75
Views
0
CrossRef citations to date
0
Altmetric
Review

Orthopoxvirus Inhibitors that are Active in Animal Models: An Update from 2008 to 2012

Pages 891-901 | Published online: 27 Aug 2013

References

  • Cleri DJ , PorwancherRB, RickettiAJ, Ramos-BonnerLS, VernaleoJR. Smallpox as a bioterrorist weapon: myth or menace? Infect. Dis. Cin. North Am.20(2) , 329–357 (2006).
  • Anderson PD , BokorG. Bioterrorism: pathogens as weapons. J. Pharm. Practice25(5) , 521–529 (2012).
  • Russell PK . Project BioShield: what it is, why it is needed, and its accomplishments so far. Clin. Infect. Dis.45(Suppl. 1) , S68–S72 (2007).
  • Russell PK , GronvallGK. U.S. medical countermeasure development since 2001: a long way yet to go. Biosecur. Bioterror.10(1) , 66–76 (2012).
  • Bray M . Pathogenesis and potential antiviral therapy of complications of smallpox vaccination. Antiviral Res.58(2) , 101–114 (2003).
  • Bray M , WrightME. Progressive vaccinia. Clin. Infect. Dis.36(6) , 766–774 (2003).
  • Reed JL , ScottDE, BrayM. Eczema vaccinatum. Clin. Infect. Dis.54(6) , 832–840 (2012).
  • Smee DF , SidwellRW. A review of compounds exhibiting anti-orthopoxvirus activity in animal models. Antiviral Res.57(1–2) , 41–52 (2003).
  • Smee DF . Progress in the discovery of compounds inhibiting orthopoxviruses in animal models. Antivir. Chem. Chemother.19(3) , 115–124 (2008).
  • Duraffour S , MatthysP, van den Oord JJ et al. Study of camelpox virus pathogenesis in athymic nude mice. PLoS ONE6(6) , e21561 (2011).
  • Anderson MG , FrenkelLD, HomannS, GuffeyJ. A case of severe monkeypox virus disease in an American child: emerging infections and changing professional values. Ped. Infect. Dis. J.22(12) , 1093–1096 (2003).
  • Smith AL , St Claire M, Yellayi S et al. Intrabronchial inoculation of cynomolgus macaques with cowpox virus. J. Gen. Virol.93(Pt 1) , 159–164 (2012).
  • Goff AJ , ChapmanJ, FosterC et al. A novel respiratory model of infection with monkeypox virus in cynomolgus macaques. J. Virol. 85(10) , 4898–4909 (2011).
  • Barnewall RE , FisherDA, RobertsonAB, ValesPA, KnostmanKA, BiggerJE. Inhalational monkeypox virus infection in cynomolgus macaques. Front. Cell Infect. Microbiol.2 , 117 (2012).
  • Goff A , MuckerE, RaymondJ et al. Infection of cynomolgus macaques with a recombinant monkeypox virus encoding green fluorescent protein. Arch. Virol. 156(10) , 1877–1881 (2011).
  • Parker S , BullerRM. A review of experimental and natural infections of animals with monkeypox virus between 1958 and 2012. Future Virol.8(2) , 129–157 (2013).
  • Jordan R , HrubyD. Smallpox antiviral drug development: satisfying the animal efficacy rule. Expert Rev. Anti Infect. Ther.4(2) , 277–289 (2006).
  • Duraffour S , AndreiG, TopalisD et al. Mutations conferring resistance to viral DNA polymerase inhibitors in camelpox virus give different drug-susceptibility profiles in vaccinia virus. J. Virol. 86(13) , 7310–7325 (2012).
  • Yang G , PevearDC, DaviesMH et al. An orally bioavailable antipoxvirus compound (ST-246) inhibits extracellular virus formation and protects mice from lethal orthopoxvirus challenge. J. Virol. 79(20) , 13139–13149 (2005).
  • Jordan R , LeedsJM, TyavanagimattS, HrubyDE. Development of ST-246® for treatment of poxvirus infections. Viruses2(11) , 2409–2435 (2010).
  • Vora S , DamonI, FulginitiV et al. Severe eczema vaccinatum in a household contact of a smallpox vaccinee. Clin. Infect. Dis. 46(10) , 1555–1561 (2008).
  • Wertheimer ER , OliveDS, BrundageJF, ClarkLL. Contact transmission of vaccinia virus from smallpox vaccinees in the United States, 2003–2011. Vaccine30(6) , 985–988 (2012).
  • Lederman ER , DavidsonW, GroffHL et al. Progressive vaccinia: case description and laboratory-guided therapy with vaccinia immune globulin, ST-246, and CMX001. J. Infect. Dis. 206(9) , 1372–1385 (2012).
  • Erickson C , DriscollM, GaspariA. Efficacy of intravenous cidofovir in the treatment of giant molluscum contagiosum in a patient with human immunodeficiency virus. Arch. Dermatol.147(6) , 652–654 (2011).
  • Cohen JI , DavilaW, AliMA et al. Detection of molluscum contagiosum virus (MCV) DNA in the plasma of an immunocompromised patient and possible reduction of MCV DNA with CMX-001. J. Infect. Dis. 205(5) , 794–797 (2012).
  • Fisher RW , ReedJL, SnoyPJ et al. Postexposure prevention of progressive vaccinia in SCID mice treated with vaccinia immune globulin. Clin. Vaccine Immunol. 18(1) , 67–74 (2011).
  • Neyts J , De Clercq E. Efficacy of (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl) cytosine for the treatment of lethal vaccinia virus infections in severe combined immune deficiency (SCID) mice. J. Med. Virol.41(3) , 242–246 (1993).
  • Ciesla SL , TrahanJ, WanWB et al. Esterification of cidofovir with alkoxyalkanols increases oral bioavailability and diminishes drug accumulation in kidney. Antiviral Res. 59(3) , 163–171 (2003).
  • Lanier R , TrostL, TippinT et al. Development of CMX001 for the treatment of poxvirus infections. Viruses 2(12) , 2740–2762 (2010).
  • Painter W , RobertsonA, TrostLC, GodkinS, LampertB, PainterG. First pharmacokinetic and safety study in humans of the novel lipid antiviral conjugate CMX001, a broad-spectrum oral drug active against double-stranded DNA viruses. Antimicrob. Agents Chemother.56(5) , 2726–2734 (2012).
  • Jordan R , GoffA, FrimmA et al. ST-246 antiviral efficacy in a nonhuman primate monkeypox model: determination of the minimal effective dose and human dose justification. Antimicrob. Agents Chemother. 53(5) , 1817–1822 (2009).
  • Kuroda K , FukudaT, OkumuraK et al. Ceragenin CSA-13 induces cell cycle arrest and antiproliferative effects in wild-type and p53 null mutant HCT116 colon cancer cells. Anticancer Drugs 24(8) , 826–834 (2013).
  • Miller RL , MengTC, TomaiMA. The antiviral activity of Toll-like receptor 7 and 7/8 agonists. Drug News Perspect.21(2) , 69–87 (2008).
  • Overby LR , DuffRG, MaoJC. Antiviral potential of phosphonoacetic acid. Ann. NY Acad. Sci.284 , 310–320 (1977).
  • Reeves PM , BommariusB, LebeisS et al. Disabling poxvirus pathogenesis by inhibition of Abl-family tyrosine kinases. Nat. Med. 11(7) , 731–739 (2005).
  • Deng L , DaiP, CiroA, SmeeDF, DjaballahH, ShumanS. Identification of novel antipoxviral agents: mitoxantrone inhibits vaccinia virus replication by blocking virion assembly. J. Virol.81(24) , 13392–13402 (2007).
  • Kern ER , PrichardMN, QuenelleDC et al. Activities of certain 5-substituted 4´-thiopyrimidine nucleosides against orthopoxvirus infections. Antimicrob. Agents Chemother. 53(2) , 572–579 (2009).
  • Neyts J , VerbekenE, De Clercq E. Effect of 5-iodo-2´-deoxyuridine on vaccinia virus (orthopoxvirus) infections in mice. Antimicrob. Agents Chemother.46(9) , 2842–2847 (2002).
  • Smee DF , SidwellRW. Anti-cowpox virus activities of certain adenosine analogs, arabinofuranosyl nucleosides, and 2´-fluoro-arabinofuranosyl nucleosides. Nucleosides Nucleotides Nucleic Acids23(1–2) , 375–383 (2004).
  • Rus F , MorlockK, SilvermanN, PhamN, KotwalGJ, MarshallWL. Characterization of poxvirus-encoded proteins that regulate innate immune signaling pathways. Methods Mol. Biol.890 , 273–288 (2012).
  • Smee DF , BaileyKW, WongMH, WanderseeMK, SidwellRW. Topical cidofovir is more effective than is parenteral therapy for treatment of progressive vaccinia in immunocompromised mice. J. Infect. Dis.190(6) , 1132–1139 (2004).
  • Quenelle DC , PrichardMN, KeithKA et al. Synergistic efficacy of the combination of ST-246 with CMX001 against orthopoxviruses. Antimicrob. Agents Chemother. 51(11) , 4118–4124 (2007).
  • Reynolds MG , DamonIK. Outbreaks of human monkeypox after cessation of smallpox vaccination. Trends Microbiol.20(2) , 80–87 (2012).
  • Parker S , ChenNG, FosterS et al. Evaluation of disease and viral biomarkers as triggers for therapeutic intervention in respiratory mousepox – an animal model of smallpox. Antiviral Res. 94(1) , 44–53 (2012).
  • Smee DF , GowenBB, WanderseeMK et al. Differential pathogenesis of cowpox virus intranasal infections in mice induced by low and high inoculum volumes and effects of cidofovir treatment. Int. J. Antimicrob. Agents 31(4) , 352–359 (2008).
  • Parker S , SiddiquiAM, OberleC et al. Mousepox in the C57BL/6 strain provides an improved model for evaluating anti-poxvirus therapies. Virology 385(1) , 11–21 (2009).
  • Luker KE , LukerGD. Applications of bioluminescence imaging to antiviral research and therapy: multiple luciferase enzymes and quantitation. Antiviral Res.78(3) , 179–187 (2008).
  • Zaitseva M , KapnickSM, ScottJ et al. Application of bioluminescence imaging to the prediction of lethality in vaccinia virus-infected mice. J. Virol. 83(20) , 10437–10447 (2009).
  • Americo JL , MossB, EarlPL. Identification of wild-derived inbred mouse strains highly susceptible to monkeypox virus infection for use as small animal models. J. Virol.84(16) , 8172–8180 (2010).
  • Earl PL , AmericoJL, MossB. Lethal monkeypox virus infection of CAST/EiJ mice is associated with a deficient gamma interferon response. J. Virol.86(17) , 9105–9112 (2012).
  • Stabenow J , BullerRM, SchriewerJ, WestC, SagartzJE, ParkerS. A mouse model of lethal infection for evaluating prophylactics and therapeutics against monkeypox virus. J. Virol.84(8) , 3909–3920 (2010).
  • Schultz DA , SagartzJE, HusoDL, BullerRM. Experimental infection of an African dormouse (Graphiurus kelleni) with monkeypox virus. Virology383(1) , 86–92 (2009).
  • Hutson CL , OlsonVA, CarrollDS et al. A prairie dog animal model of systemic orthopoxvirus disease using west African and Congo basin strains of monkeypox virus. J. Gen. Virol. 90(Pt 2) , 323–333 (2009).
  • Kramski M , Matz-RensingK, Stahl-HennigC et al. A novel highly reproducible and lethal nonhuman primate model for orthopox virus infection. PLoS ONE 5(4) , e10412 (2010).
  • Israely T , ParanN, LustigS et al. A single cidofovir treatment rescues animals at progressive stages of lethal orthopoxvirus disease. Virol. J. 9 , 119 (2012).
  • Verreault D , SivasubramaniSK, TaltonJD et al. Evaluation of inhaled cidofovir as postexposure prophylactic in an aerosol rabbitpox model. Antiviral Res. 93(1) , 204–208 (2012).
  • Parker S , SchriewerJ, OberleC et al. Using biomarkers to stage disease progression in a lethal mousepox model treated with CMX001. Antivir. Ther. 13(7) , 863–873 (2008).
  • Parker S , TouchetteE, OberleC et al. Efficacy of therapeutic intervention with an oral ether-lipid analogue of cidofovir (CMX001) in a lethal mousepox model. Antiviral Res. 77(1) , 39–49 (2008).
  • Rice AD , AdamsMM, LampertB et al. Efficacy of CMX001 as a prophylactic and presymptomatic antiviral agent in New Zealand white rabbits infected with rabbitpox virus, a model for orthopoxvirus infections of humans. Viruses 3(2) , 63–82 (2011).
  • Rice AD , AdamsMM, WallaceG et al. Efficacy of CMX001 as a post exposure antiviral in New Zealand white rabbits infected with rabbitpox virus, a model for orthopoxvirus infections of humans. Viruses 3(1) , 47–62 (2011).
  • Huggins J , GoffA, HensleyL et al. Nonhuman primates are protected from smallpox virus or monkeypox virus challenges by the antiviral drug ST-246. Antimicrob. Agents Chemother. 53(6) , 2620–2625 (2009).
  • Smith SK , SelfJ, WeissS et al. Effective antiviral treatment of systemic orthopoxvirus disease: ST-246 treatment of prairie dogs infected with monkeypox. J. Virol. 85(17) , 9176–9187 (2011).
  • Nalca A , HatkinJM, GarzaNL et al. Evaluation of orally delivered ST-246 as postexposure prophylactic and antiviral therapeutic in an aerosolized rabbitpox rabbit model. Antiviral Res. 79(2) , 121–127 (2008).
  • Berhanu A , KingDS, MosierS et al. ST-246 inhibits in vivo poxvirus dissemination, virus shedding, and systemic disease manifestation. Antimicrob. Agents Chemother. 53(12) , 4999–5009 (2009).
  • Grosenbach DW , BerhanuA, KingDS et al. Efficacy of ST-246 versus lethal poxvirus challenge in immunodeficient mice. Proc. Natl Acad. Sci. USA 107(2) , 838–843 (2010).
  • Santos-Fernandes E , BeltrameCO, ByrdCM et al. Increased susceptibility of Cantagalo virus to the antiviral effect of ST-246®. Antiviral Res. 97(3) , 301–311 (2013).
  • Howell MD , StreibJE, KimBE et al. Ceragenins: a class of antiviral compounds to treat orthopox infections. J. Invest. Dermatol. 129(11) , 2668–2675 (2009).
  • Smee DF , BaileyKW, WongMH, TarbetEB. Topical treatment of cutaneous vaccinia virus infections in immunosuppressed hairless mice with selected antiviral substances. Antivir. Chem. Chemother.21(5) , 201–208 (2011).
  • Gammon DB , SnoeckR, FitenP et al. Mechanism of antiviral drug resistance of vaccinia virus: identification of residues in the viral DNA polymerase conferring differential resistance to antipoxvirus drugs. J. Virol. 82(24) , 12520–12534 (2008).
  • Reeves PM , SmithSK, OlsonVA et al. Variola and monkeypox viruses utilize conserved mechanisms of virion motility and release that depend on abl and SRC family tyrosine kinases. J. Virol. 85(1) , 21–31 (2011).
  • Tarbet EB , LarsonD, AndersonBJ, BaileyKW, WongMH, SmeeDF. Evaluation of imiquimod for topical treatment of vaccinia virus cutaneous infections in immunosuppressed hairless mice. Antiviral Res.90(3) , 126–133 (2011).
  • Smee DF , WongMH, RussellA, EnnisJ, TurnerJD. Therapy and long-term prophylaxis of vaccinia virus respiratory infections in mice with an adenovirus-vectored interferon alpha (mDEF201). PLoS ONE6(10) , e26330 (2011).
  • Altmann SE , SmithAL, DyallJ et al. Inhibition of cowpox virus and monkeypox virus infection by mitoxantrone. Antiviral Res. 93(2) , 305–308 (2012).
  • Ahmed CM , DabelicR, WaibociLW, JagerLD, HeronLL, JohnsonHM. SOCS-1 mimetics protect mice against lethal poxvirus infection: identification of a novel endogenous antiviral system. J. Virol.83(3) , 1402–1415 (2009).
  • Chen N , BelloneCJ, SchriewerJ et al. Poxvirus interleukin-4 expression overcomes inherent resistance and vaccine-induced immunity: pathogenesis, prophylaxis, and antiviral therapy. Virology 409(2) , 328–337 (2011).
  • Bolken TC , HrubyDE. Discovery and development of antiviral drugs for biodefense: experience of a small biotechnology company. Antiviral Res.77(1) , 1–5 (2008).
  • Hostetler KY . Alkoxyalkyl prodrugs of acyclic nucleoside phosphonates enhance oral antiviral activity and reduce toxicity: current state of the art. Antiviral Res.82(2) , A84–A98 (2009).
  • De Clercq E . Historical perspectives in the development of antiviral agents against poxviruses. Viruses2(6) , 1322–1339 (2010).
  • Hostetler KY . Synthesis and early development of hexadecyloxypropyl cidofovir: an oral antipoxvirus nucleoside phosphonate. Viruses2(10) , 2213–2225 (2010).
  • Quenelle DC , KernER. Treatment of vaccinia and cowpox virus infections in mice with CMX001 and ST-246. Viruses2(12) , 2681–2695 (2010).
  • Roy CJ , VossTG. Use of the aerosol rabbitpox virus model for evaluation of anti-poxvirus agents. Viruses2(9) , 2096–2107 (2010).
  • Nalca A , NicholsDK. Rabbitpox: a model of airborne transmission of smallpox. J. Gen. Virol.92(Pt 1) , 31–35 (2011).
  • Prichard MN , KernER. Orthopoxvirus targets for the development of new antiviral agents. Antiviral Res.94(2) , 111–125 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.