180
Views
0
CrossRef citations to date
0
Altmetric
Review

Immunology of Osteoporosis: Relevance of Inflammatory Targets for the Development of Novel Interventions

, , , , , , , , ORCID Icon & ORCID Icon show all
Pages 815-831 | Received 16 Oct 2021, Accepted 06 May 2022, Published online: 29 Jun 2022

References

  • Okamoto K , NakashimaT , ShinoharaMet al. Osteoimmunology: the conceptual framework unifying the immune and skeletal systems. Physiol. Rev.97(4), 1295–1349 (2017).
  • Das S , CrockettJC. Osteoporosis - a current view of pharmacological prevention and treatment. Drug Des. Devel. Ther.7, 435–448 (2013).
  • Rachner TD , KhoslaS , HofbauerLC. Osteoporosis: now and the future. Lancet377(9773), 1276–1287 (2011).
  • Geusens P , LemsWF. Osteoimmunology and osteoporosis. Arthritis Res. Ther.13(5), 1–16 (2011).
  • Srivastava RK , DarHY , MishraPK. Immunoporosis: immunology of osteoporosis-role of T cells. Front. Immunol.9, 657 (2018).
  • McInnes IB , SchettG. Cytokines in the pathogenesis of rheumatoid arthritis. Nat. Rev. Immunol.7(6), 429–442 (2007).
  • Weitzmann MN . The role of inflammatory cytokines, the RANKL/OPG axis, and the immunoskeletal interface in physiological bone turnover and osteoporosis. Scientifica (Cairo)2013, 1–29 (2013).
  • Proff P , RömerP. The molecular mechanism behind bone remodelling: a review. Clin. Oral Investig.13(4), 355–362 (2009).
  • DW B , GAD. Bone biology and physiology: Part I. The fundamentals. Plast. Reconstr. Surg.129(6), 1314–1320 (2012).
  • Clarke BL , KhoslaS. Physiology of bone loss. Radiol. Clin. North Am.48(3), 483–495 (2010).
  • Karsenty G , KronenbergHM , SettembreC. Genetic control of bone formation. Annu. Rev. Cell Dev. Biol.25, 629–648 (2009).
  • Katsimbri P . The biology of normal bone remodelling. Eur. J. Cancer Care (Engl.)26(6), (2017).
  • Clarke B . Normal bone anatomy and physiology. Clin. J. Am. Soc.3, 131–139 (2008).
  • Rochefort G , PalluS , BenhamouCL. Osteocyte: the unrecognized side of bone tissue. Osteoporos. Int.21(9), 1457–1469 (2010).
  • Ross FP , TeitelbaumSL. αvβ3 and Macrophage Colony-Stimulating Factor: Partners in Osteoclast Biology. Immunol. Rev.208, 88–105 (2005).
  • Boyle W , SimonetWS , LaceyDL. Osteoclast differentiation and activation. Nature423(6937), 337–342 (2003).
  • Boyce BF , XingL. Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res. Ther.9(Suppl. 1), S1 (2007).
  • Hofbauer LC , LaceyDL , DunstanCR , SpelsbergTC , RiggsBL , KhoslaS. Interleukin-1β and tumor necrosis factor-α, but not interleukin-6, stimulate osteoprotegerin ligand gene expression in human osteoblastic cells. Bone25(3), 255–259 (1999).
  • Hadjidakis DJ , RaptisAE , SfakianakisM , MylonakisA , RaptisSA. Bone mineral density of both genders in Type 1 diabetes according to bone composition. J. Diabetes Complications20(5), 302–307 (2006).
  • Mangashetti LS , KhapliSM , WaniMR. IL-4 inhibits bone-resorbing activity of mature osteoclasts by affecting NF-κB and Ca 2+ signaling. J. Immunol.175(2), 917–925 (2005).
  • Yun TJ , ChaudharyPM , ShuGLet al. OPG/FDCR-1, a TNF receptor family member, is expressed in lymphoid cells and is up-regulated by ligating CD40. J. Immunol.161(11), 6113–6121 (1998).
  • Wing K , YamaguchiT , SakaguchiS. Cell-autonomous and -non-autonomous roles of CTLA-4 in immune regulation. Trends Immunol.32(9), 428–433 (2011).
  • Murphy KM , ReinerSL. The lineage decisions of helper T cells. Nat. Rev. Immunol.2(12), 933–944 (2002).
  • Takayanagi H . Osteoimmunology and the effects of the immune system on bone. Nat. Rev. Rheumatol.5(12), 667–676 (2009).
  • Sims NA , GreenJR , GlattMet al. Targeting osteoclasts with zoledronic acid prevents bone destruction in collagen-induced arthritis. Arthritis Rheum.50(7), 2338–2346 (2004).
  • Sato K , SuematsuA , OkamotoKet al. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J. Exp. Med.203(12), 2673–2682 (2006).
  • Krause DS . Regulation of hematopoietic stem cell fate. Oncogene21(21), 3262–3269 (2002).
  • Boyce BF Xing L . The RANKL/RANK/OPG pathway. Curr. Osteoporos. Rep.5(3), 98–104 (2007).
  • Rubin J , Ackert-BicknellCL , ZhuLet al. IGF-I regulates osteoprotegerin (OPG) and receptor activator of nuclear factor-κB ligand in vitro and OPG in vivo. J. Clin. Endocrinol. Metab.87(9), 4273–4279 (2002).
  • Bengtsson AK , RyanEJ. Immune function of the decoy receptor osteoprotegerin. Crit. Rev. Immunol.22(3), 15 (2002).
  • Breuil V , TicchioniM , TestaJet al. Immune changes in post-menopausal osteoporosis: the Immunos study. Osteoporos. Int.21(5), 805–814 (2010).
  • Andersen TL , SondergaardTE , SkorzynskaKEet al. A Physical mechanism for coupling bone resorption and formation in adult human bone. Am. J. Pathol.174(1), 239–247 (2009).
  • Hill PA . Bone remodelling. Br. J. Orthod.25(2), 101–107 (1998).
  • Bonewald LF . Osteocytes as dynamic multifunctional cells. Ann. NY Acad. Sci.1116, 281–290 (2007).
  • Ma Q , MaZ , LiangMet al. The role of physical forces in osteoclastogenesis. J. Cell. Physiol.234(8), 12498–12507 (2019).
  • Raggatt LJ , PartridgeNC. Cellular and molecular mechanisms of bone remodeling. J. Biol. Chem.285(33), 25103–25108 (2010).
  • Heino TJ , HentunenTA , VäänänenHK. Osteocytes inhibit osteoclastic bone resorption through transforming growth factor-β: enhancement by estrogen. J. Cell. Biochem.85(1), 185–197 (2002).
  • Juppner H , Abou-SamraA , FreemanMet al. A G protein-linked receptor for parathyroid hormone and parathyroid hormone-related peptide. Science254(5034), 1024–1026 (1991).
  • Swarthout JT , D’AlonzoRC , SelvamuruganN , PartridgeNC. Parathyroid hormone-dependent signaling pathways regulating genes in bone cells. Gene282(1–2), 1–17 (2002).
  • Li X , QinL , BergenstockM , BevelockLM , NovackDV , PartridgeNC. Parathyroid hormone stimulates osteoblastic expression of MCP-1 to recruit and increase the fusion of pre/osteoclasts. J. Biol. Chem.282(45), 33098–33106 (2007).
  • Canalis E . Management of endocrine disease: novel anabolic treatments for osteoporosis. Eur. J. Endocrinol.178(2), R33–R44 (2018).
  • Everts V , DelaisséJM , KorperWet al. The bone lining cell: its role in cleaning Howship’s lacunae and initiating bone formation. J. Bone Miner. Res.17(1), 77–90 (2002).
  • Heinemann DEH , SiggelkowH , PonceLM , ViereckV , WieseKG , PetersJH. Alkaline phosphatase expression during monocyte differentiation overlapping markers as a link between monocytic cells, dendritic cells, osteoclasts and osteoblasts. Immunobiology202(1), 68–81 (2000).
  • Takahashi F , TakahashiK , ShimizuKet al. Osteopontin is strongly expressed by alveolar macrophages in the lungs of acute respiratory distress syndrome. Lung182(3), 173–185 (2004).
  • Newby AC . Metalloproteinase expression in monocytes and macrophages and its relationship to atherosclerotic plaque instability. Arterioscler. Thromb. Vasc. Biol.28(12), 2108–2114 (2008).
  • Pederson L , RuanM , WestendorfJJ , KhoslaS , OurslerMJ. Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate. Proc. Natl Acad. Sci. USA105(52), 20764–20769 (2008).
  • Zhao C , IrieN , TakadaYet al. Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis. Cell Metab.4(2), 111–121 (2006).
  • van Bezooijen RL , RoelenBAJ , VisserAet al. Sclerostin is an osteocyte-expressed negative regulator of bone formation, but not a classical BMP antagonist. J. Exp. Med.199(6), 805–814 (2004).
  • Sun L , BlairHC , PengYet al. Calcineurin regulates bone formation by the osteoblast. Proc. Natl Acad. Sci. USA102(47), 17130–17135 (2005).
  • Robling AG , NiziolekPJ , BaldridgeLAet al. Mechanical stimulation of bone in vivo reduces osteocyte expression of sost/sclerostin. J. Biol. Chem.283(9), 5866–5875 (2008).
  • Takayanagi H . Mechanistic insight into osteoclast differentiation in osteoimmunology. J. Mol. Med.83(3), 170–179 (2005).
  • Walsh MC , KimN , KadonoYet al. Osteoimmunology: interplay between the immune system and bone metabolism. Annu. Rev. Immunol.24, 33–63 (2006).
  • Yeo L , ToellnerKM , SalmonMet al. Cytokine mRNA profiling identifies B cells as a major source of RANKL in rheumatoid arthritis. Ann. Rheum. Dis.70(11), 2022–2028 (2011).
  • Troen BR . Molecular mechanisms underlying osteoclast formation and activation. Exp. Gerontol.38(6), 605–614 (2003).
  • Katagiri T , TakahashiN. Regulatory mechanisms of osteoblast and osteoclast differentiation. Oral Dis.8(3), 147–159 (2002).
  • Takahashi N , UdagawaN , SudaT. A new member of tumor necrosis factor ligand family, ODF/OPGL/TRANCE/RANKL, regulates osteoclast differentiation and function. Biochem. Biophys. Res. Commun.256(3), 449–455 (1999).
  • Sirufo MM , SuppaM , GinaldiL , DeMartinis M. Does allergy break bones? Osteoporosis and its connection to allergy. Int. J. Mol. Sci.21(3), 712 (2020).
  • Ross B , KrappS , AugustinMet al. Structures and mechanism of dipeptidyl peptidases 8 and 9, important players in cellular homeostasis and cancer. Proc. Natl Acad. Sci. USA115(7), E1437–E1445 (2018).
  • Roy B . Biomolecular basis of the role of diabetes mellitus in osteoporosis and bone fractures. World J. Diabetes4(4), 101 (2013).
  • Miura M , TanakaK , KomatsuYet al. A novel interaction between thyroid hormones and 1,25(OH)2D3 in osteoclast formation. Biochem. Biophys. Res. Commun.291(4), 987–994 (2002).
  • Lee SK , LorenzoJA. Parathyroid hormone stimulates TRANCE and inhibits osteoprotegerin messenger ribonucleic acid expression in murine bone marrow cultures: correlation with osteoclast-like cell formation. Endocrinology140(8), 3552–3561 (1999).
  • Chung H , KangYS , HwangCSet al. Deflazacort increases osteoclast formation in mouse bone marrow culture and the ratio of RANKL/OPG mRNA expression in marrow stromal cells. J. Korean Med. Sci.16(6), 769–773 (2001).
  • Kikuchi T , MatsuguchiT , TsuboiNet al. Gene expression of osteoclast differentiation factor is induced by lipopolysaccharide in mouse osteoblasts via toll-like receptors. J. Immunol.166(5), 3574–3579 (2001).
  • Deyama Y , KikuiriT , OhnishiGIet al. Histamine stimulates production of osteoclast differentiation factor/receptor activator of nuclear factor-κB ligand by osteoblasts. Biochem. Biophys. Res. Commun.298(2), 240–246 (2002).
  • Chikazu D , KatagiriM , OgasawaraTet al. Regulation of osteoclast differentiation by fibroblast growth factor 2: stimulation of receptor activator of nuclear factor κB ligand/osteoclast differentiation factor expression in osteoblasts and inhibition of macrophage colony-stimulating factor functi. J. Bone Miner. Res.16(11), 2074–2081 (2001).
  • Takai H , KanematsuM , YanoKet al. Transforming growth factor-β stimulates the production of osteoprotegerin/osteoclastogenesis inhibitory factor by bone marrow stromal cells. J. Biol. Chem.273(42), 27091–27096 (1998).
  • Kim JH , KimN. Regulation of NFATc1 in osteoclast differentiation. J. Bone Metab.21, 233–241 (2014).
  • Timlin M , ToomeyD , CondronC. Fracture hematoma is a potent proinflammatory mediator of neutrophil function background: patients with multiple. J. Trauma Inj. Infect. Crit. Care58(6), 1223–1229 (2005).
  • Ponzetti M , RucciN. Updates on osteoimmunology: what’s new on the cross-talk between bone and immune system. Front. Endocrinol. (Lausanne)10, 1–13 (2019).
  • De Matos CT , BergL , MichaëlssonJ , Felländer-TsaiL , KärreK , SöderströmK. Activating and inhibitory receptors on synovial fluid natural killer cells of arthritis patients: role of CD94/NKG2A in control of cytokine secretion. Immunology122(2), 291–301 (2007).
  • Mortaz E , AlipoorSD , AdcockIM , MumbyS , KoendermanL. Update on neutrophil function in severe inflammation. Front. Immunol.9, 2171 (2018).
  • Pietschmann P , MechtcheriakovaD , MeshcheryakovaA , Föger-SamwaldU , EllingerI. Immunology of osteoporosis: a mini-review. Gerontology62(2), 128–137 (2016).
  • Park SH , SilvaM , BahkWJ , McKellopH , LiebermanJR. Effect of repeated irrigation and debridement on fracture healing in an animal model. J. Orthop. Res.20(6), 1197–1204 (2002).
  • Hajishengallis G , MoutsopoulosNM , HajishengallisE , ChavakisT. Immune and regulatory functions of neutrophils in inflammatory bone loss. Semin. Immunol.28(2), 146–158 (2016).
  • Katayama M , OhmuraK , YukawaNet al. Neutrophils are essential as a source of Il-17 in the effector phase of arthritis. PLoS One8(5), 62231 (2013).
  • Srivastava RK , Schmidt-BleekK , ChattopadhyayN , DeMartinis M , MishraPK. Editorial: recent advances in basic and translational osteoimmunology. Front. Immunol.12, 800508 (2021).
  • Srivastava RK , SapraL. The rising era of ‘immunoporosis’: role of immune system in the pathophysiology of osteoporosis. J. Inflamm. Res.5(15), 1667–1698 (2022).
  • Murdaca G , GrecoM , TonacciAet al. Il-33/il-31 axis in immune-mediated and allergic diseases. Int. J. Mol. Sci.20(23), 5856 (2019).
  • Brandt EB , SivaprasadU. Th2 cytokines and atopic dermatitis. J. Clin. Cell. Immunol.2(3), 110 (2011).
  • Zupan J , JerasM , MarcJ. Osteoimmunology and the influence of pro-inflammatory cytokines on osteoclasts. Biochem Med (Zagreb)23(1), 43–63 (2013).
  • Renke J , Kędzierska-MieszkowskaS , LangeMet al. Mast cells in mastocytosis and allergy – important player in metabolic and immunological homeostasis. Adv. Med. Sci.64(1), 124–130 (2019).
  • Ferencz V , MeszarosS , CsuporEet al. Increased bone fracture prevalence in postmenopausal women suffering from pollen-allergy. Osteoporos. Int.17(3), 484–491 (2006).
  • Garla VV , ChaudharyKUQ , YaqubA. Systemic mastocytosis: a rare cause of osteoporosis. Pan Afr. Med. J.32, 169 (2019).
  • Rossini M , ZanottiR , OrsoliniGet al. Prevalence, pathogenesis, and treatment options for mastocytosis-related osteoporosis. Osteoporos. Int.27(8), 2411–2421 (2016).
  • Naito A , AzumaS , TanakaSet al. Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient mice. Genes Cells4(6), 353–362 (1999).
  • Föger-Samwald U , DovjakP , Azizi-SemradU , Kerschan-SchindlK , PietschmannP. Osteoporosis: pathophysiology and therapeutic options. EXCLI J.19, 1017–1037 (2020).
  • Ferbebouh M , VallièresF , BenderdourM , FernandesJ. The pathophysiology of immunoporosis: innovative therapeutic targets. Inflamm. Res.70(8), 859–875 (2021).
  • Michalski MN , McCauleyLK. Macrophages and skeletal health. Pharmacol. Ther.174, 43–54 (2017).
  • Li Y , LingJ , JiangQ. Inflammasomes in alveolar bone loss. Front. Immunol.12, 2130 (2021).
  • Li Y , ToraldoG , LiAet al. B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo. Blood109(9), 3839–3848 (2007).
  • Onal M , XiongJ , ChenXet al. Receptor activator of nuclear factor κB ligand (RANKL) protein expression by B lymphocytes contributes to ovariectomy-induced bone loss. J. Biol. Chem.287(35), 29851–29860 (2012).
  • D’Amelio P , GrimaldiA , DiBella Set al. Estrogen deficiency increases osteoclastogenesis up-regulating T cells activity: a key mechanism in osteoporosis. Bone43(1), 92–100 (2008).
  • Saxena Y , RouthS , MukhopadhayaA. Immunoporosis: role of innate immune cells in osteoporosis. Front. Immunol.12, 687037 (2021).
  • Collin M , BigleyV. Human dendritic cell subsets: an update. Immunology154(1), 3–20 (2018).
  • Legge KL , GreggRK , Maldonado-LopezRet al. On the role of dendritic cells in peripheral T cell tolerance and modulation of autoimmunity. J. Exp. Med.196(2), 217–227 (2002).
  • Thomas R , MacDonaldKPA , PettitAR , CavanaghLL , PadmanabhaJ , ZehntnerS. Dendritic cells and the pathogenesis of rheumatoid arthritis. J. Leukoc. Biol.66(2), 286–292 (1999).
  • Steinman RM , BanchereauJ. Taking dendritic cells into medicine. Nature449(7161), 419–426 (2007).
  • Izawa T , IshimaruN , MoriyamaK , KohashiM , ArakakiR , HayashiY. Crosstalk between RANKLand Fas signaling in dendritic cells controls immune tolerance. Blood110(1), 242–250 (2007).
  • Walsh MC , ChoiY. Biology of the RANKL-RANK-OPG system in immunity, bone, and beyond. Front. Immunol.5, 511 (2014).
  • Ott C , JacobsK , HauckeE , NavarreteSantos A , GruneT , SimmA. Role of advanced glycation end products in cellular signaling. Redox Biol.2(1), 411–429 (2014).
  • Vikulina T , FanX , YamaguchiMet al. Alterations in the immuno-skeletal interface drive bone destruction in HIV-1 transgenic rats. Proc. Natl Acad. Sci. USA107(31), 13848–13853 (2010).
  • Zhao E , XuH , WangLet al. Bone marrow and the control of immunity. Cell. Mol. Immunol.9(1), 11–19 (2012).
  • Kung YY , FelgeU , SarosiIet al. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature402(6759), 304–309 (1999).
  • Dar HY , SinghA , ShuklaPet al. High dietary salt intake correlates with modulated Th17-Treg cell balance resulting in enhanced bone loss and impaired bone-microarchitecture in male mice. Sci. Rep.8(1), 2503 (2018).
  • Huber S , GaglianiN , O’ConnorW , GeginatJ , CaprioliF. CD4+ T helper cell plasticity in infection, inflammation, and autoimmunity. Mediators Inflamm.2017, 7083153 (2017).
  • Raphael I , NalawadeS , EagarTN , ForsthuberTG. T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine74(1), 5–17 (2015).
  • Palmqvist P , LundbergP , PerssonEet al. Inhibition of hormone and cytokine-stimulated osteoclastogenesis and bone resorption by interleukin-4 and interleukin-13 is associated with increased osteoprotegerin and decreased RANKL and RANK in a STAT6-dependent pathway. J. Biol. Chem.281(5), 2414–2429 (2006).
  • Pacifici R . T cells: critical bone regulators in health and disease. Bone47(3), 461–471 (2010).
  • Schmitt E , KleinM , BoppT. Th9 cells new players in adaptive immunity. Trends Immunol.35(2), 61–68 (2014).
  • Locksley RM . Nine lives: plasticity among T helper cell subsets. J. Exp. Med.206(8), 1643–1646 (2009).
  • Dar HY , AzamZ , AnupamR , MondalRK , SrivastavaRK. Osteoimmunology: the nexus between bone and immune system. Front. Biosci. (Landmark Ed.)23(3), 464–492 (2018).
  • Ciucci T , IbáñezL , BoucoiranAet al. Bone marrow Th17 TNFα cells induce osteoclast differentiation, and link bone destruction to IBD. Gut64(7), 1072–1081 (2015).
  • Adamopoulos IE , ChaoC chi , GeisslerRet al. Interleukin-17A upregulates receptor activator of NF-κB on osteoclast precursors. Arthritis Res. Ther.12(1), R29 (2010).
  • Yu M , CaveroV , LuQ , LiH. Follicular helper T cells in rheumatoid arthritis. Clin. Rheumatol.34(9), 1489–1493 (2015).
  • Cooley S , ParhamP , MillerJS. Strategies to activate NK cells to prevent relapse and induce remission following hematopoietic stem cell transplantation. Blood131(10), 1053–1062 (2018).
  • Fujii SI , ShimizuK , SmithC , BonifazL , SteinmanRM. Activation of natural killer T cells by α galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a coadministered protein. J. Exp. Med.198(2), 267–279 (2003).
  • Tilkeridis K , KiziridisG , VerveridisABet al. Immunoporosis: a new role for invariant natural killer T (NKT) cells through overexpression of nuclear factor-kB ligand (RANKL). Med. Sci. Monit.2151–2158 (2019).
  • Shashkova EV , TrivediJ , Cline-SmithABet al. Osteoclast-primed Foxp3 + CD8 T cells induce T-bet, eomesodermin, and IFN-γ to regulate bone resorption. J. Immunol.197(3), 726–735 (2016).
  • Murad MH , DrakeMT , MullanRJet al. Clinical review. Comparative effectiveness of drug treatments to prevent fragility fractures: a systematic review and network meta-analysis. J. Clin. Endocrinol. Metab.97(6), 1871–1880 (2012).
  • Black DM , DelmasPD , EastellRet al. Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N. Engl. J. Med.356(18), 1809–1822 (2007).
  • Cummings SR , SanMartin J , McClungMRet al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N. Engl. J. Med.361(8), 756–765 (2009).
  • Tella SH , GallagherJC. Prevention and treatment of postmenopausal osteoporosis. J. Steroid Biochem. Mol. Biol.142, 155–170 (2014).
  • Deeks ED . Denosumab: a review in postmenopausal osteoporosis. Drugs Aging35(2), 163–173 (2018).
  • Cosman F , CrittendenDB , FerrariSet al. FRAME Study: the foundation effect of building bone with 1 year of romosozumab leads to continued lower fracture risk after transition to denosumab. J. Bone Miner. Res.33(7), 1219–1226 (2018).
  • Tian A , JiaH , ZhuSet al. Romosozumab versus teriparatide for the treatment of postmenopausal osteoporosis: a systematic review and meta-analysis through a grade analysis of evidence. Orthop. Surg.13(7), 1941–1950 (2021).
  • Geusens P , FeldmanR , OatesMet al. Romosozumab reduces incidence of new vertebral fractures across severity grades among postmenopausal women with osteoporosis. Bone154, 116209 (2022).
  • Saag KG , PetersenJ , BrandiMLet al. Romosozumab or alendronate for fracture prevention in women with osteoporosis. N. Engl. J. Med.377(15), 1417–1427 (2017).
  • MacNabb C , PattonD , HayesJS. Sclerostin antibody therapy for the treatment of osteoporosis: clinical prospects and challenges. J. Osteoporos.2016, 6217286 (2016).
  • Padhi D , JangG , StouchB , FangL , PosvarE. Single-dose, placebo-controlled, randomized study of AMG 785, a sclerostin monoclonal antibody. J. Bone Miner. Res.26(1), 19–26 (2011).
  • Recknor CP , ReckerRR , BensonCTet al. The effect of discontinuing treatment with blosozumab: follow-up results of a phase 2 randomized clinical trial in postmenopausal women with low bone mineral density. J. Bone Miner. Res.30(9), 1717–1725 (2015).
  • Reid IR . Targeting sclerostin in postmenopausal osteoporosis: focus on romosozumab and blosozumab. BioDrugs31(4), 289–297 (2017).
  • Glorieux FH , DevogelaerJP , DurigovaMet al. BPS804 anti-sclerostin antibody in adults with moderate osteogenesis imperfecta: results of a randomized phase 2a trial. J. Bone Miner. Res.32(7), 1496–1504 (2017).
  • Lewiecki EM . Role of sclerostin in bone and cartilage and its potential as a therapeutic target in bone diseases. Ther. Adv. Musculoskelet. Dis.6(2), 48–57 (2014).
  • Novartis . Novartis Clinical Innovations Pipeline Annual Report (2014). https://prod.arctic.novartis.com/sites/novartis_com/files/novartis-annual-report-2014-en.pdf
  • Fulciniti M , TassoneP , HideshimaTet al. Anti-DKK1 mAb (BHQ880) as a potential therapeutic agent for multiple myeloma. Blood114(2), 371–379 (2009).
  • Goldhahn J , FéronJM , KanisJet al. Implications for fracture healing of current and new osteoporosis treatments: an ESCEO consensus paper. Calcif. Tissue Int.90(5), 343–353 (2012).
  • Iyer SP , BeckJT , StewartAKet al. A Phase IB multicentre dose-determination study of BHQ880 in combination with anti-myeloma therapy and zoledronic acid in patients with relapsed or refractory multiple myeloma and prior skeletal-related events. Br. J. Haematol.167(3), 366–375 (2014).
  • Boumpas DT , FurieR , ManziSet al. A short course of BG9588 (anti-CD40 ligand antibody) improves serologic activity and decreases hematuria in patients with proliferative lupus glomerulonephritis. Arthritis Rheum.48(3), 719–727 (2003).
  • Murata K , NoseM , NdhlovuLC , SatoT , SugamuraK , IshiiN. Constitutive OX40/OX40 ligand interaction induces autoimmune-like diseases. J. Immunol.169(8), 4628–4636 (2002).
  • Croft M . Co-stimulatory members of the TNFR family: keys to effective T-cell immunity?Nat. Rev. Immunol.3(8), 609–620 (2003).
  • Lippuner K . The future of osteoporosis treatment - a research update. Swiss Med. Wkly142, w13624 (2012).
  • Hsu YH , ChenWY , ChanCH , WuCH , SunZJ , ChangMS. Anti-IL-20 monoclonal antibody inhibits the differentiation of osteoclasts and protects against osteoporotic bone loss. J. Exp. Med.208(9), 1849–1861 (2011).
  • Hsu YH , ChiuYS , ChenWYet al. Anti-IL-20 monoclonal antibody promotes bone fracture healing through regulating IL-20-mediated osteoblastogenesis. Sci. Rep.6, 24339 (2016).
  • Gauthier JY , ChauretN , CromlishWet al. The discovery of odanacatib (MK-0822), a selective inhibitor of cathepsin K. Bioorg. Med. Chem. Lett.18(3), 923–928 (2008).
  • McClung MR , O’DonoghueML , PapapoulosSEet al. Odanacatib for the treatment of postmenopausal osteoporosis: results of the LOFT multicentre, randomised, double-blind, placebo-controlled trial and LOFT Extension study. Lancet Diabetes Endocrinol.7(12), 899–911 (2019).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.