60
Views
0
CrossRef citations to date
0
Altmetric
Review

Next-generation sequencing and personalized genomic medicine in hepatobiliary malignancies

, &
Pages 359-370 | Published online: 11 Nov 2015

References

  • Bleachacz BR , GoresGJ. Cholangiocarcinoma. Clin. Liver Dis.12(1), 131–150 (2008).
  • Khan SA , ThomasHC, DavidsonBRet al. Cholangiocarcinoma. Lancet366(9493), 1303–1314 (2005).
  • Sempoux C , JibaraG, WardSet al. Intrahepatic cholangiocarcinoma: new insights in pathology. Semin. Liver Dis.31(1), 104–110 (2011).
  • Khan SA , Taylor-RobinsonSD, ToledanoMBet al. Changing international trends in mortality rates for liver, biliary and pancreatic tumours. J. Hepatol.37(6), 806–813 (2002).
  • Singh P , PatelT. Advances in the diagnosis, evaluation and management of cholangiocarcinoma. Curr. Opin. Gastroenterol.22(3), 294–299 (2006).
  • Jarnagin WR , FongY, DeMatteoRPet al. Staging, resectability, and outcome in 225 patients with hilar cholangiocarcinoma. Ann. Surg.234(4), 507–517 (2001).
  • Jarnagin WR , RuoL, LittleSAet al. Patterns of initial disease recurrence after resection of gallbladder carcinoma and hilar cholangiocarcinoma: implications for adjuvant therapeutic strategies. Cancer98(8), 1689–1700 (2003).
  • Weber SM , JarnaginWR, KlimstraD, DeMatteoRP, FongY, BlumgartLH. Intrahepatic cholangiocarcinoma: resectability, recurrence pattern, and outcomes. J. Am. Coll. Surg.193(4), 384–391 (2001).
  • Tan JC , CoburnNG, BaxterNNet al. Surgical management of intrahepatic cholangiocarcinoma – a population-based study. Ann. Surg. Oncol.15(2), 600–608 (2008).
  • Valle J , WasanH, PalmerDHet al. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N. Engl. J. Med.362(14), 1273–1281 (2010).
  • Llovet JM , RicciS, MazzaferroVet al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med.359(4), 378–390 (2008).
  • DeVita VT , LawrenceTS, RosenbergSA ( Eds). Primer of the molecular biology of cancer. In: Cancer: Principles & Practice of Oncology.Lippincott Williams & Wilkins, Philadelphia, PA, USA (2011).
  • Pinkel D , AlbertsonDG. Array comparative genomic hybridization and its applications in cancer. Nat. Genet.37(Suppl.), S11–S17 (2005).
  • Schulze K , ImbeaudS, LetouzéE. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat. Genet.47(5), 505–511 (2015).
  • Villanueva A , NewellP, ChiangDY, FriedmanSL, LlovetJM. Genomics and signaling pathways in hepatocellular carcinoma. Semin. Liver Dis.27(1), 55–76 (2007).
  • OncoDB.HCC . http://oncodb.hcc.ibms.sinica.edu.tw
  • Su WH , ChaoCC, YehSHet al. HCC: an integrated oncogenomic database of hepatocellular carcinoma revealed aberrant cancer target genes and loci. Nucleic Acids Res.35, D727–D731 (2007).
  • Forbes SA , BeareD, GunasekaranPet al. COSMIC: exploring the world’s knowledge of somatic mutations in human cancer Nucleic Acids Res. 43(D1), D805–D811 (2015)
  • My Cancer Genome. www.mycancergenome.org
  • TARGET . www.broadinstitute.org/cancer/cga/target
  • Su WH , chaoCC, YehSH, ChenDS, ChenPJ, JouYS. OncoDB.HCC: an integrated oncogenomic database of hepatocellular carcinoma revealed aberrant cancer target genes and loci.. Nucleic Acids Res.35, D727–D731 (2007).
  • Kojiro M , RoskamsT. Early hepatocellular carcinoma and dysplastic nodules. Semin. Liver Dis.25(2), 133–142 (2005).
  • Kaposi-Novak P , LibbrechtL, WooHGet al. Central role of c-Myc during malignant conversion in human hepato-carcinogenesis. Cancer Res.69(7), 2775 (2009).
  • Um TH , KimH, OhBKet al. Aberrant CpG island hypermethylation in dysplastic nodules and early HCC of hepatitis B virus related human multistep hepatocarcinogenesis. J. Hepatol.54(5), 939–947 (2011).
  • Lambert MP , PaliwalA, VaissiereTet al. Aberrant DNA methylation distinguishes hepatocellular carcinoma associated with HBV and HCV infection and alcohol intake. J. Hepatol.54(4), 705–715 (2010).
  • Hernandez-Vargas H , LambertMP, Le Calvez-KelmFet al. Hepatocellular carcinoma displays distinct DNA methylation signatures with potential as clinical predictors. PLoS ONE5(3), e9749 (2010).
  • Lee JS , ChuIS, HeoJet al. Classification and prediction of survival in hepatocellular carcinoma by gene expression profiling. Hepatology40(3), 667 (2004).
  • Moinzadeh P , BreuhahnK, StutzerH, SchrmacherP. Chromosome alterations in human hepatocellular carcinomas correlate with aetiology and histological grade – results of an explorative CGH meta-analysis. Br. J. Cancer14(5), 9235–9241 (2005).
  • Poon TCW , WongN, LaiPBSet al. A tumor progression model for hepatocellular carcinoma: bioinformatics analysis of genomic data. Gastroenterology131(4), 1262 (2006).
  • Weinstein IB , JoeAK. Mechanisms of disease: oncogene addiction – a rationale for molecular targeting in cancer therapy. Nat. Clin. Pract. Oncol.3(8), 448–457 (2006).
  • Loaiza-Bonilla A , GlückS. Using modern molecular markers to tailor breast cancer treatment: a new era for personalized medicine. Breast Cancer Manag.1(2), 105–108 (2012).
  • Yarden Y . The biological framework: translational research from bench to clinic. Oncologist16(Suppl. 1), 23–29 (2011).
  • Aravalli RN , SteerCJ, CressmanEN. Molecular mechanisms of hepatocellular carcinoma. Hepatology48(6), 2047–2063 (2008).
  • Farazi PA , DePinhoRA. Hepatocellular carcinoma pathogenesis: from genes to environment. Nat. Rev. Cancer6(9), 674–687 (2006).
  • Marquardt JU , GallePR, TeufelA. Molecular diagnosis and therapy of hepatocellular carcinoma (HCC): an emerging field for advanced technologies. J. Hepatol.56(1), 267–75 (2012).
  • Woo HG , WangXW, BudhuAet al. Association of TP53 mutations with stem cell-like gene expression and survival of patients with hepatocellular carcinoma. Gastroenterology140(3), 1063–1070 (2011).
  • Farazi PA , GlickmanJ, HornerJ, DepinhoRA. Cooperative interactions of p53 mutation, telomere dysfunction, and chronic liver damage in hepatocellular carcinoma progression. Cancer Res.66(9), 4766–4773 (2006).
  • Calvisi DF , FactorVM, LaduS, ConnerEA, ThorgeirssonSS. Disruption of beta-catenin pathway or genomic instability define two distinct categories of liver cancer in transgenic mice. Gastroenterology126(5), 1374–1386 (2004).
  • Ishizaki Y . Immunohistochemical analysis and mutational analyses of [beta]-catenin, Axin family and APC genes in hepatocellular carcinomas. Int. J. Oncol.24(5), 1077–1083(2004).
  • Stella GM , BenvenutiS, ComoglioPM. Targeting the MET oncogene in cancer and metastases. Expert Opin. Investig. Drugs19(11), 1381–1394 (2010).
  • Kaposi-Novak P , LeeJS, Gomez-QuirozL, CoulouarnC, FactorVM, ThorgeirssonSS. Met-regulated expression signature defines a subset of human hepatocellular carcinomas with poor prognosis and aggressive phenotype. J. Clin. Invest.116(6), 1582–1595 (2006).
  • Ito Y . Expression and clinical significance of erb-B receptor family in hepatocellular carcinoma. Br. J. Cancer84(10), 1377–1383 (2001).
  • Hopfner M . Targeting the epidermal growth factor receptor by gefitinib for treatment of hepatocellular carcinoma. J. Hepatol.41(6), 1008–1016 (2004).
  • Philip PA . Phase II study of Erlotinib (OSI-774) in patients with advanced hepatocellular cancer. J. Clin. Oncol.23(27), 6657–6663 (2005).
  • Tang SH , YangDH, HuangWet al. Phase II study of Erlotinib (OSI-774) in patients with advanced hepatocellular cancer. Clin. Cancer Res.12(27), 4171–4177 (2006).
  • Tovar V , AlsinetC, VillanuevaAet al. IGF activation in a molecular subclass of hepatocellular carcinoma and preclinical efficacy of IGF-1R blockage. J. Hepatol.52(4), 550–559 (2011).
  • Coulouarn C , FactorVM, ThorgeirssonSS. Transforming growth factor-beta gene expression signature in mouse hepatocytes predicts clinical outcome in human cancer. Hepatology47(6), 2059–2067 (2008).
  • Elsharkawy AM , MannDA. Nuclear factor-kappaB and the hepatic inflammation-fibrosis-cancer axis. Hepatology46(2), 590–597 (2007).
  • Sun B , KarinM. NF-kappaB signaling, liver disease and hepatoprotective agents. Oncogene27(48), 6228–6244 (2008).
  • Poon RT , HoJW, TongCS, LauC, NgIO, FanST. Prognostic significance of serum vascular endothelial growth factor and endostatin in patients with hepatocellular carcinoma. Br. J. Surg.91(10), 1354–1360 (2004).
  • Rosmorduc O , HoussetC. Hypoxia: a link between fibrogenesis, angiogenesis, and carcinogenesis in liver disease. Semin. Liver Dis.30(3), 258–270 (2010).
  • Lachenmayer A , HoshidaY, LlovetJM. Hippo tumor suppressor pathway: novel implications for the treatment of hepatocellular carcinoma. Gastroenterology139(2), 692–694 (2010).
  • Avruch J , ZhouD, FitamantJ, BardeesyN. Mst1/2 signalling to Yap: gatekeeper for liver size and tumour development. Br. J. Cancer104(1), 24–32 (2011).
  • Sanger Institute Catalogue Of Somatic Mutations In Cancer . www.sanger.ac.uk
  • Bamford S , DawsonE, ForbesSet al. The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. Br. J. Cancer91, 355–358 (2004).
  • Boyault S , RickmanDS, de ReyniesAet al. Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology45(1), 42 (2007).
  • Hoshida Y , NijmanSM, KobayashiMet al. Integrative transcriptome analysis reveals common molecular sub-classes of human hepatocellular carcinoma. Cancer Res.69(18), 7385 (2009).
  • Wehbe H , HensonR, MengFet al. Interleukin-6 contributes to growth in cholangiocarcinoma cells by aberrant promoter methylation and gene expression. Cancer Res.66(21), 10517–10524 (2006).
  • Andersen JB , ThorgeirssonSS. Genetic profiling of intrahepatic cholangiocarcinoma. Curr. Opin. Gastroenterol.28(3), 266–272 (2012).
  • Ross JS , WangK, GayLet al. New routes to targeted therapy of intrahepatic cholangiocarcinomas revealed by next-generation sequencing. Oncologist19(3), 235–242 (2014).
  • Tannapfel A , BenickeM, KatalinicAet al. Frequency of p16 (INK4A) alterations and K-ras mutations in intrahepatic cholangiocarcinoma of the liver. Gut47(5), 721–727 (2000).
  • Momoi H , ItohT, NozakiYet al. Microsatellite instability and alternative genetic pathway in intrahepatic chol angiocarcinoma. J. Hepatol.35(2), 235–244 (2001).
  • Terada T , AshidaK, EndoKet al. c-erbB-2 protein is expressed in hepatolithiasis and cholangiocarcinoma. Histopathology33(4), 325–331 (1998).
  • Terada T , NakanumaY, SiricaAE. Immunohistochemical demonstration of MET overexpression in human intrahepatic cholangiocarcinoma and in hepatolithiasis. Hum. Pathol.29(2), 175–180 (1998).
  • Tannapfel A , SommererF, BenickeMet al. Mutations of the BRAF gene in cholangiocarcinoma but not in hepatocellular carcinoma. Gut52(5), 706–712 (2003).
  • Sia D , HoshidaY, VillanuevaAet al. Integrative molecular analysis of intrahepatic cholangiocarcinoma reveals 2 classes that have different outcomes. Gastroenterology144(4), 829–840 (2013).
  • Miller G , SocciND, DhallDet al. Genome wide analysis and clinical correlation of chromosomal and transcriptional mutations in cancers of the biliary tract. J. Exp. Clin. Cancer Res.28, 62 (2009).
  • Gatalica Z , MillisS, ChenSet al. Integrating molecular profiling into cancer treatment decision making: experience with over 35,000 cases. J. Clin. Oncol.31(Suppl.), Abstract 11001 (2013)
  • Saha SK , ParachoniakCA, GhantaKSet al. Mutant IDH inhibits HNF-4α to block hepatocyte differentiation and promote biliary cancer. Nature513(7516), 110–114 (2014).
  • Schonleben F , QiuW, AllendorfJDet al. Molecular analysis of PIK3CA, BRAF, and RAS oncogenes in periampullary and ampullary adenomas and carcinomas. J. Gastrointest Surg.13(8), 1510–1516 (2009).
  • Andersen JB , SpeeB, BlechaczBRet al. Genomic and genetic characterization of cholangiocarcinoma identifies therapeutic targets for tyrosine kinase inhibitors. Gastroenterology142(4), 1021–1031.e15 (2012).
  • Goldenberg D , RosenbaumE, ArganiPet al. The V599E BRAF mutation is uncommon in biliary tract cancers. Mod. Pathol.17(11), 1386–1391 (2004)
  • Loaiza-Bonilla A , ClaytonE, FurthE, O’HaraM, MorrissetteJ. Dramatic response to dabrafenib and trametinib combination in a BRAF V600E-mutated cholangiocarcinoma: implementation of a molecular tumour board and next-generation sequencing for personalized medicine. Ecancermedicalscience8, 479 (2014).
  • Woo HG , LeeJH, YoonJHet al. Identification of a cholangiocarcinoma-like gene expression trait in hepatocellular carcinoma. Cancer Res.70(8), 3034 (2010).
  • Schwaederle M , ParkerBA, SchwabRBet al. Molecular Tumor Board: The University of California San Diego Moores Cancer Center experience. Oncologist19(6), 631–636 (2014).
  • Nakazawa K , DobashiY, SuzukiS, FujiiH, TakedaY, OoiA. Amplification and overexpression of c-erbB-2, epidermal growth factor receptor, and c-met in biliary tract cancers. J. Pathol.206(3), 356–365 (2005).
  • Wu YM , SuF, Kalyana-SundaramSet al. Identification of targetable FGFR gene fusions in diverse cancers. Cancer Discov.3(6), 636–647 (2013).
  • Arai Y , TotokiY, HosodaFet al. Fibroblast growth factor receptor 2 tyrosine kinase fusions define a unique molecular subtype of cholangiocarcinoma. Hepatology59(4), 1427–1434 (2014).
  • Ettrich TJ , SeufferleinT. Regorafenib. Recent Results Cancer Res.201, 185–196 (2014).
  • Gu TL , DengX, HuangFet al. Survey of tyrosine kinase signaling reveals ROS kinase fusions in human cholangiocarcinoma. PLoS ONE6(1), e15640 (2011).
  • Scheffler M , SchultheisA, TeixidoCet al. ROS1 rearrangements in lung adenocarcinoma: prognostic impact, therapeutic options and genetic variability. Oncotarget6(12), 10577–10585 (2015).
  • TCGA Research Network . http://cancergenome.nih.gov
  • ClinicalTrials Database . www.clinicaltrials.gov
  • Dowlati A , NetheryD, KernJA. Combined inhibition of epidermal growth factor receptor and JAK/STAT pathways results in greater growth inhibition in vitro than single agent therapy. Mol. Cancer Ther.3(4), 459–463 (2004).
  • Vaclavicek A , BermejoJL, SchmutzlerRKet al. Polymorphisms in the Janus kinase 2 (JAK)/signal transducer and activator of transcription (STAT) genes: putative association of the STAT gene region with familial breast cancer. Endocr. Relat. Cancer14(2), 267–277 (2007).
  • Hoeller D , HeckerCM, DikicI. Ubiquitin and ubiquitin-like proteins in cancer pathogenesis. Nat. Rev. Cancer6(10), 776–788 (2006).
  • Abrams J , ConleyB, MooneyMet al. National Cancer Institute’s precision medicine initiatives for the new National Clinical Trials Network. 2014 ASCO Educational Book. http://meetinglibrary.asco.org/sites/meetinglibrary.asco.org/files/edbook/144/pdf/zds00114000071.pdf
  • De Mattos-Arruda L , RodonJ. Pilot studies for personalized cancer medicine: focusing on the patient for treatment selection. Oncologist18(11), 1180–1188 (2013).
  • International Cancer Genome Consortium . International network of cancer genome projects. Nature464(7291), 993 (2010)
  • Marquardt JU , AndersenJB. Next-generation sequencing: application in liver cancer-past, present and future?Biology (Basel)1(2), 383–394 (2012).
  • Tripathy D , HarndenK, BlackwellK, RobsonM. Next generation sequencing and tumor mutation profiling: are we ready for routine use in the oncology clinic?BMC Med.12(1), 140 (2014).
  • Dikic I , CrosettoN, CalatroniS, BernasconiP. Targeting ubiquitin in cancers. Eur. J. Cancer42(18), 3095–3102 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.