28 (2006).
  • Cotter MA 2nd, Robertson ES. The latency-associated nuclear antigen tethers the Kaposi‘s sarcoma-associated herpesvirus genome to host chromosomes in body cavity-based lymphoma cells. Virology264(2) , 254–264 (1999).
  • Hu J , RenneR. Characterization of the minimal replicator of Kaposi‘s sarcoma-associated herpesvirus latent origin. J. Virol.79(4) , 2637–2642 (2005).
  • Boulikas T . Common structural features of replication origins in all life forms. J. Cell. Biochem.60(3) , 297–316 (1996).
  • Hu J , LiuE, RenneR. Involvement of SSRP1 in latent replication of Kaposi‘s sarcoma-associated herpesvirus. J. Virol.83(21) , 11051–11063 (2009).
  • Sakakibara S , UedaK, NishimuraKet al. Accumulation of heterochromatin components on the terminal repeat sequence of Kaposi‘s sarcoma-associated herpesvirus mediated by the latency-associated nuclear antigen. J. Virol. 78(14) , 7299–7310 (2004).
  • Si H , VermaSC, RobertsonES. Proteomic analysis of the Kaposi‘s sarcoma-associated herpesvirus terminal repeat element binding proteins. J. Virol.80(18) , 9017–9030 (2006).
  • Garber AC , ShuMA, HuJ, RenneR. DNA binding and modulation of gene expression by the latency-associated nuclear antigen of Kaposi‘s sarcoma-associated herpesvirus. J. Virol.75(17) , 7882–7892 (2001).
  • Schwam DR , LucianoRL, MahajanSS, WongL, WilsonAC. Carboxy terminus of human herpesvirus 8 latency-associated nuclear antigen mediates dimerization, transcriptional repression, and targeting to nuclear bodies. J. Virol.74(18) , 8532–8540 (2000).
  • Han SJ , HuJ, PierceB, WengZ, RenneR. Mutational analysis of the latency-associated nuclear antigen DNA-binding domain of Kaposi‘s sarcoma-associated herpesvirus reveals structural conservation among gammaherpesvirus origin-binding proteins. J. Gen. Virol.91(Pt 9) , 2203–2215 (2010).
  • Shinohara H , FukushiM, HiguchiMet al. Chromosome binding site of latency-associated nuclear antigen of Kaposi‘s sarcoma-associated herpesvirus is essential for persistent episome maintenance and is functionally replaced by histone H1. J. Virol. 76(24) , 12917–12924 (2002).
  • Lim C , LeeD, SeoT, ChoiC, ChoeJ. Latency-associated nuclear antigen of Kaposi‘s sarcoma-associated herpesvirus functionally interacts with heterochromatin protein 1. J. Biol. Chem.278(9) , 7397–7405 (2003).
  • Piolot T , TramierM, CoppeyM, NicolasJC, MarechalV. Close but distinct regions of human herpesvirus 8 latency-associated nuclear antigen 1 are responsible for nuclear targeting and binding to human mitotic chromosomes. J. Virol.75(8) , 3948–3959 (2001).
  • Krithivas A , FujimuroM, WeidnerM, YoungDB, HaywardSD. Protein interactions targeting the latency-associated nuclear antigen of Kaposi‘s sarcoma-associated herpesvirus to cell chromosomes. J. Virol.76(22) , 11596–11604 (2002).
  • Matsumura S , PerssonLM, WongL, WilsonAC. The latency-associated nuclear antigen interacts with MeCP2 and nucleosomes through separate domains. J. Virol.84(5) , 2318–2330 (2010).
  • Szekely L , KissC, MattssonKet al. Human herpesvirus-8-encoded LNA-1 accumulates in heterochromatin- associated nuclear bodies. J. Gen. Virol. 80(Pt 11) , 2889–2900 (1999).
  • Barbera AJ , ChodaparambilJV, Kelley-ClarkeBet al. The nucleosomal surface as a docking station for Kaposi‘s sarcoma herpesvirus LANA. Science 311(5762) , 856–861 (2006).
  • Barbera AJ , ChodaparambilJV, Kelley-ClarkeB, LugerK, KayeKM. Kaposi‘s sarcoma-associated herpesvirus LANA hitches a ride on the chromosome. Cell Cycle5(10) , 1048–1052 (2006).
  • Bell SP , DuttaA. DNA replication in eukaryotic cells. Annu. Rev. Biochem.71 , 333–374 (2002).
  • Depamphilis ML . The ‘ORC cycle‘: a novel pathway for regulating eukaryotic DNA replication. Gene310 , 1–15 (2003).
  • Ohsaki E , SuzukiT, KarayamaM, UedaK. Accumulation of LANA at nuclear matrix fraction is important for Kaposi‘s sarcoma-associated herpesvirus replication in latency. Virus Res.139(1) , 74–84 (2009).
  • Anachkova B , DjeliovaV, RussevG. Nuclear matrix support of DNA replication. J. Cell. Biochem.96(5) , 951–961 (2005).
  • Si H , VermaSC, LampsonMA, CaiQ, RobertsonES. Kaposi‘s sarcoma-associated herpesvirus-encoded LANA can interact with the nuclear mitotic apparatus protein to regulate genome maintenance and segregation. J. Virol.82(13) , 6734–6746 (2008).
  • Kisurina-Evgenieva O , MackG, DuQ, MacaraI, KhodjakovA, ComptonDA. Multiple mechanisms regulate NuMA dynamics at spindle poles. J. Cell Sci.117(Pt 26) , 6391–6400 (2004).
  • Du Q , TaylorL, ComptonDA, MacaraIG. LGN blocks the ability of NuMA to bind and stabilize microtubules. A mechanism for mitotic spindle assembly regulation. Curr. Biol.12(22) , 1928–1933 (2002).
  • Luderus ME , den Blaauwen JL, de Smit OJ, Compton DA, van Driel R. Binding of matrix attachment regions to lamin polymers involves single-stranded regions and the minor groove. Mol. Cell. Biol.14(9) , 6297–6305 (1994).
  • Xiao B , VermaSC, CaiQet al. Bub1 and CENP-F can contribute to Kaposi‘s sarcoma-associated herpesvirus genome persistence by targeting LANA to kinetochores. J. Virol. 84(19) , 9718–9732 (2010).
  • Verma SC , BajajBG, CaiQ, SiH, SeelhammerT, RobertsonES. Latency-associated nuclear antigen of Kaposi‘s sarcoma-associated herpesvirus recruits uracil DNA glycosylase 2 at the terminal repeats and is important for latent persistence of the virus. J. Virol.80(22) , 11178–11190 (2006).
  • Cha S , LimC, LeeJYet al. DNA–PK/Ku complex binds to latency-associated nuclear antigen and negatively regulates Kaposi‘s sarcoma-associated herpesvirus latent replication. Biochem. Biophys. Res. Commun. 394(4) , 934–939 (2010).
  • Jager W , SantagS, Weidner-GlundeMet al. The ubiquitin-specific protease USP7 modulates the replication of Kaposi‘s sarcoma-associated herpesvirus latent episomal DNA. J. Virol. 86(12) , 6745–6757 (2012).
  • Holowaty MN , ZeghoufM, WuHet al. Protein profiling with Epstein–Barr nuclear antigen-1 reveals an interaction with the herpesvirus-associated ubiquitin-specific protease HAUSP/USP7. J. Biol. Chem. 278(32) , 29987–29994 (2003).
  • Purushothaman P , McDowellME, McGuinnessJ, SalasR, RumjahnSM, VermaSC. Kaposi‘s sarcoma-associated herpesvirus-encoded LANA recruits topoisomerase II beta for latent DNA replication of the terminal repeats. J. Virol.86(18) , 9983–9994 (2012).
  • Babcock GJ , HochbergD, Thorley-LawsonAD. The expression pattern of Epstein–Barr virus latent genes in vivo is dependent upon the differentiation stage of the infected B cell. Immunity13(4) , 497–506 (2000).
  • Rowe M , RoweDT, GregoryCDet al. Differences in B cell growth phenotype reflect novel patterns of Epstein–Barr virus latent gene expression in Burkitt‘s lymphoma cells. EMBO J. 6(9) , 2743–2751 (1987).
  • Raab-Traub N . Epstein–Barr virus in the pathogenesis of NPC. Semin. Cancer Biol.12(6) , 431–441 (2002).
  • Young L , AlfieriC, HennessyKet al. Expression of Epstein–Barr virus transformation-associated genes in tissues of patients with EBV lymphoproliferative disease. N. Engl. J. Med. 321(16) , 1080–1085 (1989).
  • Tierney R , NagraJ, HutchingsIet al. Epstein–Barr virus exploits BSAP/Pax5 to achieve the B-cell specificity of its growth-transforming program. J. Virol. 81(18) , 10092–10100 (2007).
  • Woisetschlaeger M , YandavaCN, FurmanskiLA, StromingerJL, SpeckSH. Promoter switching in Epstein–Barr virus during the initial stages of infection of B lymphocytes. Proc. Natl Acad. Sci. USA87(5) , 1725–1729 (1990).
  • Woisetschlaeger M , JinXW, YandavaCN, FurmanskiLA, StromingerJL, SpeckSH. Role for the Epstein–Barr virus nuclear antigen 2 in viral promoter switching during initial stages of infection. Proc. Natl Acad. Sci. USA88(9) , 3942–3946 (1991).
  • Hutchings IA , TierneyRJ, KellyGL, StylianouJ, RickinsonAB, BellAI. Methylation status of the Epstein–Barr virus (EBV) BamHI W latent cycle promoter and promoter activity: analysis with novel EBV-positive Burkitt and lymphoblastoid cell lines. J. Virol.80(21) , 10700–10711 (2006).
  • Chau CM , ZhangXY, McMahonSB, LiebermanPM. Regulation of Epstein–Barr virus latency type by the chromatin boundary factor CTCF. J. Virol.80(12) , 5723–5732 (2006).
  • Reisman D , YatesJ, SugdenB. A putative origin of replication of plasmids derived from Epstein–Barr virus is composed of two cis-acting components. Mol. Cell. Biol.5(8) , 1822–1832 (1985).
  • Rawlins DR , MilmanG, HaywardSD, HaywardGS. Sequence-specific DNA binding of the Epstein–Barr virus nuclear antigen (EBNA-1) to clustered sites in the plasmid maintenance region. Cell42(3) , 859–868 (1985).
  • Yates JL , CamioloSM, BashawJM. The minimal replicator of Epstein–Barr virus oriP. J. Virol.74(10) , 4512–4522 (2000).
  • Deng Z , LezinaL, ChenCJ, ShtivelbandS, SoW, LiebermanPM. Telomeric proteins regulate episomal maintenance of Epstein–Barr virus origin of plasmid replication. Mol. Cell9(3) , 493–503 (2002).
  • Gahn TA , SchildkrautCL. The Epstein–Barr virus origin of plasmid replication, oriP, contains both the initiation and termination sites of DNA replication. Cell58(3) , 527–535 (1989).
  • Harrison S , FisenneK, HearingJ. Sequence requirements of the Epstein–Barr virus latent origin of DNA replication. J. Virol.68(3) , 1913–1925 (1994).
  • Shirakata M , HiraiK. Identification of minimal oriP of Epstein–Barr virus required for DNA replication. J. Biochem.123(1) , 175–181 (1998).
  • Reisman D , SugdenB. trans activation of an Epstein–Barr viral transcriptional enhancer by the Epstein–Barr viral nuclear antigen 1. Mol. Cell. Biol.6(11) , 3838–3846 (1986).
  • Yates JL , WarrenN, SugdenB. Stable replication of plasmids derived from Epstein–Barr virus in various mammalian cells. Nature313(6005) , 812–815 (1985).
  • Wu H , KapoorP, FrappierL. Separation of the DNA replication, segregation, and transcriptional activation functions of Epstein–Barr nuclear antigen 1. J. Virol.76(5) , 2480–2490 (2002).
  • Ceccarelli DF , FrappierL. Functional analyses of the EBNA1 origin DNA binding protein of Epstein–Barr virus. J. Virol.74(11) , 4939–4948 (2000).
  • Kirchmaier AL , SugdenB. Dominant-negative inhibitors of EBNA-1 of Epstein–Barr virus. J. Virol.71(3) , 1766–1775 (1997).
  • Bochkarev A , BarwellJA, PfuetznerRA, FureyW Jr, Edwards AM, Frappier L. Crystal structure of the DNA-binding domain of the Epstein–Barr virus origin-binding protein EBNA 1. Cell83(1) , 39–46 (1995).
  • Ambinder RF , MullenMA, ChangYN, HaywardGS, HaywardSD. Functional domains of Epstein–Barr virus nuclear antigen EBNA-1. J. Virol.65(3) , 1466–1478 (1991).
  • Dantuma NP , HeessenS, LindstenK, JellneM, MasucciMG. Inhibition of proteasomal degradation by the Gly-Ala repeat of Epstein–Barr virus is influenced by the length of the repeat and the strength of the degradation signal. Proc. Natl Acad. Sci. USA97(15) , 8381–8385 (2000).
  • Levitskaya J , SharipoA, LeonchiksA, CiechanoverA, MasucciMG. Inhibition of ubiquitin/proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein–Barr virus nuclear antigen 1. Proc. Natl Acad. Sci. USA94(23) , 12616–12621 (1997).
  • Hung SC , KangMS, KieffE. Maintenance of Epstein–Barr virus (EBV) oriP-based episomes requires EBV-encoded nuclear antigen-1 chromosome-binding domains, which can be replaced by high-mobility group-I or histone H1. Proc. Natl Acad. Sci. USA98(4) , 1865–1870 (2001).
  • Jones CH , HaywardSD, RawlinsDR. Interaction of the lymphocyte-derived Epstein–Barr virus nuclear antigen EBNA-1 with its DNA-binding sites. J. Virol.63(1) , 101–110 (1989).
  • Milman G , HwangES. Epstein–Barr virus nuclear antigen forms a complex that binds with high concentration dependence to a single DNA-binding site. J. Virol.61(2) , 465–471 (1987).
  • Chen MR , MiddeldorpJM, HaywardSD. Separation of the complex DNA binding domain of EBNA-1 into DNA recognition and dimerization subdomains of novel structure. J. Virol.67(8) , 4875–4885 (1993).
  • Bochkarev A , BarwellJA, PfuetznerRA, BochkarevaE, FrappierL, EdwardsAM. Crystal structure of the DNA-binding domain of the Epstein–Barr virus origin-binding protein, EBNA1, bound to DNA. Cell84(5) , 791–800 (1996).
  • Hebner C , LasanenJ, BattleS, AiyarA. The spacing between adjacent binding sites in the family of repeats affects the functions of Epstein–Barr nuclear antigen 1 in transcription activation and stable plasmid maintenance. Virology311(2) , 263–274 (2003).
  • Wysokenski DA , YatesJL. Multiple EBNA1-binding sites are required to form an EBNA1-dependent enhancer and to activate a minimal replicative origin within oriP of Epstein–Barr virus. J. Virol.63(6) , 2657–2666 (1989).
  • Schepers A , RitziM, BoussetKet al. Human origin recognition complex binds to the region of the latent origin of DNA replication of Epstein–Barr virus. EMBO J. 20(16) , 4588–4602 (2001).
  • Chaudhuri B , XuH, TodorovI, DuttaA, YatesJL. Human DNA replication initiation factors, ORC and MCM, associate with oriP of Epstein–Barr virus. Proc. Natl Acad. Sci. USA98(18) , 10085–10089 (2001).
  • Ritzi M , TillackK, GerhardtJet al. Complex protein-DNA dynamics at the latent origin of DNA replication of Epstein–Barr virus. J. Cell Sci. 116(Pt 19) , 3971–3984 (2003).
  • Atanasiu C , DengZ, WiedmerA, NorseenJ, LiebermanPM. ORC binding to TRF2 stimulates oriP replication. EMBO Rep.7(7) , 716–721 (2006).
  • Deng Z , AtanasiuC, BurgJS, BroccoliD, LiebermanPM. Telomere repeat binding factors TRF1, TRF2, and hRAP1 modulate replication of Epstein–Barr virus oriP. J. Virol.77(22) , 11992–12001 (2003).
  • Dheekollu J , LiebermanPM. The replisome pausing factor Timeless is required for episomal maintenance of latent Epstein–Barr virus. J. Virol.85(12) , 5853–5863 (2011).
  • Saridakis V , ShengY, SarkariFet al. Structure of the p53 binding domain of HAUSP/USP7 bound to Epstein–Barr nuclear antigen 1 implications for EBV-mediated immortalization. Mol. Cell 18(1) , 25–36 (2005).
  • Sarkari F , Sanchez-AlcarazT, WangS, HolowatyMN, ShengY, FrappierL. EBNA1-mediated recruitment of a histone H2B deubiquitylating complex to the Epstein–Barr virus latent origin of DNA replication. PLoS Pathog.5(10) , e1000624 (2009).
  • Wang S , FrappierL. Nucleosome assembly proteins bind to Epstein–Barr virus nuclear antigen 1 and affect its functions in DNA replication and transcriptional activation. J. Virol.83(22) , 11704–11714 (2009).
  • Shire K , CeccarelliDF, Avolio-HunterTM, FrappierL. EBP2, a human protein that interacts with sequences of the Epstein–Barr virus nuclear antigen 1 important for plasmid maintenance. J. Virol.73(4) , 2587–2595 (1999).
  • Kapoor P , LavoieBD, FrappierL. EBP2 plays a key role in Epstein–Barr virus mitotic segregation and is regulated by aurora family kinases. Mol. Cell. Biol.25(12) , 4934–4945 (2005).
  • Jourdan N , Jobart-MalfaitA, Dos Reis G et al. Live-cell imaging reveals multiple interactions between Epstein–Barr virus nuclear antigen 1 and cellular chromatin during interphase and mitosis. J. Virol.86(9) , 5314–5329 (2012).
  • Kapoor P , FrappierL. EBNA1 partitions Epstein–Barr virus plasmids in yeast cells by attaching to human EBNA1-binding protein 2 on mitotic chromosomes. J. Virol.77(12) , 6946–6956 (2003).
  • Nayyar VK , ShireK, FrappierL. Mitotic chromosome interactions of Epstein–Barr nuclear antigen 1 (EBNA1) and human EBNA1-binding protein 2 (EBP2). J. Cell Sci.122(Pt 23) , 4341–4350 (2009).
  • Shire K , KapoorP, JiangKet al. Regulation of the EBNA1 Epstein–Barr virus protein by serine phosphorylation and arginine methylation. J. Virol. 80(11) , 5261–5272 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.