102
Views
0
CrossRef citations to date
0
Altmetric
Review

Apoptosis in liver carcinogenesis and chemotherapy

&
Pages 381-397 | Published online: 11 Nov 2015

References

  • Guicciardi ME , GoresGJ. Apoptosis: a mechanism of acute and chronic liver injury. Gut54(7), 1024–1033 (2005).
  • Fabregat I , RonceroC, FernandezM. Survival and apoptosis: a dysregulated balance in liver cancer. Liver Int.27(2), 155–162 (2007).
  • Park YN , ChaeKJ, KimYB, ParkC, TheiseN. Apoptosis and proliferation in hepatocarcinogenesis related to cirrhosis. Cancer92(11), 2733–2738 (2001).
  • Makino Y , ShirakiK, SugimotoKet al. Histological features of cirrhosis with hepatitis C virus for prediction of hepatocellular carcinoma development: a prospective study. Anticancer Res.20(5C), 3709–3715 (2000).
  • Hytiroglou P , ParkYN, KrinskyG, TheiseND. Hepatic precancerous lesions and small hepatocellular carcinoma. Gastroenterol. Clin. North Am.36(4), 867–887, vii (2007).
  • Bruix J , HanKH, GoresG, LlovetJM, MazzaferroV. Liver cancer: approaching a personalized care. J. Hepatol.62(1S), S144–S156 (2015).
  • Deng GL , ZengS, ShenH. Chemotherapy and target therapy for hepatocellular carcinoma: new advances and challenges. World J. Hepatol.7(5), 787–798 (2015).
  • Schattenberg JM , SchuchmannM, GallePR. Cell death and hepatocarcinogenesis: dysregulation of apoptosis signaling pathways. J. Gastroenterol. Hepatol.26(Suppl. 1), 213–219 (2011).
  • Lee SH , ShinMS, LeeHSet al. Expression of Fas and Fas-related molecules in human hepatocellular carcinoma. Hum. Pathol.32, 250–256 (2001).
  • Zou C , ChenJ, ChenKet al. Functional analysis of miR-181a and Fas involved in hepatitis B virus-related hepatocellular carcinoma pathogenesis. Exp. Cell. Res.331(2), 352–361 (2015).
  • Ito Y , MondenM, TakedaTet al. The status of Fas and Fas ligand expression can predict recurrence of hepatocellular carcinoma. Br. J. Cancer82(6), 1211–1217 (2000).
  • Shin EC , ShinJS, ParkJH, KimJJ, KimH, KimSJ. Expression of Fas-related genes in human hepatocellular carcinomas. Cancer Lett.134, 155–162 (1998).
  • Takahashi M , SaitoH, OkuyamaTet al. Overexpression of Bcl-2 protects human hepatoma cells from Fas-antibody-mediated apoptosis. J. Hepatol.31, 315–322 (1999).
  • Lian Z , LiuJ, PanJet al. A cellular gene up-regulated by hepatitis B virus-encoded X antigen promotes hepatocellular growth and survival. Hepatology34, 146–157 (2001).
  • Otsuka M , KatoN, TaniguchiHet al. Hepatitis C virus core protein inhibits apoptosis via enhanced Bcl-Xl expression. Virology296, 84–93 (2002).
  • Zhu H , BerkovaZ, MathurRet al. Hur suppresses Fas expression and correlates with patient outcome in liver cancer. Mol. Cancer Res.13(5), 809–818 (2015).
  • Zhong W , QinS, ZhuBet al. Oxysterol-binding protein-related protein 8 (ORP8) increases sensitivity of hepatocellular carcinoma cells to Fas-mediated apoptosis. J. Biol. Chem.290(14), 8876–8887 (2015).
  • Okano H , ShirakiK, InoueHet al. Cellular FLICE/caspase-8-inhibitory protein as a principal regulator of cell death and survival in human hepatocellular carcinoma. Lab. Invest.83(7), 1033–1043 (2003).
  • Chan BC , ChingAK, ToKFet al. BRE is an antiapoptotic protein in vivo and overexpressed in human hepatocellular carcinoma. Oncogene27(9), 1208–1217 (2008).
  • Chui YL , ChingAK, ChenSet al. BRE over-expression promotes growth of hepatocellular carcinoma. Biochem. Biophys. Res. Commun.391(3), 1522–1525 (2010).
  • Suzuki A , HayashidaM, KawanoH, SugimotoK, NakanoT, ShirakiK. Hepatocyte growth factor promotes cell survival from fas-mediated cell death in hepatocellular carcinoma cells via Akt activation and Fas-death-inducing signaling complex suppression. Hepatology32(4 Pt 1), 796–802 (2000).
  • Suzuki H , ToyodaM, HoriguchiNet al. Hepatocyte growth factor protects against Fas-mediated liver apoptosis in transgenic mice. Liver Int.29(10), 1562–1568 (2009).
  • Johnstone RW , FrewAJ, SmythMJ. The trail apoptotic pathway in cancer onset, progression and therapy. Nat. Rev. Cancer8(10), 782–798 (2008).
  • Chen XP , HeSQ, WangHP, ZhaoYZ, ZhangWG. Expression of TNF-related apoptosis-inducing ligand receptors and antitumor tumor effects of TNF-related apoptosis-inducing ligand in human hepatocellular carcinoma. World J. Gastroenterol.9(11), 2433–2440 (2003).
  • Herr I , SchemmerP, BuchlerMW. On the trail to therapeutic intervention in liver disease. Hepatology46(1), 266–274 (2007).
  • Du J , LiangX, LiuYet al. Hepatitis B virus core protein inhibits TRAIL-induced apoptosis of hepatocytes by blocking DR5 expression. Cell Death. Differ.16(2), 219–229 (2009).
  • Zender L , HutkerS, MundtBet al. NFkappaB-mediated upregulation of Bcl-xl restrains TRAIL-mediated apoptosis in murine viral hepatitis. Hepatology41(2), 280–288 (2005).
  • Liu N , ZuoC, WangXet al. miR-942 decreases TRAIL-induced apoptosis through ISG12a downregulation and is regulated by AKT. Oncotarget5(13), 4959–4971 (2014).
  • Massague J . TGFbeta in cancer. Cell134(2), 215–230 (2008).
  • Carr BI , HayashiI, BranumEL, MosesHL. Inhibition of DNA synthesis in rat hepatocytes by platelet-derived type beta transforming growth factor. Cancer Res.46(5), 2330–2334 (1986).
  • Oberhammer FA , PavelkaM, SharmaSet al. Induction of apoptosis in cultured hepatocytes and in regressing liver by transforming growth factor beta 1. Proc. Natl Acad. Sci. USA89(12), 5408–5412 (1992).
  • Sanchez A , AlvarezAM, BenitoM, FabregatI. Apoptosis induced by transforming growth factor-beta in fetal hepatocyte primary cultures: involvement of reactive oxygen intermediates. J. Biol. Chem.271(13), 7416–7422 (1996).
  • Giannelli G , RaniB, DituriF, CaoY, PalascianoG. Moving towards personalised therapy in patients with hepatocellular carcinoma: the role of the microenvironment. Gut63(10), 1668–1676 (2014).
  • Fabregat I , SanchoP. The transforming growth factor-beta (TGF-b) in liver fibrosis. In: TGF-Beta in Human Disease. MoustakasA, KeijiM ( Eds). Springer, Japan, 255–277 (2013).
  • Matsuzaki K , DateM, FurukawaFet al. Autocrine stimulatory mechanism by transforming growth factor beta in human hepatocellular carcinoma. Cancer Res.60(5), 1394–1402 (2000).
  • Park SS , EomYW, KimEHet al. Involvement of c-SRC kinase in the regulation of TGF-beta1-induced apoptosis. Oncogene23(37), 6272–6281 (2004).
  • Valdes F , MurilloMM, ValverdeAMet al. Transforming growth factor-beta activates both pro-apoptotic and survival signals in fetal rat hepatocytes. Exp. Cell Res.292(1), 209–218 (2004).
  • Murillo MM , del CastilloG, SanchezA, FernandezM, FabregatI. Involvement of EGF receptor and c-SRC in the survival signals induced by TGF-beta1 in hepatocytes. Oncogene24(28), 4580–4587 (2005).
  • Caja L , OrtizC, BertranEet al. Differential intracellular signalling induced by TGF-beta in rat adult hepatocytes and hepatoma cells: implications in liver carcinogenesis. Cell. Signal.19(4), 683–694 (2007).
  • Sancho P , BertranE, CajaL, Carmona-CuencaI, MurilloMM, FabregatI. The inhibition of the epidermal growth factor (EGF) pathway enhances TGF-beta-induced apoptosis in rat hepatoma cells through inducing oxidative stress coincident with a change in the expression pattern of the NADPH oxidases (NOX) isoforms. Biochim. Biophys. Acta1793(2), 253–263 (2009).
  • Caja L , SanchoP, BertranE, FabregatI. Dissecting the effect of targeting the epidermal growth factor receptor on TGF-beta-induced-apoptosis in human hepatocellular carcinoma cells. J. Hepatol.55(2), 351–358 (2011).
  • Fabregat I , HerreraB, FernandezMet al. Epidermal growth factor impairs the cytochrome C/Caspase-3 apoptotic pathway induced by transforming growth factor beta in rat fetal hepatocytes via a phosphoinositide 3-kinase-dependent pathway. Hepatology32(3), 528–535 (2000).
  • Carmona-Cuenca I , HerreraB, VenturaJJ, RonceroC, FernandezM, FabregatI. EGF blocks nadph oxidase activation by TGF-beta in fetal rat hepatocytes, impairing oxidative stress, and cell death. J. Cell. Physiol.207(2), 322–330 (2006).
  • Carmona-Cuenca I , RonceroC, SanchoPet al. Upregulation of the NADPH oxidase nox4 by TGF-beta in hepatocytes is required for its pro-apoptotic activity. J. Hepatol.49(6), 965–976 (2008).
  • Borrell-Pages M , RojoF, AlbanellJ, BaselgaJ, ArribasJ. Tace is required for the activation of the EGFR by TGF-alpha in tumors. Embo J.22(5), 1114–1124 (2003).
  • Thiery JP . Epithelial–mesenchymal transitions in development and pathologies. Curr. Opin. Cell Biol.15(6), 740–746 (2003).
  • Valdes F , AlvarezAM, LocascioAet al. The epithelial mesenchymal transition confers resistance to the apoptotic effects of transforming growth factor beta in fetal rat hepatocytes. Mol. Cancer Res.1(1), 68–78 (2002).
  • Nitta T , KimJS, MohuczyD, BehrnsKE. Murine cirrhosis induces hepatocyte epithelial mesenchymal transition and alterations in survival signaling pathways. Hepatology48(3), 909–919 (2008).
  • Franco DL , MainezJ, VegaSet al. SNAIL1 suppresses TGF-beta-induced apoptosis and is sufficient to trigger EMT in hepatocytes. J. Cell. Sci.123(Pt 20), 3467–3477 (2010).
  • Del Castillo G , MurilloMM, Alvarez-BarrientosAet al. Autocrine production of TGF-beta confers resistance to apoptosis after an epithelial–mesenchymal transition process in hepatocytes: role of EGF receptor ligands. Exp. Cell. Res.312(15), 2860–2871 (2006).
  • Coulouarn C , FactorVM, ThorgeirssonSS. Transforming growth factor-beta gene expression signature in mouse hepatocytes predicts clinical outcome in human cancer. Hepatology47(6), 2059–2067 (2008).
  • Yang YA , ZhangGM, FeigenbaumL, ZhangYE. Smad3 reduces susceptibility to hepatocarcinoma by sensitizing hepatocytes to apoptosis through downregulation of Bcl-2. Cancer Cell9(6), 445–457 (2006).
  • Dzieran J , FabianJ, FengTet al. Comparative analysis of TGF-beta/Smad signaling dependent cytostasis in human hepatocellular carcinoma cell lines. PLoS ONE8(8), e72252 (2013).
  • Liu N , JiaoT, HuangY, LiuW, LiZ, YeX. Hepatitis B virus regulates apoptosis and tumorigenesis through the microRNA-15a-Smad7-transforming growth factor beta pathway. J. Virol.89(5), 2739–2749 (2015).
  • Kitisin K , GanesanN, TangYet al. Disruption of transforming growth factor-beta signaling through beta-spectrin elf leads to hepatocellular cancer through cyclin d1 activation. Oncogene26(50), 7103–7110 (2007).
  • Baek HJ , LimSC, KitisinKet al. Hepatocellular cancer arises from loss of transforming growth factor beta signaling adaptor protein embryonic liver fodrin through abnormal angiogenesis. Hepatology48(4), 1128–1137 (2008).
  • Mamiya T , YamazakiK, MasugiYet al. Reduced transforming growth factor-beta receptor II expression in hepatocellular carcinoma correlates with intrahepatic metastasis. Lab. Invest.90(9), 1339–1345 (2010).
  • Dooley S , WengH, MertensPR. Hypotheses on the role of transforming growth factor-beta in the onset and progression of hepatocellular carcinoma. Dig. Dis.27(2), 93–101 (2009).
  • Ito N , KawataS, TamuraSet al. Elevated levels of transforming growth factor beta messenger RNA and its polypeptide in human hepatocellular carcinoma. Cancer Res.51(15), 4080–4083 (1991).
  • Huang S , HeX, DingJet al. Upregulation of miR-23a approximately 27a approximately 24 decreases transforming growth factor-beta-induced tumor-suppressive activities in human hepatocellular carcinoma cells. Int. J. Cancer123(4), 972–978 (2008).
  • Petrocca F , VecchioneA, CroceCM. Emerging role of miR-106b-25/miR-17–92 clusters in the control of transforming growth factor beta signaling. Cancer Res.68(20), 8191–8194 (2008).
  • Li J , FuH, XuCet al. miR-183 inhibits TGF-beta1-induced apoptosis by downregulation of PDCD4 expression in human hepatocellular carcinoma cells. BMC Cancer10, 354 (2010).
  • Moreno-Caceres J , CajaL, MainezJet al. Caveolin-1 is required for TGF-beta-induced transactivation of the EGF receptor pathway in hepatocytes through the activation of the metalloprotease TACE/ADAM17. Cell Death Dis.5, e1326 (2014).
  • Meyer C , DzieranJ, LiuYet al. Distinct dedifferentiation processes affect caveolin-1 expression in hepatocytes. Cell. Commun. Signal.11(1), 6 (2013).
  • Tse EY , KoFC, TungEKet al. Caveolin-1 overexpression is associated with hepatocellular carcinoma tumourigenesis and metastasis. J. Pathol.226(4), 645–653 (2012).
  • Bertran E , Crosas-MolistE, SanchoPet al. Overactivation of the TGF-beta pathway confers a mesenchymal-like phenotype and CXCR4-dependent migratory properties to liver tumor cells. Hepatology58(6), 2032–2044 (2013).
  • Fransvea E , AngelottiU, AntonaciS, GiannelliG. Blocking transforming growth factor-beta up-regulates E-cadherin and reduces migration and invasion of hepatocellular carcinoma cells. Hepatology47(5), 1557–1566 (2008).
  • Fischer AN , FuchsE, MikulaM, HuberH, BeugH, MikulitsW. PDGF essentially links TGF-beta signaling to nuclear beta-catenin accumulation in hepatocellular carcinoma progression. Oncogene26(23), 3395–3405 (2007).
  • van Zijl F , MairM, CsiszarAet al. Hepatic tumor-stroma crosstalk guides epithelial to mesenchymal transition at the tumor edge. Oncogene28(45), 4022–4033 (2009).
  • Mazzocca A , FransveaE, DituriF, LupoL, AntonaciS, GiannelliG. Down-regulation of connective tissue growth factor by inhibition of transforming growth factor beta blocks the tumor-stroma cross-talk and tumor progression in hepatocellular carcinoma. Hepatology51(2), 523–534 (2010).
  • Mott JL , GoresGJ. Piercing the armor of hepatobiliary cancer: Bcl-2 homology domain 3 (BH3) mimetics and cell death. Hepatology46(3), 906–911 (2007).
  • Takehara T , LiuX, FujimotoJ, FriedmanSL, TakahashiH. Expression and role of Bcl-xl in human hepatocellular carcinomas. Hepatology34(1), 55–61 (2001).
  • Sieghart W , LosertD, StrommerSet al. Mcl-1 overexpression in hepatocellular carcinoma: a potential target for antisense therapy. J. Hepatol.44(1), 151–157 (2006).
  • Beerheide W , TanYJ, TengE, TingAE, JedpiyawongseA, SrivatanakulP. Downregulation of proapoptotic proteins Bax and Bcl-X(S) in p53 overexpressing hepatocellular carcinomas. Biochem. Biophys. Res. Commun.273(1), 54–61 (2000).
  • Chen GG , LaiPB, ChanPKet al. Decreased expression of bid in human hepatocellular carcinoma is related to Hepatitis B virus X protein. Eur. J. Cancer37(13), 1695–1702 (2001).
  • Shi YH , DingWX, ZhouJet al. Expression of X-linked inhibitor-of-apoptosis protein in hepatocellular carcinoma promotes metastasis and tumor recurrence. Hepatology48(2), 497–507 (2008).
  • Birkey Reffey S , WurthnerJU, ParksWT, RobertsAB, DuckettCS. X-linked inhibitor of apoptosis protein functions as a cofactor in transforming growth factor-beta signaling. J. Biol. Chem.276(28), 26542–26549 (2001).
  • Wang K , LinB. Inhibitor of apoptosis proteins (IAPS) as regulatory factors of hepatic apoptosis. Cell. Signal.25(10), 1970–1980 (2013).
  • Augello C , CarusoL, MaggioniMet al. Inhibitors of apoptosis proteins (IAPS) expression and their prognostic significance in hepatocellular carcinoma. BMC Cancer9, 125 (2009).
  • Lo SJ , FanLC, TsaiYFet al. A novel interaction of nucleophosmin with Bcl2-associated X protein regulating death evasion and drug sensitivity in human hepatoma cells. Hepatology57(5), 1893–1905 (2013).
  • Yang F , LiQJ, GongZBet al. Microrna-34a targets Bcl-2 and sensitizes human hepatocellular carcinoma cells to sorafenib treatment. Technol. Cancer Res. Treat.13(1), 77–86 (2014).
  • Fabregat I . Dysregulation of apoptosis in hepatocellular carcinoma cells. World J. Gastroenterol.15(5), 513–520 (2009).
  • Muntane J , De la RosaAJ, DocoboF, Garcia-CarboneroR, PadilloFJ. Targeting tyrosine kinase receptors in hepatocellular carcinoma. Curr. Cancer Drug Targets13(3), 300–312 (2013).
  • Breuhahn K , LongerichT, SchirmacherP. Dysregulation of growth factor signaling in human hepatocellular carcinoma. Oncogene25(27), 3787–3800 (2006).
  • Llovet JM , BruixJ. Molecular targeted therapies in hepatocellular carcinoma. Hepatology48(4), 1312–1327 (2008).
  • Ortiz C , CajaL, SanchoP, BertranE, FabregatI. Inhibition of the EGF receptor blocks autocrine growth and increases the cytotoxic effects of doxorubicin in rat hepatoma cells: role of reactive oxygen species production and glutathione depletion. Biochem. Pharmacol.75(10), 1935–1945 (2008).
  • De Toni EN , KuntzenC, GerbesALet al. P60-c-SRC suppresses apoptosis through inhibition of caspase 8 activation in hepatoma cells, but not in primary hepatocytes. J. Hepatol.46(4), 682–691 (2007).
  • Gao JJ , InagakiY, XueX, QuXJ, TangW. C-Met: a potential therapeutic target for hepatocellular carcinoma. Drug Discov. Ther.5(1), 2–11 (2011).
  • Trusolino L , BertottiA, ComoglioPM. Met signalling: principles and functions in development, organ regeneration and cancer. Nat. Rev. Mol. Cell Biol.11(12), 834–848 (2010).
  • Xie B , TangC, ChenP, GouYB, XiaoJ, DuH. The effect of hepatitis B virus X protein on the c-Met promoter activity in HepG2 cells. Zhonghua Gan Zang Bing Za Zhi17(4), 292–296 (2009).
  • You H , DingW, DangH, JiangY, RountreeCB. C-Met represents a potential therapeutic target for personalized treatment in hepatocellular carcinoma. Hepatology54(3), 879–889 (2011).
  • Jo M , StolzDB, EsplenJE, DorkoK, MichalopoulosGK, StromSC. Cross-talk between epidermal growth factor receptor and c-Met signal pathways in transformed cells. J. Biol. Chem.275(12), 8806–8811 (2000).
  • Korhan P , ErdalE, KandemisEet al. Reciprocal activating crosstalk between c-Met and caveolin 1 promotes invasive phenotype in hepatocellular carcinoma. PLoS ONE9(8), e105278 (2014).
  • Yoshikawa H , MatsubaraK, QianGSet al. SOCS-1, a negative regulator of the JAK/STAT pathway, is silenced by methylation in human hepatocellular carcinoma and shows growth-suppression activity. Nat. Genet.28(1), 29–35 (2001).
  • Niwa Y , KandaH, ShikauchiYet al. Methylation silencing of SOCS-3 promotes cell growth and migration by enhancing JAK/STAT and FAK signalings in human hepatocellular carcinoma. Oncogene24(42), 6406–6417 (2005).
  • Ogata H , KobayashiT, ChinenTet al. Deletion of the SOCS3 gene in liver parenchymal cells promotes hepatitis-induced hepatocarcinogenesis. Gastroenterology131(1), 179–193 (2006).
  • Hong Y , ZhouL, XieH, WangW, ZhengS. Differences in antiproliferative effect of STAT3 inhibition in HCC cells with versus without HBV expression. Biochem. Biophys. Res. Commun.461(3), 513–518 (2015).
  • Wei RC , CaoX, GuiJHet al. Augmenting the antitumor effect of trail by SOCS3 with double-regulated replicating oncolytic adenovirus in hepatocellular carcinoma. Hum. Gene Ther.22(9), 1109–1119 (2011).
  • Xu G , YangF, DingCLet al. miR-221 accentuates IFNS anti-HCV effect by downregulating SOCS1 and SOCS3. Virology462–463, 343–350 (2014).
  • Horie Y , SuzukiA, KataokaEet al. Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. J. Clin. Invest.113(12), 1774–1783 (2004).
  • Ruan ZP , XuR, LvYet al. Pten enhances the sensitivity of human hepatocellular carcinoma cells to sorafenib. Oncol. Res.20(2–3), 113–121 (2012).
  • He X , ZhuZ, JohnsonCet al. PIK3IP1, a negative regulator of PI3K, suppresses the development of hepatocellular carcinoma. Cancer Res.68(14), 5591–5598 (2008).
  • Janku F , KasebAO, TsimberidouAM, WolffRA, KurzrockR. Identification of novel therapeutic targets in the PI3K/AKT/mTOR pathway in hepatocellular carcinoma using targeted next generation sequencing. Oncotarget5(10), 3012–3022 (2014).
  • Jiang J , ZhangY, GuoYet al. Microrna-3127 promotes cell proliferation and tumorigenicity in hepatocellular carcinoma by disrupting of PI3K/AKT negative regulation. Oncotarget6(8), 6359–6372 (2015).
  • Min L , HeB, HuiL. Mitogen-activated protein kinases in hepatocellular carcinoma development. Semin. Cancer Biol.21(1), 10–20 (2011).
  • Calvisi DF , LaduS, GordenAet al. Ubiquitous activation of RAS and JAK/STAT pathways in human HCC. Gastroenterology130(4), 1117–1128 (2006).
  • Delire B , StarkelP. The RAS/MAPK pathway and hepatocarcinoma: pathogenesis and therapeutic implications. Eur. J. Clin. Invest.45(6), 609–623 (2015).
  • Caja L , SanchoP, BertranE, Iglesias-SerretD, GilJ, FabregatI. Overactivation of the MEK/ERK pathway in liver tumor cells confers resistance to TGF-{beta}-induced cell death through impairing up-regulation of the NADPH oxidase NOX4. Cancer Res.69(19), 7595–7602 (2009).
  • Qiu GH , XieH, WheelhouseNet al. Differential expression of hDAB2IPA and hDAB2IPB in normal tissues and promoter methylation of hDAB2IPA in hepatocellular carcinoma. J. Hepatol.46(4), 655–663 (2007).
  • Di Gioia S , BianchiP, DestroAet al. Quantitative evaluation of RASSF1A methylation in the non-lesional, regenerative and neoplastic liver. BMC Cancer6, 89 (2006).
  • Hu L , ChenG, YuH, QiuX. Clinicopathological significance of RASSF1A reduced expression and hypermethylation in hepatocellular carcinoma. Hepatol. Int.4(1), 423–432 (2010).
  • Schagdarsurengin U , WilkensL, SteinemannDet al. Frequent epigenetic inactivation of the RASSF1A gene in hepatocellular carcinoma. Oncogene22(12), 1866–1871 (2003).
  • Yoshida T , HisamotoT, AkibaJet al. Spreds, inhibitors of the RAS/ERK signal transduction, are dysregulated in human hepatocellular carcinoma and linked to the malignant phenotype of tumors. Oncogene25(45), 6056–6066 (2006).
  • Calvisi DF , PinnaF, MeloniFet al. Dual-specificity phosphatase 1 ubiquitination in extracellular signal-regulated kinase-mediated control of growth in human hepatocellular carcinoma. Cancer Res.68(11), 4192–4200 (2008).
  • Hussain SP , SchwankJ, StaibF, WangXW, HarrisCC. Tp53 mutations and hepatocellular carcinoma: insights into the etiology and pathogenesis of liver cancer. Oncogene26(15), 2166–2176 (2007).
  • Marcel V , CatezF, DiazJJ. P53, a translational regulator: contribution to its tumour-suppressor activity. Oncogene doi:10.1038/onc.2015.25 (2015) ( Epub ahead of print).
  • Meng X , FranklinDA, DongJ, ZhangY. MDM2-p53 pathway in hepatocellular carcinoma. Cancer Res.74(24), 7161–7167 (2014).
  • Schulze K , ImbeaudS, LetouzeEet al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat. Genet.47(5), 505–511 (2015).
  • Farazi PA , GlickmanJ, HornerJ, DepinhoRA. Cooperative interactions of p53 mutation, telomere dysfunction, and chronic liver damage in hepatocellular carcinoma progression. Cancer Res.66(9), 4766–4773 (2006).
  • Wilhelm SM , CarterC, TangLet al. Bay 43–9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res.64(19), 7099–7109 (2004).
  • Fernando J , SanchoP, Fernandez-RodriguezCMet al. Sorafenib sensitizes hepatocellular carcinoma cells to physiological apoptotic stimuli. J. Cell. Physiol.227(4), 1319–1325 (2012).
  • Fernando J , MalfettoneA, CepedaEBet al. A mesenchymal-like phenotype and expression of CD44 predict lack of apoptotic response to sorafenib in liver tumor cells. Int. J. Cancer136(4), e161–e172 (2015).
  • Liu K , LiuS, ZhangW, JiB, WangY, LiuY. miR222 regulates sorafenib resistance and enhance tumorigenicity in hepatocellular carcinoma. Int. J. Oncol.45(4), 1537–1546 (2014).
  • Lin YT , LuHP, ChaoCC. Oncogenic c-Myc and prothymosin-alpha protect hepatocellular carcinoma cells against sorafenib-induced apoptosis. Biochem. Pharmacol.93(1), 110–124 (2015).
  • Giovannini C , BaglioniM, Baron ToaldoMet al. Notch3 inhibition enhances sorafenib cytotoxic efficacy by promoting GSK3b phosphorylation and p21 down-regulation in hepatocellular carcinoma. Oncotarget4(10), 1618–1631 (2013).
  • Zhao D , ZhaiB, HeCet al. Upregulation of HIF-2alpha induced by sorafenib contributes to the resistance by activating the TGF-alpha/EGFR pathway in hepatocellular carcinoma cells. Cell. Signal.26(5), 1030–1039 (2014).
  • Wang L , JiaD, DuanFet al. Combined anti-tumor effects of IFN-alpha and sorafenib on hepatocellular carcinoma in vitro and in vivo. Biochem. Biophys. Res. Commun.422(4), 687–692 (2012).
  • Ishijima N , KankiK, ShimizuH, ShiotaG. Activation of AMP-activated protein kinase by retinoic acid sensitizes hepatocellular carcinoma cells to apoptosis induced by sorafenib. Cancer Sci.106(5), 567–575 (2015).
  • Ganten TM , KoschnyR, HaasTLet al. Proteasome inhibition sensitizes hepatocellular carcinoma cells, but not human hepatocytes, to trail. Hepatology42(3), 588–597 (2005).
  • Pathil A , ArmeanuS, VenturelliSet al. HDAC inhibitor treatment of hepatoma cells induces both trail-independent apoptosis and restoration of sensitivity to trail. Hepatology43(3), 425–434 (2006).
  • Hamed HA , YamaguchiY, FisherPB, GrantS, DentP. Sorafenib and HDAC inhibitors synergize with trail to kill tumor cells. J. Cell. Physiol.228(10), 1996–2005 (2013).
  • Omar HA , Arafael-SA, MaghrabiIA, WengJR. Sensitization of hepatocellular carcinoma cells to Apo2l/TRAIL by a novel Akt/NF-κB signalling inhibitor. Basic. Clin. Pharmacol. Toxicol.114(6), 464–471 (2014).
  • Lee FA , ZeeBC, CheungFYet al. Randomized Phase II study of the X-linked inhibitor of apoptosis (XIAP) antisense AEG35156 in combination with sorafenib in patients with advanced hepatocellular carcinoma (HCC). Am. J. Clin. Oncol. (2014) ( Epub ahead of print).
  • Liu W , ZhuF, JiangY, SunD, YangB, YanH. SiRNA targeting survivin inhibits the growth and enhances the chemosensitivity of hepatocellular carcinoma cells. Oncol. Rep.29(3), 1183–1188 (2013).
  • Shen J , SunH, MengQet al. Simultaneous inhibition of tumor growth and angiogenesis for resistant hepatocellular carcinoma by co-delivery of sorafenib and survivin small hairpin RNA. Mol. Pharm.11(10), 3342–3351 (2014).
  • Or YY , ChowAK, NgLet al. Survivin depletion inhibits tumor growth and enhances chemosensitivity in hepatocellular carcinoma. Mol. Med. Rep.10(4), 2025–2030 (2014).
  • Wang B , NiZ, DaiXet al. The Bcl-2/xL inhibitor ABT-263 increases the stability of Mcl-1 mRNA and protein in hepatocellular carcinoma cells. Mol. Cancer13, 98 (2014).
  • Ni Z , WangB, DaiXet al. HCC cells with high levels of Bcl-2 are resistant to ABT-737 via activation of the ROS-JNK-autophagy pathway. Free Radic. Biol. Med.70, 194–203 (2014).
  • Huether A , HopfnerM, SutterAP, BaradariV, SchuppanD, ScherublH. Signaling pathways involved in the inhibition of epidermal growth factor receptor by erlotinib in hepatocellular cancer. World J. Gastroenterol.12(32), 5160–5167 (2006).
  • Zhu AX , RosmorducO, EvansTRet al. A Phase III, randomized, double-blind, placebo-controlled trial of sorafenib plus erlotinib in patients with advanced hepatocellular carcinoma. J. Clin. Oncol.33(6), 559–566 (2015).
  • Tovar V , AlsinetC, VillanuevaAet al. IGF activation in a molecular subclass of hepatocellular carcinoma and pre-clinical efficacy of IGF-1R blockage. J. Hepatol.52(4), 550–559 (2010).
  • Worns MA , GallePR. HCC therapies – lessons learned. Nat. Rev. Gastroenterol. Hepatol.11(7), 447–452 (2014).
  • Munshi N , JeayS, LiYet al. ARQ 197, a novel and selective inhibitor of the human c-Met receptor tyrosine kinase with antitumor activity. Mol. Cancer. Ther.9(6), 1544–1553 (2010).
  • Koh YW , ParkYS, KangHJ, ShimJH, YuE. Met is a predictive factor for late recurrence but not for overall survival of early stage hepatocellular carcinoma. Tumour Biol.36(7), 4993–5000 (2015).
  • Santoro A , RimassaL, BorbathIet al. Tivantinib for second-line treatment of advanced hepatocellular carcinoma: a randomised, placebo-controlled Phase 2 study. Lancet Oncol.14(1), 55–63 (2013).
  • Jiang X , FengK, ZhangYet al. Sorafenib and DE605, a novel c-Met inhibitor, synergistically suppress hepatocellular carcinoma. Oncotarget6(14), 12340–12356 (2015).
  • Lim HY , HeoJ, ChoiHJet al. A Phase II study of the efficacy and safety of the combination therapy of the MEK inhibitor refametinib (bay 86–9766) plus sorafenib for asian patients with unresectable hepatocellular carcinoma. Clin. Cancer Res.20(23), 5976–5985 (2014).
  • Bao JJ , ZhangWW, KuoMT. Adenoviral delivery of recombinant DNA into transgenic mice bearing hepatocellular carcinomas. Hum. Gene Ther.7(3), 355–365 (1996).
  • He X , LiuF, YanJet al. Trans-splicing repair of mutant p53 suppresses the growth of hepatocellular carcinoma cells in vitro and in vivo. Sci. Rep.5, 8705 (2015).
  • Wei JC , MengFD, QuKet al. Sorafenib inhibits proliferation and invasion of human hepatocellular carcinoma cells via up-regulation of p53 and suppressing foxm1. Acta Pharmacol. Sin.36(2), 241–251 (2015).
  • Brown CJ , CheokCF, VermaCS, LaneDP. Reactivation of p53: from peptides to small molecules. Trends Pharmacol. Sci.32(1), 53–62 (2011).
  • Koom WS , ParkSY, KimWet al. Combination of radiotherapy and adenovirus-mediated p53 gene therapy for Mdm2-overexpressing hepatocellular carcinoma. J. Radiat. Res.53(2), 202–210 (2012).
  • Midgley CA , DesterroJM, SavilleMKet al. An N-terminal p14ARF peptide blocks Mdm2-dependent ubiquitination in vitro and can activate p53 in vivo. Oncogene19(19), 2312–2323 (2000).
  • Shi X , LiuJ, RenLet al. Nutlin-3 downregulates p53 phosphorylation on serine392 and induces apoptosis in hepatocellular carcinoma cells. BMB Rep.47(4), 221–226 (2014).
  • Fransvea E , MazzoccaA, AntonaciS, GiannelliG. Targeting transforming growth factor (TGF)-betari inhibits activation of beta1 integrin and blocks vascular invasion in hepatocellular carcinoma. Hepatology49(3), 839–850 (2009).
  • Dituri F , MazzoccaA, PeidroFJet al. Differential inhibition of the TGF-beta signaling pathway in HCC cells using the small molecule inhibitor LY2157299 and the D10 monoclonal antibody against TGF-beta receptor type II. PLoS ONE8(6), e67109 (2013).
  • Giannelli G , VillaE, LahnM. Transforming growth factor-beta as a therapeutic target in hepatocellular carcinoma. Cancer Res.74(7), 1890–1894 (2014).
  • Perez-Herrero E , Fernandez-MedardeA. Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm.93, 52–79 (2015).
  • Yan JJ , LiaoJZ, LinJS, HeXX. Active radar guides missile to its target: receptor-based targeted treatment of hepatocellular carcinoma by nanoparticulate systems. Tumour Biol.36(1), 55–67 (2015).
  • Baldassarre F , VergaroV, ScarlinoFet al. Polyelectrolyte capsules as carriers for growth factor inhibitor delivery to hepatocellular carcinoma. Macromol. Biosci.12(5), 656–665 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.