293
Views
1
CrossRef citations to date
0
Altmetric
Review

Directing Dendritic Cell Immunotherapy Towards Successful Cancer Treatment

&
Pages 37-56 | Published online: 17 Dec 2009

Bibliography

  • Banchereau J , BriereF, CauxC et al.: Immunobiology of dendritic cells.Annu. Rev. Immunol.18 , 767–811 (2000).
  • Naik SH , SatheP, ParkHY et al.: Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo.Nat. Immunol.8(11) , 1217–1226 (2007).
  • Mckenna K , BeignonAS, BhardwajN: Plasmacytoid dendritic cells: linking innate and adaptive immunity.J. Virol.79(1) , 17–27 (2005).
  • Salio M , CellaM, VermiW et al.: Plasmacytoid dendritic cells prime IFN-γ-secreting melanoma-specific CD8 lymphocytes and are found in primary melanoma lesions.Eur. J, Immunol, 33(4) , 1052–1062 (2003).
  • Hartmann E , WollenbergB, RothenfusserS et al.: Identification and functional analysis of tumor-infiltrating plasmacytoid dendritic cells in head and neck cancer.Cancer Res.63(19) , 6478–6487 (2003).
  • Dunn GP , BruceAT, SheehanKC et al.: A critical function for type I interferons in cancer immunoediting.Nat. Immunol.6(7) , 722–729 (2005).
  • Gerlini G , UrsoC, MariottiG et al.: Plasmacytoid dendritic cells represent a major dendritic cell subset in sentinel lymph nodes of melanoma patients and accumulate in metastatic nodes.Clin. Immunol.125(2) , 184–193 (2007).
  • Battaglia A , BuzzonettiA, BaranelloC et al.: Metastatic tumour cells favour the generation of a tolerogenic milieu in tumour draining lymph node in patients with early cervical cancer.Cancer Immunol. Immunother.58(9) , 1363–1373 (2009).
  • Sharma MD , BabanB, ChandlerP et al.: Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature tregs via indoleamine 2,3-dioxygenase.J. Clin. Invest.117(9) , 2570–2582 (2007).
  • Munn D h, Sharma Md, Hou D et al.: Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J. Clin. Invest.114(2) , 280–290 (2004).
  • Trinchieri G : Interleukin-12 and the regulation of innate resistance and adaptive immunity.Nat. Rev. Immunol.3(2) , 133–146 (2003).
  • Guermonprez P , ValladeauJ, ZitvogelL, TheryC, AmigorenaS: Antigen presentation and T-cell stimulation by dendritic cells.Annu. Rev. Immunol.20 , 621–667 (2002).
  • Mori L , De Libero G: Presentation of lipid antigens to T cells. Immunol. Lett.117(1) , 1–8 (2008).
  • Ishikawa A , MotohashiS, Ishikawa Eet al.: A Phase I study of α-galactosylceramide (KRN7000)-pulsed dendritic cells in patients with advanced and recurrent non-small cell lung cancer. Clin. Cancer Res.11(5) , 1910–1917 (2005).
  • Seino K , MotohashiS, FujisawaT, NakayamaT, TaniguchiM: Natural killer T cell-mediated anti-tumor immune responses and their clinical applications.Cancer Sci.97(9) , 807–812 (2006).
  • Cambi A , KoopmanM, FigdorCG: How C-type lectins detect pathogens.Cell. Microbiol7(4) , 481–488 (2005).
  • Van Vliet SJ , Garcia-VallejoJJ, Van Kooyk Y: Dendritic cells and C-type lectin receptors: coupling innate to adaptive immune responses. Immunol. Cell. Biol.86(7) , 580–587 (2008).
  • Tacken PJ , De Vries IJ, Torensma R, Figdor CG: Dendritic-cell immunotherapy: From ex vivo loading to in vivo targeting. Nat. Rev. Immunol.7(10) , 790–802 (2007).
  • Tacken PJ , De Vries IJ, Gijzen K et al.: Effective induction of naive and recall T-cell responses by targeting antigen to human dendritic cells via a humanized anti-DC-SIGN antibody. Blood106(4) , 1278–1285 (2005).
  • Bonifaz LC , BonnyayDP, CharalambousA et al.: in vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T-cell vaccination.J. Exp. Med.199(6) , 815–824 (2004).
  • Smith AL , GaneshL, LeungK,Jongstra-Bilen J, Jongstra J, Nabel GJ: Leukocyte-specific protein 1 interacts with DC-SIGN and mediates transport of HIV to the proteasome in dendritic cells. J. Exp. Med.204(2) , 421–430 (2007).
  • Akira S , TakedaK: Toll-like receptor signalling.Nat. Rev. Immunol.4(7) , 499–511 (2004).
  • Kato H , TakeuchiO, SatoS et al.: Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses.Nature441(7089) , 101–105 (2006).
  • Pedra JH , CasselSL, SutterwalaFS: Sensing pathogens and danger signals by the inflammasome.Curr. Opin. Immunol.21(1) , 10–16 (2009).
  • Skoberne M , BeignonAS, BhardwajN: Danger signals: a time and space continuum.Trends Mol. Med.10(6) , 251–257 (2004).
  • Martin-Fontecha A , LanzavecchiaA, SallustoF: Dendritic cell migration to peripheral lymph nodes.Handb. Exp. Pharmacol. (188) , 31–49 (2009).
  • Scholer A , HuguesS, BoissonnasA, FetlerL, AmigorenaS: Intercellular adhesion molecule-1-dependent stable interactions between T cells and dendritic cells determine CD8+ T-cell memory.Immunity28(2) , 258–270 (2008).
  • Peggs KS , QuezadaSA, AllisonJP: Cell intrinsic mechanisms of T-cell inhibition and application to cancer therapy.Immunol. Rev.224 , 141–165 (2008).
  • Elgueta R , BensonMJ, De Vries VC, Wasiuk A, Guo Y, Noelle RJ: Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol. Rev.229(1) , 152–172 (2009).
  • Sallusto F , LanzavecchiaA: Human Th17 cells in infection and autoimmunity.Microbes Infect.11(5) , 620–624 (2009).
  • Tang Q , BluestoneJA: The 3+ regulatory T cell: a jack of all trades, master of regulation.Nat. Immunol.9(3) , 239–244 (2008).
  • Sokol CL , ChuNQ, YuS, NishSA, LauferTM, MedzhitovR: Basophils function as antigen-presenting cells for an allergen-induced T helper type 2 response.Nat. Immunol.10(7) , 713–720 (2009).
  • Ito T , WangYH, DuramadO et al.: TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand.J. Exp. Med.202(9) , 1213–1223 (2005).
  • Manel N , UnutmazD, LittmanDR: The differentiation of human Th-17 cells requires transforming growth factor-β and induction of the nuclear receptor ROR-γ-t.Nat. Immunol.9(6) , 641–649 (2008).
  • Jego G , PascualV, PaluckaAK, BanchereauJ: Dendritic cells control B-cell growth and differentiation.Curr. Dir. Autoimmun.8 , 124–139 (2005).
  • Munz C , DaoT, FerlazzoG, De Cos MA, Goodman K, Young JW: Mature myeloid dendritic cell subsets have distinct roles for activation and viability of circulating human natural killer cells. Blood105(1) , 266–273 (2005).
  • Fujii S , ShimizuK, KronenbergM, SteinmanRM: Prolonged IFN-γ-producing nkt response induced with α-galactosylceramide-loaded DCs.Nat. Immunol.3(9) , 867–874 (2002).
  • Cools N , PonsaertsP, Van Tendeloo VF, Berneman ZN: Balancing between immunity and tolerance: an interplay between dendritic cells, regulatory T cells, and effector T cells. J. Leukoc. Biol.82(6) , 1365–1374 (2007).
  • Mellor AL , MunnDH: IDO expression by dendritic cells: tolerance and tryptophan catabolism.Nat. Rev. Immunol.4(10) , 762–774 (2004).
  • Munn DH , MellorAL: IDO and tolerance to tumors.Trends Mol. Med.10(1) , 15–18 (2004).
  • Levings MK , GregoriS, TresoldiE, CazzanigaS, BoniniC, RoncaroloMG: Differentiation of Tr1 cells by immature dendritic cells requires IL-10 but not CD25+CD4+ Tr cells.Blood105(3) , 1162–1169 (2005).
  • Jonuleit H , SchmittE, SchulerG, KnopJ, EnkAH: Induction of interleukin 10-producing, nonproliferating CD4+ T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells.J. Exp. Med.192(9) , 1213–1222 (2000).
  • Woo EY , ChuCS, GoletzTJ et al.: Regulatory CD4+CD25+ T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer.Cancer Res.61(12) , 4766–4772 (2001).
  • Liyanage UK , MooreTT, JooHG et al.: Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma.J. Immunol.169(5) , 2756–2761 (2002).
  • Viehl CT , MooreTT, LiyanageUK et al.: Depletion of CD4+CD25+ regulatory T cells promotes a tumor-specific immune response in pancreas cancer-bearing mice.Ann. Surg. Oncol.13(9) , 1252–1258 (2006).
  • Chen W , LiangX, PetersonAJ, MunnDH, BlazarBR: The indoleamine 2,3-dioxygenase pathway is essential for human plasmacytoid dendritic cell-induced adaptive t regulatory cell generation.J. Immunol.181(8) , 5396–5404 (2008).
  • Skoberne M , SomersanS, AlmodovarW et al.: The apoptotic-cell receptor CR3, but not αVβ5, is a regulator of human dendritic-cell immunostimulatory function.Blood108(3) , 947–955 (2006).
  • Skoberne M , BeignonAS, LarssonM, BhardwajN: Apoptotic cells at the crossroads of tolerance and immunity.Curr. Top. Microbiol. Immunol.289 , 259–292 (2005).
  • Satzger I , SchenckF, KappA, GutzmerR: Spontaneous regression of melanoma with distant metastases – report of a patient with brain metastases.Eur. J. Dermatol.16(4) , 454–455 (2006).
  • Wang RF , RosenbergSA: Human tumor antigens for cancer vaccine development.Immunol. Rev.170 , 85–100 (1999).
  • Kim R , EmiM, TanabeK: Cancer immunoediting from immune surveillance to immune escape.Immunology121(1) , 1–14 (2007).
  • Smyth MJ , DunnGP, SchreiberRD: Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity.Adv. Immunol.90 , 1–50 (2006).
  • Gandhi RT , O‘neillD, BoschRJ et al.: A randomized therapeutic vaccine trial of canarypox-HIV-pulsed dendritic cells vs. Canarypox-HIV alone in HIV-1-infected patients on antiretroviral therapy.Vaccine27(43) , 6088–6094 (2009).
  • Palucka AK , UenoH, ConnollyJ et al.: Dendritic cells loaded with killed allogeneic melanoma cells can induce objective clinical responses and MART-1 specific CD8+ T-cell immunity.J. Immunother.29(5) , 545–557 (2006).
  • Redman BG , ChangAE, WhitfieldJ et al.: Phase Ib trial assessing autologous, tumor-pulsed dendritic cells as a vaccine administered with or without IL-2 in patients with metastatic melanoma.J. Immunother.31(6) , 591–598 (2008).
  • O‘neill DW , BhardwajN: Differentiation of peripheral blood monocytes into dendritic cells.Curr. Protoc. Immunol. Chapter 22, Unit 22F 4 (2005).
  • O‘neill D , BhardwajN: Generation of autologous peptide- and protein-pulsed dendritic cells for patient-specific immunotherapy.Methods Mol. Med.109 , 97–112 (2005).
  • Obermaier B , DauerM, HertenJ, SchadK, EndresS, EiglerA: Development of a new protocol for 2-day generation of mature dendritic cells from human monocytes.Biol. Proced. Online5 , 197–203 (2003).
  • Dauer M , ObermaierB, HertenJ et al.: Mature dendritic cells derived from human monocytes within 48 hours: a novel strategy for dendritic cell differentiation from blood precursors.J. Immunol.170(8) , 4069–4076 (2003).
  • Alldawi L , TakahashiM, NaritaM et al.: Effect of prostaglandin E2, lipopolysaccharide, IFN-γ and cytokines on the generation and function of fast-DC.Cytotherapy7(2) , 195–202 (2005).
  • Jarnjak-Jankovic S , HammerstadH, Saeboe-LarssenS, KvalheimG, GaudernackG: A full scale comparative study of methods for generation of functional dendritic cells for use as cancer vaccines.BMC Cancer7 , 119 (2007).
  • Banchereau J , PaluckaAK, DhodapkarM et al.: Immune and clinical responses in patients with metastatic melanoma to CD34+ progenitor-derived dendritic cell vaccine.Cancer Res.61(17) , 6451–6458 (2001).
  • Klechevsky E , LiuM, MoritaR et al.: Understanding human myeloid dendritic cell subsets for the rational design of novel vaccines.Hum. Immunol.70(5) , 281–288 (2009).
  • Fay JW , PaluckaAK, PaczesnyS et al.: Long-term outcomes in patients with metastatic melanoma vaccinated with melanoma peptide-pulsed CD34+ progenitor-derived dendritic cells.Cancer Immunol. Immunotherapy55 , 1209–1218 (2006).
  • Banchereau J , UenoH, DhodapkarM et al.: Immune and clinical outcomes in patients with stage IV melanoma vaccinated with peptide-pulsed dendritic cells derived from CD34+ progenitors and activated with type I interferon.J. Immunother.28 , 505–516 (2005).
  • Marroquin CE , WestwoodJA, LapointeR et al.: Mobilization of dendritic cell precursors in patients with cancer by flt3 ligand allows the generation of higher yields of cultured dendritic cells.J. Immunother.25(3) , 278–288 (2002).
  • Pulendran B , BanchereauJ, BurkeholderS et al.: Flt3-ligand and granulocyte colony-stimulating factor mobilize distinct human dendritic cell subsets in vivo.J. Immunol.165(1) , 566–572 (2000).
  • Small EJ , SchellhammerPF, HiganoCS et al.: Placebo-controlled Phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer.J. Clin. Oncol.24(19) , 3089–3094 (2006).
  • Dhodapkar MV , SteinmanRM, KrasovskyJ, MunzC, BhardwajN: Antigen-specific inhibition of effector T-cell function in humans after injection of immature dendritic cells.J. Exp. Med.193(2) , 233–238 (2001).
  • Dhodapkar MV , SteinmanRM: Antigen-bearing immature dendritic cells induce peptide-specific CD8+ regulatory T cells in vivo in humans.Blood100(1) , 174–177 (2002).
  • De Vries IJ , LesterhuisWJ, ScharenborgNM et al.: Maturation of dendritic cells is a prerequisite for inducing immune responses in advanced melanoma patients.Clin. Cancer Res.9(14) , 5091–5100 (2003).
  • De Vries IJ , KrooshoopDJ, ScharenborgNM et al.: Effective migration of antigen-pulsed dendritic cells to lymph nodes in melanoma patients is determined by their maturation state.Cancer Res.63(1) , 12–17 (2003).
  • Lee AW , TruongT, BickhamK et al.: A clinical grade cocktail of cytokines and PGE2 results in uniform maturation of human monocyte-derived dendritic cells: implications for immunotherapy.Vaccine20(Suppl. 4) , A8–A22 (2002).
  • Jongmans W , TiemessenDM, Van Vlodrop IJ, Mulders PF, Oosterwijk E: Th1-polarizing capacity of clinical-grade dendritic cells is triggered by ribomunyl but is compromised by PGE2: the importance of maturation cocktails. J. Immunother.28(5) , 480–487 (2005).
  • Krause P , SingerE, DarleyPI, KlebensbergerJ, GroettrupM, LeglerDF: Prostaglandin E2 is a key factor for monocyte-derived dendritic cell maturation: enhanced T-cell stimulatory capacity despite IDO.J. Leukoc. Biol.82(5) , 1106–1114 (2007).
  • Morelli AE , ThomsonAW: Dendritic cells under the spell of prostaglandins.Trends Immunol.24(3) , 108–111 (2003).
  • Scandella E , MenY, GillessenS, ForsterR, GroettrupM: Prostaglandin E2 is a key factor for CCR7 surface expression and migration of monocyte-derived dendritic cells.Blood100(4) , 1354–1361 (2002).
  • Krause P , BrucknerM, UermosiC, SingerE, GroettrupM, LeglerDF: Prostaglandin E2 enhances T-cell proliferation by inducing the costimulatory molecules OX40L, CD70, and 4–1-βBL on dendritic cells.Blood113(11) , 2451–2460 (2009).
  • Mailliard RB , Wankowicz-KalinskaA, CaiQ et al.: α-type-1 polarized dendritic cells: a novel immunization tool with optimized CTL-inducing activity.Cancer Res.64(17) , 5934–5937 (2004).
  • Lee JJ , FoonKA, MailliardRB, MuthuswamyR, KalinskiP: Type 1-polarized dendritic cells loaded with autologous tumor are a potent immunogen against chronic lymphocytic leukemia.J. Leukoc. Biol.84(1) , 319–325 (2008).
  • Schnare M , BartonGM, HoltAC, TakedaK, AkiraS, MedzhitovR: Toll-like receptorscontrol activation of adaptive immune responses.Nat. Immunol.2(10) , 947–950 (2001).
  • Napolitani G , RinaldiA, BertoniF, SallustoF, LanzavecchiaA: Selected toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells.Nat. Immunol.6(8) , 769–776 (2005).
  • Boullart AC , AarntzenEH, VerdijkP et al.: Maturation of monocyte-derived dendritic cells with toll-like receptor 3 and 7/8 ligands combined with prostaglandin E2 results in high interleukin-12 production and cell migration.Cancer Immunol. Immunother.57(11) , 1589–1597 (2008).
  • Speetjens FM , KuppenPJ, WeltersMJ et al.: Induction of p53-specific immunity by a p53 synthetic long peptide vaccine in patients treated for metastatic colorectal cancer.Clin Cancer Res15(3) , 1086–1095 (2009).
  • Melief CJ , Van Der Burg SH: Immunotherapy of established (pre)malignant disease by synthetic long peptide vaccines. Nat. Rev. Cancer8(5) , 351–360 (2008).
  • Barrou B , BenoitG, OuldkaciM et al.: Vaccination of prostatectomized prostate cancer patients in biochemical relapse, with autologous dendritic cells pulsed with recombinant human PSA.Cancer Immunol. Immunother.53(5) , 453–460 (2004).
  • Salcedo M , BercoviciN, TaylorR et al.: Vaccination of melanoma patients using dendritic cells loaded with an allogeneic tumor cell lysate.Cancer Immunol. Immunother.55(7) , 819–829 (2006).
  • Mahdian R , KokhaeiP, NajarHM, DerkowK, ChoudhuryA, MellstedtH: Dendritic cells, pulsed with lysate of allogeneic tumor cells, are capable of stimulating MHC-restricted antigen-specific anti-tumor T cells.Med. Oncol.23(2) , 273–282 (2006).
  • Schnurr M , GalambosP, ScholzC et al.: Tumor cell lysate-pulsed human dendritic cells induce a T-cell response against pancreatic carcinoma cells: an in vitro model for the assessment of tumor vaccines.Cancer Res.61(17) , 6445–6450 (2001).
  • Thumann P , MocI, HumrichJ et al.: Antigen loading of dendritic cells with whole tumor cell preparations.J. Immunol. Methods277(1–2) , 1–16 (2003).
  • Schnurr M , ChenQ, ShinA et al.: Tumor antigen processing and presentation depend critically on dendritic cell type and the mode of antigen delivery.Blood105(6) , 2465–2472 (2005).
  • Jenne L , SchulerG, SteinkassererA: Viral vectors for dendritic cell-based immunotherapy.Trends Immunol.22(2) , 102–107 (2001).
  • Brockstedt DG , DubenskyTW: Promises and challenges for the development of listeria monocytogenes-based immunotherapies.Expert Rev. Vaccines7(7) , 1069–1084 (2008).
  • Bellone S , El-SahwiK, CoccoE et al.: Human papillomavirus type 16 (HPV-16) virus-like particle L1-specific CD8+ cytotoxic T lymphocytes (CTLs) are equally effective as E7-specific CD8+CTLs in killing autologous HPV-16-positive tumor cells in cervical cancer patients: implications for L1 dendritic cell-based therapeutic vaccines.J. Virol.83(13) , 6779–6789 (2009).
  • Carrasco J , Van Pel A, Neyns B et al.: Vaccination of a melanoma patient with mature dendritic cells pulsed with MAGE-3 peptides triggers the activity of nonvaccine anti-tumor cells. J. Immunol.180(5) , 3585–3593 (2008).
  • Butterfield LH , Comin-AnduixB, VujanovicL et al.: Adenovirus MART-1-engineered autologous dendritic cell vaccine for metastatic melanoma.J. Immunother.31(3) , 294–309 (2008).
  • Veron P , AlloV, RiviereC, BernardJ, DouarAM, MasurierC: Major subsets of human dendritic cells are efficiently transduced by self-complementary adeno-associated virus vectors 1 and 2.J. Virol.81(10) , 5385–5394 (2007).
  • Skoberne M , YewdallA, BahjatKS et al.: KBMA listeria monocytogenesis an effective vector for DC-mediated induction of anti-tumor immunity.J. Clin. Invest.118(12) , 3990–4001 (2008).
  • Breckpot K , AertsJL, ThielemansK: Lentiviral vectors for cancer immunotherapy: transforming infectious particles into therapeutics.Gene Ther.14(11) , 847–862 (2007).
  • He Y , MunnD, FaloLD Jr: Recombinant lentivector as a genetic immunization vehicle for anti-tumor immunity. Expert Rev. Vaccines6(6) , 913–924 (2007).
  • Schroers R , SinhaI, SegallH et al.: Transduction of human PBMC-derived dendritic cells and macrophages by an HIV-1-based lentiviral vector system.Mol. Ther.1(2) , 171–179 (2000).
  • Dyall J , LatoucheJB, SchnellS, SadelainM: Lentivirus-transduced human monocyte-derived dendritic cells efficiently stimulate antigen-specific cytotoxic T lymphocytes.Blood97(1) , 114–121 (2001).
  • Lizee G , GonzalesMI, TopalianSL: Lentivirus vector-mediated expression of tumor-associated epitopes by human antigen presenting cells.Hum. Gene Ther.15(4) , 393–404 (2004).
  • He Y , ZhangJ, MiZ, RobbinsP, FaloLD Jr: Immunization with lentiviral vector-transduced dendritic cells induces strong and long-lasting T-cell responses and therapeutic immunity. J. Immunol.174(6) , 3808–3817 (2005).
  • Dullaers M , Van Meirvenne S, Heirman C et al.: Induction of effective therapeutic anti-tumor immunity by direct in vivo administration of lentiviral vectors. Gene Ther.13(7) , 630–640 (2006).
  • Breckpot K , HeirmanC, De Greef C, Van Der Bruggen P, Thielemans K: Identification of new antigenic peptide presented by HLA-Cw7 and encoded by several MAGE genes using dendritic cells transduced with lentiviruses. J. Immunol.172(4) , 2232–2237 (2004).
  • Yang L , YangH, RideoutK et al.: Engineered lentivector targeting of dendritic cells for in vivo immunization.Nat. Biotechnol.26(3) , 326–334 (2008).
  • Nair SK , MorseM, BoczkowskiD et al.: Induction of tumor-specific cytotoxic T lymphocytes in cancer patients by autologous tumor RNA-transfected dendritic cells.Ann. Surg.235(4) , 540–549 (2002).
  • Muller MR , TsakouG, GrunebachF, SchmidtSM, BrossartP: Induction of chronic lymphocytic leukemia (CLL)-specific CD4- and CD8-mediated T-cell responses using RNA-transfected dendritic cells.Blood103(5) , 1763–1769 (2004).
  • Nencioni A , MullerMR, GrunebachF et al.: Dendritic cells transfected with tumor RNA for the induction of anti-tumor CTL in colorectal cancer.Cancer Gene Ther.10(3) , 209–214 (2003).
  • Milazzo C , ReichardtVL, MullerMR, GrunebachF, BrossartP: Induction of myeloma-specific cytotoxic T cells using dendritic cells transfected with tumor-derived RNA.Blood101(3) , 977–982 (2003).
  • Gilboa E , ViewegJ: Cancer immunotherapy with mRNA-transfected dendritic cells.Immunol. Rev.199 , 251–263 (2004).
  • Heiser A , MauriceMA, YanceyDR, ColemanDM, DahmP, ViewegJ: Human dendritic cells transfected with renal tumor RNA stimulate polyclonal T-cell responses against antigens expressed by primary and metastatic tumors.Cancer Res.61(8) , 3388–3393 (2001).
  • Strobel I , BerchtoldS, GotzeA, SchulzeU, SchulerG, SteinkassererA: Human dendritic cells transfected with either RNA or DNA encoding influenza matrix protein M1 differ in their ability to stimulate cytotoxic T lymphocytes.Gene Ther.7(23) , 2028–2035 (2000).
  • Koido S , KashiwabaM, ChenD, GendlerS, KufeD, GongJ: Induction of anti-tumor immunity by vaccination of dendritic cells transfected with MUC1 RNA.J. Immunol.165(10) , 5713–5719 (2000).
  • Heiser A , ColemanD, DannullJ et al.: Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors.J. Clin. Invest.109(3) , 409–417 (2002).
  • Shortman K , LahoudMH, CaminschiI: Improving vaccines by targeting antigens to dendritic cells.Exp. Mol. Med.41(2) , 61–66 (2009).
  • Tacken PJ , TorensmaR, FigdorCG: Targeting antigens to dendritic cellsin vivo.Immunobiology211(6–8) , 599–608 (2006).
  • Jinushi M , HodiFS, DranoffG: Enhancing the clinical activity of granulocyte-macrophage colony-stimulating factor-secreting tumor cell vaccines.Immunol. Rev.222 , 287–298 (2008).
  • Jinushi M , TaharaH: Cytokine gene-mediated immunotherapy: current status and future perspectives.Cancer Sci.100(8) , 1389–1396 (2009).
  • Luiten RM , KueterEW, MooiW et al.: Immunogenicity, including vitiligo, and feasibility of vaccination with autologous GM-CSF-transduced tumor cells in metastatic melanoma patients.J. Clin. Oncol.23 , 8978–8991 (2005).
  • Small EJ , NemunaitisJ, MarshallF et al.: Granulocyte macrophage colony-stimulating factor-secreting allogeneic cellular immunotherapy for hormone-refractory prostate cancer.Clin. Cancer Res.13 , 1883–3891 (2007).
  • Higano CS : Phase 1/2 dose-escalation study of a GM-CSF-secreting, allogeneic, cellular immunotherapy for metastatic hormone-refractory prostate cancer.Cancer113 , 975–984 (2008).
  • Filipazzi P , ValentiR, HuberV et al.: Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based anti-tumor vaccine.J. Clin. Oncol.25(18) , 2546–2553 (2007).
  • Sica A , BronteV: Altered macrophage differentiation and immune dysfunction in tumor development.J. Clin. Invest.117(5) , 1155–1166 (2007).
  • Van Kooyk Y : C-type lectins on dendritic cells: key modulators for the induction of immune responses.Biochem. Soc. Trans.36(Pt 6) , 1478–1481 (2008).
  • Caminschi I , ProiettoAI, AhmetF et al.: The dendritic cell subtype-restricted C-type lectin Clec9A is a target for vaccine enhancement.Blood112(8) , 3264–3273 (2008).
  • Carter RW , ThompsonC, ReidDM, WongSY, ToughDF: Preferential induction of CD4+ T-cell responses through in vivo targeting of antigen to dendritic cell-associated C-type lectin-1.J. Immunol.177(4) , 2276–2284 (2006).
  • Carter RW , ThompsonC, ReidDM, WongSY, ToughDF: Induction of CD8+ T-cell responses through targeting of antigen to dectin-2.Cell. Immunol.239(2) , 87–91 (2006).
  • Boscardin SB , HafallaJC, MasilamaniRF et al.: Antigen targeting to dendritic cells elicits long-lived T-cell help for antibody responses.J. Exp. Med.203(3) , 599–606 (2006).
  • Ramakrishna V , TremlJF, VitaleL et al.: Mannose receptor targeting of tumor antigen pmel17 to human dendritic cells directs anti-melanoma T-cell responses via multiple HLA molecules.J. Immunol.172(5) , 2845–2852 (2004).
  • Adema GJ , De Vries IJ, Punt CJ, Figdor CG: Migration of dendritic cell based cancer vaccines: in vivo veritas? Curr. Opin. Immunol.17(2) , 170–174 (2005).
  • Verdijk P , AarntzenEH, LesterhuisWJ et al.: Limited amounts of dendritic cells migrate into the T-cell area of lymph nodes but have high immune activating potential in melanoma patients.Clin. Cancer Res.15(7) , 2531–2540 (2009).
  • Schadendorf D , UgurelS, Schuler-ThurnerB et al.: Dacarbazine (Dtic) versus vaccination with autologous peptide-pulsed dendritic cells (DC) in first-line treatment of patients with metastatic melanoma: a randomized Phase III trial of the DC study group of the decog.Ann. Oncol.17(4) , 563–570 (2006).
  • Higano CS , SchellhammerPF, SmallEJ et al.: Integrated data from 2 randomized, double-blind, placebo-controlled, Phase III trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer.Cancer115(16) , 3670–3679 (2009).
  • Finn OJ , ForniG: Prophylactic cancer vaccines.Curr. Opin. Immunol.14(2) , 172–177 (2002).
  • Jocham D , RichterA, HoffmannL et al.: Adjuvant autologous renal tumour cell vaccine and risk of tumour progression in patients with renal-cell carcinoma after radical nephrectomy: Phase III, randomised controlled trial.Lancet363(9409) , 594–599 (2004).
  • Bronte V , MocellinS: Suppressive influences in the immune response to cancer.J. Immunother.32(1) , 1–11 (2009).
  • Bennaceur K , ChapmanJ, Brikci-NigassaL, SanhadjiK, TouraineJL, PortoukalianJ: Dendritic cells dysfunction in tumour environment.Cancer Lett.272(2) , 186–196 (2008).
  • Aptsiauri N , CabreraT, MendezR, Garcia-LoraA, Ruiz-CabelloF, GarridoF: Role of altered expression of HLA class I molecules in cancer progression.Adv. Exp. Med. Biol.601 , 123–131 (2007).
  • Chang CC , OginoT, MullinsDW et al.: Defective human leukocyte antigen class I-associated antigen presentation caused by a novel b2-microglobulin loss-of-function in melanoma cells.J. Biol. Chem.281(27) , 18763–18773 (2006).
  • Blank C , GajewskiTF, MackensenA: Interaction of PD-L1 on tumor cells with PD-1 on tumor-specific T cells as a mechanism of immune evasion: implications for tumor immunotherapy.Cancer Immunol Immunother54(4) , 307–314 (2005).
  • Iwai Y , IshidaM, TanakaY, OkazakiT, HonjoT, MinatoN: Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade.Proc. Natl Acad. Sci. USA99(19) , 12293–12297 (2002).
  • Strome SE , DongH, TamuraH et al.: B7-H1 blockade augments adoptive T-cell immunotherapy for squamous cell carcinoma.Cancer Res.63(19) , 6501–6505 (2003).
  • Blank C , KuballJ, VoelklS et al.: Blockade of PD-L1 (B7-H1) augments human tumor-specific T-cell responses in vitro.Int. J. Cancer119(2) , 317–327 (2006).
  • Berger R , Rotem-YehudarR, SlamaG et al.: Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies.Clin. Cancer Res.14(10) , 3044–3051 (2008).
  • Peggs KS , QuezadaSA, ChambersCA, KormanAJ, AllisonJP: Blockade of CTLA-4 on both effector and regulatory T-cell compartments contributes to the anti-tumor activity of anti-CTLA-4 antibodies.J. Exp. Med. (2009).
  • Yuan J , GnjaticS, LiH et al.: CTLA-4blockade enhances polyfunctional NY-ESO-1 specific T-cell responses in metastatic melanoma patients with clinical benefit.Proc. Natl Acad. Sci. USA105(51) , 20410–20415 (2008).
  • O‘day SJ , HamidO, UrbaWJ: Targeting cytotoxic T-lymphocyte antigen-4 (CTLA-4): a novel strategy for the treatment of melanoma and other malignancies.Cancer110(12) , 2614–2627 (2007).
  • Gilboa E : Knocking the SOCS1 off dendritic cells.Nat. Biotechnol.22(12) , 1521–1522 (2004).
  • Croker BA , KiuH, NicholsonSE: SOCS regulation of the JAK/STAT signalling pathway.Semin. Cell Dev. Biol.19(4) , 414–422 (2008).
  • Shen L , Evel-KablerK, StrubeR, ChenSY: Silencing of SOCS1 enhances antigen presentation by dendritic cells and antigen-specific anti-tumor immunity.Nat. Biotechnol.22(12) , 1546–1553 (2004).
  • Evel-Kabler K , SongXT, AldrichM, HuangXF, ChenSY: SOCS1 restricts dendritic cells‘ ability to break self tolerance and induce anti-tumor immunity by regulating IL-12 production and signaling.J. Clin. Invest.116(1) , 90–100 (2006).
  • Cohen N , MoulyE, HamdiH et al.: Gilz expression in human dendritic cells redirects their maturation and prevents antigen-specific T lymphocyte response.Blood107(5) , 2037–2044 (2006).
  • Berrebi D , BruscoliS, CohenN et al.: Synthesis of glucocorticoid-induced leucine zipper (GILZ) by macrophages: an anti-inflammatory and immunosuppressive mechanism shared by glucocorticoids and IL-10.Blood101(2) , 729–738 (2003).
  • Foss F : Clinical experience with denileukin diftitox (ONTAK).Semin. Oncol.33(1 Suppl. 3) , S11–S16 (2006).
  • Liu JY , WuY, ZhangXS et al.: Single administration of low dose cyclophosphamide augments the anti-tumor effect of dendritic cell vaccine.Cancer Immunol. Immunother.56(10) , 1597–1604 (2007).
  • Shimizu J , YamazakiS, TakahashiT, IshidaY, SakaguchiS: Stimulation of CD25+CD4+ regulatory T cells through GITR breaks immunological self-tolerance.Nat. Immunol.3(2) , 135–142 (2002).
  • Ko K , YamazakiS, NakamuraK et al.: Treatment of advanced tumors with agonistic anti-gitr mab and its effects on tumor-infiltrating 3+CD25+CD4+ regulatory T cells.J. Exp. Med.202(7) , 885–891 (2005).
  • Cohen AD , DiabA, PeralesMA et al.: Agonist anti-GITR antibody enhances vaccine-induced CD8+ T-cell responses and tumor immunity.Cancer Res.66(9) , 4904–4912 (2006).
  • Vicari AP , ChiodoniC, VaureC et al.: Reversal of tumor-induced dendritic cell paralysis by CpG immunostimulatory oligonucleotide and anti-interleukin 10 receptor antibody.J. Exp. Med.196(4) , 541–549 (2002).
  • Fujita T , TeramotoK, OzakiY et al.: Inhibition of transforming growth factor-β-mediated immunosuppression in tumor-draining lymph nodes augments anti-tumor responses by various immunologic cell types.Cancer Res.69(12) , 5142–5150 (2009).
  • Lopez MN , PeredaC, SegalG et al.: Prolonged survival of dendritic cell-vaccinated melanoma patients correlates with tumor-specific delayed type IV hypersensitivity response and reduction of tumor growth factor β-expressing T cells.J. Clin. Oncol.27(6) , 945–952 (2009).
  • Wang C , LinGH, McphersonAJ, WattsTH: Immune regulation by 4-1-βB and 4-1-βBL: complexities and challenges.Immunol. Rev.229(1) , 192–215 (2009).
  • May KF Jr, Chen L, Zheng P, Liu Y: Anti-4-1-βB monoclonal antibody enhances rejection of large tumor burden by promoting survival but not clonal expansion of tumor-specific CD8+ T cells. Cancer Res.62(12) , 3459–3465 (2002).
  • Murillo O , DubrotJ, PalazonA et al.: in vivo depletion of DC impairs the anti-tumor effect of agonistic anti-CD137 mAb.Eur. J. Immunol.39(9) , 2424–2436 (2009).
  • Kocak E , LuteK, ChangX et al.: Combination therapy with anti-CTL antigen-4 and anti-4-1-βB antibodies enhances cancer immunity and reduces autoimmunity.Cancer Res.66(14) , 7276–7284 (2006).
  • Hanks BA , JiangJ, SinghRA et al.: Re-engineered CD40 receptor enables potent pharmacological activation of dendritic-cell cancer vaccines in vivo.Nat. Med.11(2) , 130–137 (2005).
  • Lapteva N , SeethammagariMR, HanksBA et al.: Enhanced activation of human dendritic cells by inducible CD40 and toll-like receptor-4 ligation.Cancer Res.67(21) , 10528–10537 (2007).
  • Kutzler MA , RobinsonTM, ChattergoonMA et al.: Coimmunization with an optimized IL-15 plasmid results in enhanced function and longevity of CD8 T cells that are partially independent of CD4 T-cell help.J. Immunol.175(1) , 112–123 (2005).
  • Klebanoff CA , FinkelsteinSE, SurmanDR et al.: IL-15 enhances the in vivo anti-tumor activity of tumor-reactive CD8+ T cells.Proc. Natl Acad. Sci. USA101(7) , 1969–1974 (2004).
  • Teague RM , SatherBD, SacksJA et al.: Interleukin-15 rescues tolerant CD8+ T cells for use in adoptive immunotherapy of established tumors.Nat. Med.12(3) , 335–341 (2006).
  • Schluns KS , KieperWC, JamesonSC, LefrancoisL: Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo.Nat. Immunol.1(5) , 426–432 (2000).
  • Rosenberg SA , SportesC, AhmadzadehM et al.: IL-7 administration to humans leads to expansion of CD8+ and CD4+ cells but a relative decrease of CD4+ T-regulatory cells.J. Immunother.29(3) , 313–319 (2006).
  • Minkis K , KavanaghDG, AlterG et al.: Type 2 bias of T cells expanded from the blood of melanoma patients switched to type 1 by IL-12p70 mRNA-transfected dendritic cells.Cancer Res.68(22) , 9441–9450 (2008).
  • Czerniecki BJ , KoskiGK, KoldovskyU et al.: Targeting HER-2/neu in early breast cancer development using dendritic cells with staged interleukin-12 burst secretion.Cancer Res.67(4) , 1842–1852 (2007).
  • Adams S , O‘neillDW, NonakaD et al.: Immunization of malignant melanoma patients with full-length NY-ESO-1 protein using TLR7 agonist imiquimod as vaccine adjuvant.J. Immunol.181(1) , 776–784 (2008).
  • Speiser DE , LienardD, RuferN et al.: Rapid and strong human CD8+ T-cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909.J. Clin. Invest.115(3) , 739–746 (2005).
  • Warger T , OsterlohP, Rechtsteiner Get al.: Synergistic activation of dendritic cells by combined toll-like receptor ligation induces superior CTL responses in vivo. Blood108(2) , 544–550 (2006).
  • Vandepapeliere P , HorsmansY, MorisP et al.: Vaccine adjuvant systems containing monophosphoryl lipid A and QS21 induce strong and persistent humoral and T-cell responses against hepatitis B surface antigen in healthy adult volunteers.Vaccine26(10) , 1375–1386 (2008).
  • Longhi MP , TrumpfhellerC, IdoyagaJ et al.: Dendritic cells require a systemic type I interferon response to mature and induce CD4+ Th1 immunity with poly IC as adjuvant.J. Exp. Med.206(7) , 1589–1602 (2009).
  • Reed SG , BertholetS, ColerRN, FriedeM: New horizons in adjuvants for vaccine development.Trends Immunol.30(1) , 23–32 (2009).
  • Sharp FA , RuaneD, ClaassB et al.: Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome.Proc. Natl Acad. Sci. USA106(3) , 870–875 (2009).
  • Baumgaertner P , RuferN, DevevreE et al.: ex vivo detectable human CD8 T-cell responses to cancer-testis antigens.Cancer Res.66(4) , 1912–1916 (2006).
  • Diefenbach CS , GnjaticS, SabbatiniP et al.: Safety and immunogenicity study of NY-ESO-1-β peptide and montanide ISA-51 vaccination of patients with epithelial ovarian cancer in high-risk first remission.Clin. Cancer Res.14(9) , 2740–2748 (2008).
  • Fourcade J , KudelaP, Andrade Filho PAet al.: Immunization with analog peptide in combination with CpG and montanide expands tumor antigen-specific CD8+ T cells in melanoma patients. J. Immunother.31(8) , 781–791 (2008).
  • Marshall JL , GulleyJL, ArlenPM et al.: Phase I study of sequential vaccinations with fowlpox-CEA(6D)-TRICOM alone and sequentially with vaccinia-CEA(6D)-TRICOM, with and without granulocyte-macrophage colony-stimulating factor, in patients with carcinoembryonic antigen-expressing carcinomas.J. Clin. Oncol.23(4) , 720–731 (2005).
  • Marshall JL , HoyerRJ, ToomeyMA et al.: Phase I study in advanced cancer patients of a diversified prime-and-boost vaccination protocol using recombinant vaccinia virus and recombinant nonreplicating avipox virus to elicit anti-carcinoembryonic antigen immune responses.J. Clin. Oncol.18(23) , 3964–3973 (2000).
  • Dhodapkar MV : Harnessing human CD1d restricted T cells for tumor immunity: progress and challenges.Front. Biosci.14 , 796–807 (2009).
  • Chang DH , OsmanK, ConnollyJ et al.: Sustained expansion of NKT cells and antigen-specific T cells after injection of α-galactosyl-ceramide loaded mature dendritic cells in cancer patients.J. Exp. Med.201(9) , 1503–1517 (2005).
  • Aquino A , FormicaV, PreteSP et al.: Drug-induced increase of carcinoembryonic antigen expression in cancer cells.Pharmacol. Res.49(5) , 383–396 (2004).
  • Correale P , AquinoA, GiulianiA et al.: Treatment of colon and breast carcinoma cells with 5-fluorouracil enhances expression of carcinoembryonic antigen and susceptibility to HLA-A(*)02.01 restricted, CEA-peptide-specific cytotoxic T cells in vitro.Int. J. Cancer104(4) , 437–445 (2003).
  • Lu W , ArraesLC, FerreiraWT, AndrieuJM: Therapeutic dendritic-cell vaccine for chronic HIV-1 infection.Nat. Med.10(12) , 1359–1365 (2004).

▪ Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.