1,578
Views
17
CrossRef citations to date
0
Altmetric
Review

How Rap and its GEFs control liver physiology and cancer development. C3G alterations in human hepatocarcinoma

, , &
Article: HEP05 | Received 19 Dec 2017, Accepted 20 Mar 2018, Published online: 16 Apr 2018

References

  • Guo XX, An S, Yang Y, Liu Y, Hao Q, Xu TR. Rap-interacting proteins are key players in the rap symphony orchestra. Cell. Physiol. Biochem. 39(1), 137–156 (2016).
  • Ohba Y, Ikuta K, Ogura A et al. Requirement for C3G-dependent Rap1 activation for cell adhesion and embryogenesis. EMBO J. 20(13), 3333–3341 (2001).
  • Katagiri K, Maeda A, Shimonaka M, Kinashi T. RAPL, a Rap1-binding molecule that mediates Rap1-induced adhesion through spatial regulation of LFA-1. Nat. Immunol. 4(8), 741–748 (2003).
  • Kooistra MR, Dubé N, Bos JL. Rap1: a key regulator in cell-cell junction formation. J. Cell Sci. 120(Pt 1), 17–22 (2007).
  • Pannekoek WJ, Kooistra MR, Zwartkruis FJ, Bos JL. Cell–cell junction formation: the role of Rap1 and Rap1 guanine nucleotide exchange factors. Biochim. Biophys. Acta. 1788(4), 790–796 (2009).
  • Hogan C, Serpente N, Cogram P et al. Rap1 regulates the formation of E-cadherin-based cell-cell contacts. Mol. Cell. Biol. 24(15), 6690–6700 (2004).
  • Priego N, Arechederra M, Sequera C et al. C3G knock-down enhances migration and invasion by increasing Rap1-mediated p38α activation, while it impairs tumor growth through p38α-independent mechanisms. Oncotarget 7(29), 45060–45078 (2016).
  • Shimonaka M, Katagiri K, Nakayama T et al. Rap1 translates chemokine signals to integrin activation, cell polarization, and motility across vascular endothelium under flow. J. Cell Biol. 161(2), 417–427 (2003).
  • Schwamborn JC, Püschel AW. The sequential activity of the GTPases Rap1B and Cdc42 determines neuronal polarity. Nat. Neurosci. 7(9), 923–929 (2004).
  • Branham MT, Bustos MA, De Blas GA, Rehmann H, Zarelli VE, Treviño CL. Epac activates the small G proteins Rap1 and Rab3A to achieve exocytosis. J. Biol. Chem. 284(37), 24825–24839 (2009).
  • Maia V, Sanz M, Gutierrez-Berzal J et al. C3G silencing enhances STI-571-induced apoptosis in CML cells through p38 MAPK activation, but it antagonizes STI-571 inhibitory effect on survival. Cell Signal. 21(7), 1229–1235 (2009).
  • Altschuler DL, Ribeiro-Neto F. Mitogenic and oncogenic properties of the small G protein Rap1b. Proc. Natl Acad. Sci. USA 95(13), 7475–7479 (1998).
  • Chen CH, Chuang HC, Huang CC et al. Overexpression of Rap-1A indicates a poor prognosis for oral cavity squamous cell carcinoma and promotes tumor cell invasion via Aurora-A modulation. Am. J. Pathol. 182(2), 516–528 (2013).
  • Minato N. Rap G protein signal in normal and disordered lymphohematopoiesis. Exp. Cell Res. 319(15), 2323–2328 (2013).
  • Jeyaraj SC, Unger NT, Chotani MA. Rap1 GTPases: an emerging role in the cardiovasculature. Life Sci. 88(15–16), 645–652 (2011).
  • Radha V, Mitra A, Dayma K, Sasikumar K. Signalling to actin: role of C3G, a multitasking guanine-nucleotide-exchange factor. Biosci. Rep. 31(4), 231–244 (2011).
  • Gutiérrez-Berzal J, Casterllano E, Martín-Encabo S et al. Characterization of p87C3G, a novel, truncated C3G isoform that is overexpressed in chronic myeloid leukemia and interacts with Bcr-Abl. Exp. Cell Res. 312(6), 938–948 (2006).
  • Shivakrupa R, Radha V, Sudhakar Ch, Swarup G. Physical and functional interaction between Hck tyrosine kinase and guanine nucleotide exchange factor C3G results in apoptosis, which is independent of C3G catalytic domain. J. Biol. Chem. 278(52), 52188–52194 (2003).
  • Ichiba T, Hashimoto Y, Nakaya M, Kuraishi Y, Tanaka S, Kurata T. Activation of C3G guanine nucleotide exchange factor for Rap1 by phosphorylation of tyrosine 504. J. Biol. Chem. 274(20), 14376–14381 (1999).
  • Tanaka S, Morishita T, Hashimoto Y et al. C3G, a guanine nucleotide-releasing protein expressed ubiquitously, binds to the Src homology 3 domains of CRK and GRB2/ASH proteins. Proc. Natl Acad. Sci. USA 91(8), 3443–3447 (1994).
  • Guerrero C, Fernandez-Medarde A, Rojas JM, Font de Mora J, Esteban LM, Santos E. Transformation suppressor activity of C3G is independent of its CDC25-homology domain. Oncogene 16(5), 613–624 (1998).
  • de Jong R, van Wijk A, Heisterkamp N, Groffen J. C3G is tyrosine-phosphorylated after integrin-mediated cell adhesion in normal but not in Bcr/Abl expressing cells. Oncogene 17(21), 2805–2810 (1998).
  • Arai A, Nosaka Y, Kanda E, Yamamoto K, Miyasaka N, Miura O. Rap1 is activated by erythropoietin or interleukin-3 and is involved in regulation of beta1 integrin-mediated hematopoietic cell adhesion. J. Biol. Chem. 276(13), 10453–10462 (2001).
  • Voss AK, Gruss P, Thomas T. The guanine nucleotide exchange factor C3G is necessary for the formation of focal adhesions and vascular maturation. Development 130(2), 355–367 (2003).
  • Uemura N, Griffin JD. The adapter protein Crkl links Cbl to C3G after integrin ligation and enhances cell migration. J. Biol. Chem. 274(53), 37525–37532 (1999).
  • Chiang SH, Baumann CA, Kanzaki M et al. Insulin-stimulated GLUT4 translocation requires the CAP-dependent activation of TC10. Nature 410(6831), 944–948 (2001).
  • Sasi Kumar K, Ramadhas A, Nayak SC, Kaniyappan S, Dayma K1, Radha V. C3G (RapGEF1) a regulator of actin dynamics promotes survival and myogenic differentiation of mouse mesenchymal cells. Biochim. Biophys. Acta. 1853(10 Pt A), 2629–2639 (2015).
  • Shivakrupa R, Radha V, Sudhakar Ch, Swarup G. Physical and functional interaction between Hck tyrosine kinase and guanine nucleotide exchange factor C3G results in apoptosis, which is independent of C3G catalytic domain. J. Biol. Chem. 278(52), 52188–52194 (2003).
  • Radha V, Rajanna A, Gupta RK, Dayma K, Raman T. The guanine nucleotide exchange factor, C3G regulates differentiation and survival of human neuroblastoma cells. J. Neurochem. 107(5), 1424–1435 (2008).
  • Gutiérrez-Uzquiza A, Arechederra M, Molina I et al. C3G down-regulates p38 MAPK activity in response to stress by Rap-1 independent mechanisms: involvement in cell death. Cell Signal. 22(3), 533–542 (2010).
  • Maia V, Sanz M, Gutierrez-Berzal J et al. C3G silencing enhances STI-571-induced apoptosis in CML cells through p38 MAPK activation, but it antagonizes STI-571 inhibitory effect on survival. Cell Signal. 21(7), 1229–1235 (2009).
  • Voss AK, Krebs DL, Thomas T. C3G regulates the size of the cerebral cortex neural precursor population. EMBO J. 25(15), 3652–3663 (2006).
  • Gutiérrez-Herrero S, Maia V, Gutiérrez-Berzal J et al. C3G transgenic mouse models with specific expression in platelets reveal a new role for C3G in platelet clotting through its GEF activity. Biochim. Biophys. Acta. 1823(8), 1366–1377 (2012).
  • Martín-Encabo S, Santos E, Guerrero C. C3G mediated suppression of malignant transformation involves activation of PP2A phosphatases at the subcortical actin cytoskeleton. Exp. Cell Res. 313(18), 3881–3891 (2007).
  • Guerrero C, Martín-Encabo S, Fernández-Medarde A, Santos E. C3G-mediated suppression of oncogene-induced focus formation in fibroblasts involves inhibition of ERK activation, cyclin A expression and alterations of anchorage-independent growth. Oncogene 23(28), 4885–4893 (2004).
  • Guvakova MA, Lee WS, Furstenau DK et al. The small GTPase Rap1 promotes cell movement rather than stabilizes adhesion in epithelial cells responding to insulin-like growth factor I. Biochem. J. 463(2), 257–270 (2014).
  • Okino K, Nagai H, Nakayama H et al. Inactivation of Crk SH3 domain-binding guanine nucleotide-releasing factor (C3G) in cervical squamous cell carcinoma. Int. J. Gynecol. Cancer 16(2), 763–771 (2006).
  • Hirata T, Nagai H, Koizumi K et al. Amplification, up-regulation and over-expression of C3G (CRK SH3 domain-binding guanine nucleotide-releasing factor) in non-small cell lung cancers. J. Hum. Genet. 49(6), 290–295 (2004).
  • De Falco V, Castellone MD, De Vita G et al. RET/papillary thyroid carcinoma oncogenic signaling through the Rap1 small GTPase. Cancer Res. 67(1), 381–390 (2007).
  • Martín-Granado V, Ortiz-Rivero S, Carmona R et al. C3G promotes a selective release of angiogenic factors from activated mouse platelets to regulate angiogenesis and tumor metastasis. Oncotarget 8(67), 110994–111011 (2017).
  • Rangarajan S, Enserink JM, Kuiperij HB et al. Cyclic AMP induces integrin-mediated cell adhesion through Epac and Rap1 upon stimulation of the beta 2-adrenergic receptor. J. Cell Biol. 160(4), 487–493 (2003).
  • Fukuhara S, Sakurai A, Sano H et al. Cyclic AMP potentiates vascular endothelial cadherin-mediated cell-cell contact to enhance endothelial barrier function through an Epac-Rap1 signaling pathway. Mol. Cell. Biol. 25(1), 136–146 (2005).
  • Cullere X, Shaw SK, Andersson L, Hirahashi J, Luscinskas FW, Mayadas TN. Regulation of vascular endothelial barrier function by Epac, a cAMP-activated exchange factor for Rap GTPase. Blood 105(5), 1950–1955 (2004).
  • Kooistra MR, Corada M, Dejana E, Bos JL. Epac1 regulates integrity of endothelial cell junctions through VE-cadherin. FEBS Lett. 579(22), 4966–4972 (2005).
  • Muñoz-Llancao P, Henríquez DR, Wilson C et al. Exchange protein directly activated by cAMP (EPAC) regulates neuronal polarization through Rap1B. J. Neurosci. 35(32), 11315–11329 (2015).
  • Cheng Z, Li X, Ding J. Characteristics of liver cancer stem cells and clinical correlations. Cancer Lett. 379(2), 230–238 (2015).
  • Lee JS, Heo J, Libbrecht L et al. A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells. Nat. Med. 12(4), 410–416 (2006).
  • Holczbauer A, Factor VM, Andersen JB et al. Modeling pathogenesis of primary liver cancer in lineage-specific mouse cell types. Gastroenterology 145(1), 221–231 (2013).
  • Niu ZS, Niu XJ, Wang WH. Genetic alterations in hepatocellular carcinoma: An update. World J. Gastroenterol. 22(41), 9069–9095 (2016).
  • Tejeda-Maldonado J, García-Juárez I, Aguirre-Valadez et al. Diagnosis and treatment of hepatocellular carcinoma: an update. World J. Hepatol. 7(3), 362–376 (2015).
  • De Minicis S, Kisseleva T, Francis H et al. Liver carcinogenesis: rodent models of hepatocarcinoma and cholangiocarcinoma. Dig. Liver Dis. 45(6), 450–459 (2013).
  • Umeda S, Kanda M, Kodera Y. Emerging evidence of molecular biomarkers in hepatocellular carcinoma. Histol. Histopathol. 33(4), 343–355 (2017).
  • Ueno H, Shibasaki T, Iwanaga T et al. Characterization of the gene EPAC2: structure, chromosomal localization, tissue expression, and identification of the liver-specific isoform. Genomics 78(1–2), 91–98 (2001).
  • Cheerathodi M, Vincent JJ, Ballif BA. Quantitative comparison of CrkL-SH3 binding proteins from embryonic murine brain and liver: Implications for developmental signaling and the quantification of protein species variants in bottom-up proteomics. J. Proteomics 125, 104–111 (2015).
  • Mahony R, Ahmed S, Diskin C, Stevenson NJ. SOCS3 revisited: a broad regulator of disease, now ready for therapeutic use? Cell. Mol. Life Sci. 73(17), 3323–3336 (2016).
  • Gaudy AM, Clementi AH, Campbell JS, Smrcka AV, Mooney RA. Suppressor of cytokine signaling-3 is a glucagon-inducible inhibitor of PKA activity and gluconeogenic gene expression in hepatocytes. J. Biol. Chem. 285(53), 41356–41365 (2010).
  • Cullen KA, McCool J, Anwer MS, Webster CR. Activation of cAMP-guanine exchange factor confers PKA-independent protection from hepatocyte apoptosis. Am. J. Physiol. Gastrointest. Liver Physiol. 287(2), G334–G343 (2004).
  • Gates A, Hohenester S, Anwer MS, Webster CR. cAMP-GEF cytoprotection by Src tyrosine kinase activation of phosphoinositide-3-kinase p110 beta/alpha in rat hepatocytes. Am. J. Physiol. Gastrointest. Liver Physiol. 296(4), G764–G774 (2009).
  • Johnston A, Ponzetti K, Anwer MS, Webster CR. cAMP-guanine exchange factor protection from bile acid-induced hepatocyte apoptosis involves glycogen synthase kinase regulation of c-Jun NH2-terminal kinase. Am. J. Physiol. Gastrointest. Liver Physiol. 301(2), G385–G400 (2011).
  • Lin YL, Mettling C, Chou CK. Rap1-suppressed tumorigenesis is concomitant with the interference in ras effector signaling. FEBS Lett. 467(2–3), 184–188 (2000).
  • Su H, Yang JR, Xu T et al. MicroRNA-101, down-regulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity. Cancer Res. 69(3), 1135–1142 (2009).
  • Sheng Y, Ding S, Chen K et al. Functional analysis of miR-101–3p and Rap1b involved in hepatitis B virus-related hepatocellular carcinoma pathogenesis. Biochem. Cell Biol. 92(2), 152–162 (2014).
  • Zhang L, Duan H, Yang Y. Knockdown of Rap2B inhibits the proliferation and invasion in hepatocellular carcinoma cells. Oncol. Res. 25(1), 19–27 (2017).
  • Cruise JL, Rafferty MP, Riehle MM. Cell-cycle regulated expression of Rap1 in regenerating liver. Biochem. Biophys. Res. Commun. 230(3), 578–581 (1997).
  • Chen XG, Xu CS, Liu YM. Involvement of ERK1/2 signaling in proliferation of eight liver cell types during hepatic regeneration in rats. Genet. Mol. Res. 12(1), 665–677 (2013).
  • Li JW, Wang GP, Fan JY, Chang CF, Xu CS. Eight paths of ERK1/2 signalling pathway regulating hepatocyte proliferation in rat liver regeneration. J. Genet. 90(3), 435–442 (2011).
  • Windmeier C, Gressner AM. Pharmacological aspects of pentoxifylline with emphasis on its inhibitory actions on hepatic fibrogenesis. Gen. Pharmacol. 29(2), 181–196 (1997).
  • Yokoyama U, Patel HH, Lai NC, Aroonsakool N, Roth DM, Insel PA. The cyclic AMP effector Epac integrates pro- and anti-fibrotic signals. Proc. Natl Acad. Sci. USA 105(17), 6386–6391 (2008).
  • Insel PA, Murray F, Yokoyama U et al. cAMP and Epac in the regulation of tissue fibrosis. Br. J. Pharmacol. 166(2), 447–456 (2012).
  • Mello T, Ceni E, Surrenti C, Galli A. Alcohol induced hepatic fibrosis: role of acetaldehyde. Mol. Aspects Med. 29(1–2), 17–21 (2008).
  • Hernandez-Gea V, Friedman SL. Pathogenesis of liver fibrosis. Annu. Rev. Pathol. 6, 425–456 (2011).
  • Yang Y, Yang F, Wu X, Lv X, Li J. EPAC activation inhibits acetaldehyde-induced activation and proliferation of hepatic stellate cell via Rap1. Can. J. Physiol. Pharmacol. 94(5), 498–507 (2016).
  • BioGPS Portal. GeneAtlas U133A, gcrma. Tissue-specific pattern of RapGEF1 expression (2017). http://biogps.org/#goto=genereport&id=2889.
  • GTExportal (GTEx Analysis Release V6P). Gene expression of RapGEF1 gene (2017). https://gtexportal.org/home/gene/RAPGEF1.
  • GENT (Gene Expression across Normal and Tumoral Tissue) platform. RapGEF1 mRNA expression in normal and tumoral liver samples (2017). http://medicalgenome.kribb.re.kr/GENT/search/view_result.php.
  • Firebrowse platform. Differential plot of RapGEF1 mRNA expression across different normal and tumoral samples (2017). http://medicalgenome.kribb.re.kr/GENT/search/view_result.php.
  • Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12, 323 (2011).
  • Gene Investigator Software. Open access tool to explore mRNA expression of different genes and samples, across different public datasets (2017). https://genevestigator.com/gv/.
  • cBioportal for cancer genomics portal. Query for RapGEF1 gene in hepatocarcinoma in different datasets (2017). http://www.cbioportal.org/index.do?session_id=5a359f8d498eb8b3d5623002.
  • OASIS Analitics platform. Summary of RapGEF1 alterations from different cancer projects (2017). http://www.oasis-genomics.org/martreport/?report=report&mart=gene_report&ensembl_gene_id=ENSG00000107263&datasets=hsapiens_gene_ensembl_oasis1hkugc.
  • cBioportal for cancer genomics portal. Query for RapGEF1 gene in TCGA Hepatocarcinoma dataset, survival (2017). http://www.cbioportal.org/index.do?session_id=59c265e3498e5df2e295878c&show_samples=false&.
  • Welsch ME, Kaplan A, Chambers JM et al. Multivalent small-molecule pan-RAS inhibitors. Cell 168(5), 878.e29–889.e29 (2017).
  • Hong L, Guo Y, BasuRay S et al. A pan-GTPase inhibitor as a molecular probe. PLoS One 10(8), e0134317 (2015).
  • Evelyn CR, Biesiada J, Duan X et al. Combined rational design and a high throughput screening platform for identifying chemical inhibitors of a Ras-activating enzyme.. J. Biol. Chem. 290(20), 12879–12898 (2015).
  • Parnell E, Palmer TM, Yarwood SJ. The future of EPAC-targeted therapies: agonism versus antagonism. Trends Pharmacol. Sci. 36(4), 203–14 (2015).
  • Tsalkova T, Mei FC, Li S et al. Isoform-specific antagonists of exchange proteins directly activated by cAMP. Proc. Natl Acad. Sci. USA 109(45), 18613–18618 (2012).
  • Almahariq M, Tsalkova T, Mei FC et al. A novel EPAC-specific inhibitor suppresses pancreatic cancer cell migration and invasion. Mol. Pharmacol. 83(1), 122–128 (2013).
  • Rehmann H. Epac-inhibitors: facts and artefacts. Sci. Rep. 3, 3032 (2013).
  • Zhu Y, Chen H, Boulton S, Mei F, Ye N. Biochemical and pharmacological characterizations of ESI-09 based EPAC inhibitors: defining the ESI-09 “therapeutic window”. Sci. Rep. 5, 9344 (2015).