153
Views
1
CrossRef citations to date
0
Altmetric
Review

Personalized Dendritic Cell-Based Tumor Immunotherapy

, &
Pages 57-68 | Published online: 17 Dec 2009

Bibliography

  • Banchereau J , PaluckaAK: Dendritic cells as therapeutic vaccines against cancer.Nat. Rev. Immunol.5 , 296–306 (2005).
  • Banchereau J , SteinmanRM: Dendritic cells and the control of immunity.Nature392 , 245–252 (1998).
  • Palucka AK , UenoH, FayJ, BanchereauJ: Dendritic cells: a critical player in cancer therapy?J. Immunother.31 , 793–805 (2008).
  • Gilboa E , NairSK, LyerlyHK: Immunotherapy of cancer with dendritic cell-based vaccines.Cancer Immunol. Immunother.46 , 82–87 (1998).
  • Nestle FO , FarkasA, ConradC: Dendritic-cell-based therapeutic vaccination against cancer.Curr. Opin. Immunol.17 , 163–169 (2005).
  • Palucka AK , LaupezeB, AspordC et al.: Immunotherapy via dendritic cells.Adv. Exp. Med. Biol.560 , 105–114 (2005).
  • Mayordomo JI , ZorinaT, StorkusWJ et al.: Bone marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity.Nat. Med.1 , 1297–1302 (1995).
  • Nagaraj S , ZiskeC, StrehlJ, MessmerD, SauerbruchT, Schmidt-WolfIG: Dendritic cells pulsed with α-galactosylceramide induce anti-tumor immunity against pancreatic cancer in vivo.Int. Immunol.18 , 1279–1283 (2006).
  • Shimizu J , SudaT, YoshiokaT, KosugiA, FujiwaraH, HamaokaT: Induction of tumor-specific in vivo protective immunity by immunization with tumor antigen-pulsed antigen-presenting cells.J. Immunol.142 , 1053–1059 (1989).
  • Paczesny S , UenoH, FayJ, BanchereauJ, PaluckaAK: Dendritic cells as vectors for immunotherapy of cancer.Semin. Cancer Biol.13 , 439–447 (2003).
  • Figdor CG , de Vries IJ, Lesterhuis WJ, Melief CJ: Dendritic cell immunotherapy: mapping the way. Nat. Med.10 , 475–480 (2004).
  • Steinman RM , BanchereauJ: Taking dendritic cells into medicine.Nature449 , 419–426 (2007).
  • Disis ML , CheeverMA: HER-2/neu oncogenic protein: issues in vaccine development.Crit. Rev. Immunol.18 , 37–45 (1998).
  • Disis ML , GooleyTA, RinnK et al.: Generation of T-cell immunity to the HER-2/neu protein after active immunization with HER-2/neu peptide-based vaccines.J. Clin. Oncol.20 , 2624–2632 (2002).
  • Cibotti R , KanellopoulosJM, CabaniolsJP et al.: Tolerance to a self-protein involves its immunodominant but does not involve its subdominant determinants.Proc. Natl Acad. Sci. USA89 , 416–420 (1992).
  • Keogh E , FikesJ, SouthwoodS, CelisE, ChesnutR, SetteA: Identification of new epitopes from four different tumor-associated antigens: recognition of naturally processed epitopes correlates with HLA-A*0201-binding affinity.J. Immunol.167 , 787–796 (2001).
  • Elliott T , CerundoloV, ElvinJ, TownsendA: Peptide-induced conformational change of the class I heavy chain.Nature351 , 402–406 (1991).
  • Sette A , VitielloA, RehermanB et al.: The relationship between class I binding affinity and immunogenicity of potential cytotoxic T cell epitopes.J. Immunol.153 , 5586–5592 (1994).
  • Ward S , CaseyD, LabartheMC et al.: Immunotherapeutic potential of whole tumour cells.Cancer Immunol. Immunother.51 , 351–357 (2002).
  • Finn OJ : Cancer vaccines: between the idea and the reality.Nat. Rev. Immunol.3 , 630–641 (2003).
  • Rosenberg SA , YangJC, RestifoNP: Cancer immunotherapy: moving beyond current vaccines.Nat. Med.10 , 909–915 (2004).
  • Rabinovich GA , GabrilovichD, SotomayorEM: Immunosuppressive strategies that are mediated by tumor cells.Annu. Rev. Immunol.25 , 267–296 (2007).
  • Drake CG , JaffeeE, PardollDM: Mechanisms of immune evasion by tumors.Adv. Immunol.90 , 51–81 (2006).
  • Gabrilovich D : Mechanisms and functional significance of tumour-induced dendritic-cell defects.Nat. Rev. Immunol.4 , 941–952 (2004).
  • Feng H , ZengY, GranerMW, LikhachevaA, KatsanisE: Exogenous stress proteins enhance the immunogenicity of apoptotic tumor cells and stimulate anti-tumor immunity.Blood101 , 245–252 (2003).
  • Feng H , ZengY, WhitesellL, KatsanisE: Stressed apoptotic tumor cells express heat shock proteins and elicit tumor-specific immunity.Blood97 , 3505–3512 (2001).
  • Larmonier N , FraszczakJ, LakomyD, BonnotteB, KatsanisE: Killer dendritic cells and their potential for cancer immunotherapy.Cancer Immunol. Immunother.59(1) , 1–11 (2009).
  • Aarntzen EH , FigdorCG, AdemaGJ, PuntCJ, de Vries IJ: Dendritic cell vaccination and immune monitoring. Cancer Immunol. Immunother.57 , 1559–1568 (2008).
  • Tuyaerts S , AertsJL, CorthalsJ et al.: Current approaches in dendritic cell generation and future implications for cancer immunotherapy.Cancer Immunol. Immunother.56 , 1513–1537 (2007).
  • Inaba K , InabaM, RomaniN et al.: Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor.J. Exp. Med.176 , 1693–1702 (1992).
  • Schreurs MW , EggertAA, de Boer AJ, Figdor CG, Adema GJ: Generation and functional characterization of mouse monocyte-derived dendritic cells. Eur. J. Immunol.29 , 2835–2841 (1999).
  • Romani N , GrunerS, BrangD et al.: Proliferating dendritic cell progenitors in human blood.J. Exp. Med.180 , 83–93 (1994).
  • Caux C , VanbervlietB, MassacrierC et al.: CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF+TNF-α.J. Exp. Med.184 , 695–706 (1996).
  • Fay JW , PaluckaAK, PaczesnyS et al.: Long-term outcomes in patients with metastatic melanoma vaccinated with melanoma peptide-pulsed CD34+ progenitor-derived dendritic cells.Cancer Immunol. Immunother.55 , 1209–1218 (2006).
  • Paczesny S , BanchereauJ, WittkowskiKM, SaracinoG, FayJ, PaluckaAK: Expansion of melanoma-specific cytolytic CD8+ T cell precursors in patients with metastatic melanoma vaccinated with CD34+ progenitor-derived dendritic cells.J. Exp. Med.199 , 1503–1511 (2004).
  • Ashley DM , FaiolaB, NairS, HaleLP, BignerDD, GilboaE: Bone marrow-generated dendritic cells pulsed with tumor extracts or tumor RNA induce anti-tumor immunity against central nervous system tumors.J. Exp. Med.186 , 1177–1182 (1997).
  • Fields RC , ShimizuK, MuleJJ: Murine dendritic cells pulsed with whole tumor lysates mediate potent anti-tumor immune responses in vitro and in vivo.Proc. Natl Acad. Sci. USA95 , 9482–9487 (1998).
  • Geiger C , RegnS, WeinzierlA, NoessnerE, SchendelDJ: A generic RNA-pulsed dendritic cell vaccine strategy for renal cell carcinoma.J. Transl. Med.3 , 29 (2005).
  • Phan V , ErringtonF, CheongSC et al.: A new genetic method to generate and isolate small, short-lived but highly potent dendritic cell-tumor cell hybrid vaccines.Nat. Med.9 , 1215–1219 (2003).
  • Sauter B , AlbertML, FranciscoL, LarssonM, SomersanS, BhardwajN: Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells.J. Exp. Med.191 , 423–434 (2000).
  • Wolfers J , LozierA, RaposoG et al.: Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming.Nat. Med.7 , 297–303 (2001).
  • Ueda G , TamuraY, HiraiI et al.: Tumor-derived heat shock protein 70-pulsed dendritic cells elicit tumor-specific cytotoxic T lymphocytes (CTLs) and tumor immunity.Cancer Sci.95 , 248–253 (2004).
  • Wang XH , QinY, HuMH, XieY: Dendritic cells pulsed with gp96-peptide complexes derived from human hepatocellular carcinoma (HCC) induce specific cytotoxic T lymphocytes.Cancer Immunol. Immunother.54 , 971–980 (2005).
  • Andre F , SchartzNE, MovassaghM et al.: Malignant effusions and immunogenic tumour-derived exosomes.Lancet360 , 295–305 (2002).
  • Waldhauer I , GoehlsdorfD, GiesekeF et al.: Tumor-associated MICA is shed by ADAM proteases.Cancer Res.68 , 6368–6376 (2008).
  • Nencioni A , GrunebachF, SchmidtSM et al.: The use of dendritic cells in cancer immunotherapy.Crit. Rev. Oncol. Hematol.65 , 191–199 (2008).
  • Grunebach F , ErndtS, HantschelM, HeineA, BrossartP: Generation of antigen-specific CTL responses using RGS1 mRNA transfected dendritic cells.Cancer Immunol. Immunother.57 , 1483–1491 (2008).
  • Yasuda T , KamigakiT, KawasakiK et al.: Superior anti-tumor protection and therapeutic efficacy of vaccination with allogeneic and semiallogeneic dendritic cell/tumor cell fusion hybrids for murine colon adenocarcinoma.Cancer Immunol. Immunother.56(7) , 1025–1036 (2006).
  • Kao JY , ZhangM, ChenCM, ChenJJ: Superior efficacy of dendritic cell-tumor fusion vaccine compared with tumor lysate-pulsed dendritic cell vaccine in colon cancer.Immunol. Lett.101 , 154–159 (2005).
  • Galea-Lauri J , DarlingD, MuftiG, HarrisonP, FarzanehF: Eliciting cytotoxic T lymphocytes against acute myeloid leukemia-derived antigens: evaluation of dendritic cell-leukemia cell hybrids and other antigen-loading strategies for dendritic cell-based vaccination.Cancer Immunol. Immunother.51 , 299–310 (2002).
  • Shimizu K , KuriyamaH, KjaergaardJ, LeeW, TanakaH, ShuS: Comparative analysis of antigen loading strategies of dendritic cells for tumor immunotherapy.J. Immunother.27 , 265–272 (2004).
  • Ribas A : Genetically modified dendritic cells for cancer immunotherapy.Curr. Gene Ther.5 , 619–628 (2005).
  • Breckpot K , HeirmanC, NeynsB, ThielemansK: Exploiting dendritic cells for cancer immunotherapy: genetic modification of dendritic cells.J. Gene Med.6 , 1175–1188 (2004).
  • Todryk SM , BirchallLJ, ErlichR, HalanekN, Orleans-LindsayJK, DalgleishAG: Efficacy of cytokine gene transfection may differ for autologous and allogeneic tumour cell vaccines.Immunology102 , 190–198 (2001).
  • den Brok MH , NierkensS, FigdorCG, RuersTJ, AdemaGJ: Dendritic cells: tools and targets for anti-tumor vaccination.Expert Rev. Vaccines4 , 699–710 (2005).
  • Adema GJ : Dendritic cells from bench to bedside and back.Immunol. Lett.122 , 128–130 (2009).
  • den Brok MH , SutmullerRP, NierkensS et al.: Synergy between in situ cryoablation and TLR9 stimulation results in a highly effective in vivo dendritic cell vaccine.Cancer Res.66 , 7285–7292 (2006).
  • Hodge JW , RadAN, GrosenbachDW et al.: Enhanced activation of T cells by dendritic cells engineered to hyperexpress a triad of costimulatory molecules.J. Natl Cancer Inst.92 , 1228–1239 (2000).
  • MartIn-Fontecha A , SebastianiS, HopkenUE et al.: Regulation of dendritic cell migration to the draining lymph node: impact on T lymphocyte traffic and priming.J. Exp. Med.198 , 615–621 (2003).
  • Nestle FO , AlijagicS, GillietM et al.: Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells.Nat. Med.4 , 328–332 (1998).
  • Ehtesham M , KabosP, GutierrezMA, SamotoK, BlackKL, YuJS: Intratumoral dendritic cell vaccination elicits potent tumoricidal immunity against malignant glioma in rats.J. Immunother.26 , 107–116 (2003).
  • Chen M , HuangL, ShabierZ, WangJ: Regulation of the lifespan in dendritic cell subsets.Mol. Immunol.44 , 2558–2565 (2007).
  • Kim TW , LeeJH, HeL et al.: Modification of professional antigen-presenting cells with small interfering RNA in vivo to enhance cancer vaccine potency.Cancer Res.65 , 309–316 (2005).
  • de Gruijl TD , van den Eertwegh AJ, Pinedo HM, Scheper RJ: Whole-cell cancer vaccination: from autologous to allogeneic tumor- and dendritic cell-based vaccines. Cancer Immunol. Immunother.57 , 1569–1577 (2008).
  • O‘Rourke MG , JohnsonM, LanaganC et al.: Durable complete clinical responses in a Phase I/II trial using an autologous melanoma cell/dendritic cell vaccine.Cancer Immunol. Immunother.52 , 387–395 (2003).
  • Larmonier N , MerinoD, NicolasA et al.: Apoptotic, necrotic, or fused tumor cells: an equivalent source of antigen for dendritic cell loading.Apoptosis11 , 1513–1524 (2006).
  • Melero I , VileRG, ColomboMP: Feeding dendritic cells with tumor antigens: self-service buffet or a la carte?Gene Ther.7 , 1167–1170 (2000).
  • Albert ML , SauterB, BhardwajN: Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs.Nature392 , 86–89 (1998).
  • Schnurr M , ScholzC, RothenfusserS et al.: Apoptotic pancreatic tumor cells are superior to cell lysates in promoting cross-priming of cytotoxic T cells and activate NK and γδ T cells.Cancer Res.62 , 2347–2352 (2002).
  • Jarnjak-Jankovic S , PettersenRD, Saeboe-LarssenS, WesenbergF, OlafsenMR, GaudernackG: Preclinical evaluation of autologous dendritic cells transfected with mRNA or loaded with apoptotic cells for immunotherapy of high-risk neuroblastoma.Cancer Gene Ther.12 , 699–707 (2005).
  • Gallucci S , LolkemaM, MatzingerP: Natural adjuvants: endogenous activators of dendritic cells.Nat. Med.5 , 1249–1255 (1999).
  • Basu S , BinderRJ, SutoR, AndersonKM, SrivastavaPK: Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-κB pathway.Int. Immunol.12 , 1539–1546 (2000).
  • Nicolas A , CathelinD, LarmonierN et al.: Dendritic cells trigger tumor cell death by a nitric oxide-dependent mechanism.J. Immunol.179 , 812–818 (2007).
  • Kalos M : Tumor antigen-specific T cells and cancer immunotherapy: current issues and future prospects.Vaccine21 , 781–786 (2003).
  • Zeng Y , GranerMW, KatsanisE: Chaperone-rich cell lysates, immune activation and tumor vaccination.Cancer Immunol. Immunother.55 , 329–338 (2006).
  • Gilboa E : The risk of autoimmunity associated with tumor immunotherapy.Nat. Immunol.2 , 789–792 (2001).
  • Bos R , van Duikeren S, Morreau H et al.: Balancing between anti-tumor efficacy and autoimmune pathology in T-cell-mediated targeting of carcinoembryonic antigen. Cancer Res.68 , 8446–8455 (2008).
  • Thomas-Kaskel AK , WallerCF, Schultze-SeemannW, VeelkenH: Immunotherapy with dendritic cells for prostate cancer.Int. J. Cancer121 , 467–473 (2007).
  • Nencioni A , MullerMR, GrunebachF et al.: Dendritic cells transfected with tumor RNA for the induction of anti-tumor CTL in colorectal cancer.Cancer Gene Ther.10 , 209–214 (2003).
  • Muller MR , GrunebachF, NencioniA, BrossartP: Transfection of dendritic cells with RNA induces CD4- and CD8-mediated T cell immunity against breast carcinomas and reveals the immunodominance of presented T cell epitopes.J. Immunol.170 , 5892–5896 (2003).
  • Holtl L , Zelle-RieserC, GanderH et al.: Immunotherapy of metastatic renal cell carcinoma with tumor lysate-pulsed autologous dendritic cells.Clin. Cancer Res.8 , 3369–3376 (2002).
  • Ruffini PA , NeelapuSS, KwakLW, BiragynA: Idiotypic vaccination for B-cell malignancies as a model for therapeutic cancer vaccines: from prototype protein to second generation vaccines.Haematologica87 , 989–1001 (2002).
  • Miller RA , MaloneyDG, WarnkeR, LevyR: Treatment of B-cell lymphoma with monoclonal anti-idiotype antibody.N. Engl. J. Med.306 , 517–522 (1982).
  • Meeker T , LowderJ, ClearyML et al.: Emergence of idiotype variants during treatment of B-cell lymphoma with anti-idiotype antibodies.N. Engl. J. Med.312 , 1658–1665 (1985).
  • Houot R , LevyR: Vaccines for lymphomas: idiotype vaccines and beyond.Blood Rev23 , 137–142 (2009).
  • Timmerman JM , CzerwinskiDK, DavisTA et al.: Idiotype-pulsed dendritic cell vaccination for B-cell lymphoma: clinical and immune responses in 35 patients.Blood99 , 1517–1526 (2002).
  • Blachere NE , SrivastavaPK: Heat shock protein-based cancer vaccines and related thoughts on immunogenicity of human tumors.Semin. Cancer Biol.6 , 349–355 (1995).
  • Suto R , SrivastavaPK: A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides.Science269 , 1585–1588 (1995).
  • Asea A , KraeftSK, Kurt-JonesEA et al.: HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine.Nat. Med.6 , 435–442 (2000).
  • Graner M , RaymondA, RomneyD, HeL, WhitesellL, KatsanisE: Immunoprotective activities of multiple chaperone proteins isolated from murine B-cell leukemia/lymphoma.Clin. Cancer Res.6 , 909–915 (2000).
  • Udono H , SrivastavaPK: Heat shock protein 70-associated peptides elicit specific cancer immunity.J. Exp. Med.178 , 1391–1396 (1993).
  • Udono H , SrivastavaPK: Comparison of tumor-specific immunogenicities of stress-induced proteins gp96, hsp90, and hsp70.J. Immunol.152 , 5398–5403 (1994).
  • Nair S , WearschPA, MitchellDA, WassenbergJJ, GilboaE, NicchittaCV: Calreticulin displays in vivo peptide-binding activity and can elicit CTL responses against bound peptides.J. Immunol.162 , 6426–6432 (1999).
  • Basu S , SrivastavaPK: Calreticulin, a peptide-binding chaperone of the endoplasmic reticulum, elicits tumor- and peptide-specific immunity.J. Exp. Med.189 , 797–802 (1999).
  • Arnold D : Cross-priming of minor histocompatibility antigen-specific cytotoxic T cells upon immunization with the heat shock protein gp96.J. Exp. Med.182 , 885–889 (1995).
  • Li Z , QiaoY, LiuB et al.: Combination of imatinib mesylate with autologous leukocyte-derived heat shock protein and chronic myelogenous leukemia.Clin. Cancer Res.11 , 4460–4468 (2005).
  • Rivoltini L , CastelliC, CarrabbaM et al.: Human tumor-derived heat shock protein 96 mediates in vitro activation and in vivo expansion of melanoma- and colon carcinoma-specific T cells.J. Immunol.171 , 3467–3474 (2003).
  • Belli F , TestoriA, RivoltiniL et al.: Vaccination of metastatic melanoma patients with autologous tumor-derived heat shock protein gp96-peptide complexes: clinical and immunologic findings.J. Clin. Oncol.20 , 4169–4180 (2002) (Erratum appears in J. Clin. Oncol.20(23) , 4610 [2002]).
  • Udono H , SrivastavaPK: Heat shock protein 70-associated peptides elicit specific cancer immunity.J. Exp. Med.178 , 1391–1396 (1993).
  • Nair S , WearschPA, MitchellDA, WassenbergJJ, GilboaE, NicchittaCV: Calreticulin displays in vivo peptide-binding activity and can elicit CTL responses against bound peptides.J. Immunol.162 , 6426–6432 (1999).
  • Arnold D , FaathS, RammenseeH, SchildH: Cross-priming of minor histocompatibility antigen-specific cytotoxic T cells upon immunization with the heat shock protein gp96.J. Exp. Med.182 , 885–889 (1995).
  • Srivastava PK , UdonoH: Heat shock protein-peptide complexes in cancer immunotherapy.Curr. Opin. Immunol.6 , 728–732 (1994).
  • Srivastava PK , MenoretA, BasuS, BinderRJ, McQuadeKL: Heat shock proteins come of age: primitive functions acquire new roles in an adaptive world.Immunity8 , 657–665 (1998).
  • Ishii T , UdonoH, YamanoT et al.: Isolation of MHC class I-restricted tumor antigen peptide and its precursors associated with heat shock proteins hsp70, hsp90, and gp96.J. Immunol.162 , 1303–1309 (1999).
  • Zeng Y , ChenX, LarmonierN et al.: Natural killer cells play a key role in the anti-tumor immunity generated by chaperone-rich cell lysate vaccination.Int. J. Cancer119 , 2624–2631 (2006).
  • Graner M , RaymondA, AkporiayeE, KatsanisE: Tumor-derived multiple chaperone enrichment by free-solution isoelectric focusing yields potent anti-tumor vaccines.Cancer Immunol. Immunother.49 , 476–484 (2000).
  • Graner MW , LikhachevaA, DavisJ et al.: Cargo from tumor-expressed albumin inhibits T-cell activation and responses.Cancer Res.64 , 8085–8092 (2004).
  • Graner MW , ZengY, FengH, KatsanisE: Tumor-derived chaperone-rich cell lysates are effective therapeutic vaccines against a variety of cancers.Cancer Immunol. Immunother.52 , 226–234 (2003).
  • Zeng Y , FengH, GranerMW, KatsanisE: Tumor-derived, chaperone-rich cell lysate activates dendritic cells and elicits potent anti-tumor immunity.Blood101 , 4485–4491 (2003).
  • Rivoltini L , CarrabbaM, HuberV et al.: Immunity to cancer: attack and escape in T lymphocyte-tumor cell interaction.Immunol. Rev.188 , 97–113 (2002).
  • Belli F , TestoriA, RivoltiniL et al.: Vaccination of metastatic melanoma patients with autologous tumor-derived heat shock protein gp96-peptide complexes: clinical and immunologic findings.J. Clin. Oncol.20 , 4169–4180 (2002).
  • Zeng Y , GranerMW, ThompsonS, MarronM, KatsanisE: Induction of BCR-ABL-specific immunity following vaccination with chaperone-rich cell lysates derived from BCR-ABL+ tumor cells.Blood105 , 2016–2022 (2005).
  • Li G , ZengY, ChenX et al.: Human ovarian tumour-derived chaperone-rich cell lysate (CRCL) elicits T cell responses in vitro.Clin. Exp. Immunol.148 , 136–145 (2007).
  • Cantrell J , LarmonierC, JanikashviliN et al.: Signaling pathways induced by a tumor-derived vaccine in antigen presenting cells.Immunobiology DOI: 10.1016/j.imbio.2009.09.006 (Epub ahead of print) (2009).
  • Larmonier N , CantrellJ, LacasseC et al.: Chaperone-rich tumor cell lysate-mediated activation of antigen-presenting cells resists regulatory T cell suppression.J. Leukoc. Biol.83 , 1049–1059 (2008).
  • Li G , AndreanskyS, HelgueraG et al.: A chaperone protein-enriched tumor cell lysate vaccine generates protective humoral immunity in a mouse breast cancer model.Mol. Cancer Ther.7 , 721–729 (2008).
  • Kislin KL , MarronMT, LiG, GranerMW, KatsanisE: Chaperone-rich cell lysate embedded with BCR-ABL peptide demonstrates enhanced anti-tumor activity against a murine BCR-ABL positive leukemia.FASEB J.21 , 2173–2184 (2007).
  • De Vries IJ , KrooshoopDJ, ScharenborgNM et al.: Effective migration of antigen-pulsed dendritic cells to lymph nodes in melanoma patients is determined by their maturation state.Cancer Res.63 , 12–17 (2003).
  • Cheng F , WangHW, CuencaA et al.: A critical role for Stat3 signaling in immune tolerance.Immunity19 , 425–436 (2003).
  • Ueno H , KlechevskyE, MoritaR et al.: Dendritic cell subsets in health and disease.Immunol. Rev.219 , 118–142 (2007).
  • Bromberg JF , WrzeszczynskaMH, DevganG et al.: Stat3 as an oncogene.Cell98 , 295–303 (1999).
  • Wang T , NiuG, KortylewskiM et al.: Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells.Nat. Med.10 , 48–54 (2004).
  • Kortylewski M , KujawskiM, WangT et al.: Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent anti-tumor immunity.Nat. Med.11 , 1314–1321 (2005).
  • Burdelya L , KujawskiM, NiuG et al.: Stat3 activity in melanoma cells affects migration of immune effector cells and nitric oxide-mediated anti-tumor effects.J. Immunol.174 , 3925–3931 (2005).
  • Evel-Kabler K , SongXT, AldrichM, HuangXF, ChenSY: SOCS1 restricts dendritic cells‘ ability to break self tolerance and induce anti-tumor immunity by regulating IL-12 production and signaling.J. Clin. Invest.116 , 90–100 (2006).
  • Melief CJ : Mini-review: Regulation of cytotoxic T lymphocyte responses by dendritic cells: peaceful coexistence of cross-priming and direct priming?Eur. J. Immunol.33 , 2645–2654 (2003).
  • Vermi W , BonecchiR, FacchettiF et al.: Recruitment of immature plasmacytoid dendritic cells (plasmacytoid monocytes) and myeloid dendritic cells in primary cutaneous melanomas.J. Pathol.200 , 255–268 (2003).
  • Salio M , CellaM, VermiW et al.: Plasmacytoid dendritic cells prime IFN-γ-secreting melanoma-specific CD8 lymphocytes and are found in primary melanoma lesions.Eur. J. Immunol.33 , 1052–1062 (2003).
  • Munn DH , SharmaMD, HouD et al.: Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes.J. Clin. Invest.114 , 280–290 (2004).
  • Zhang M , TangH, GuoZ et al.: Splenic stroma drives mature dendritic cells to differentiate into regulatory dendritic cells.Nat. Immunol.5 , 1124–1133 (2004).
  • Gabrilovich DI , VeldersMP, SotomayorEM, KastWM: Mechanism of immune dysfunction in cancer mediated by immature Gr-1+ myeloid cells.J. Immunol.166 , 5398–5406 (2001).
  • Li Q , PanPY, GuP, XuD, ChenSH: Role of immature myeloid Gr-1+ cells in the development of anti-tumor immunity.Cancer Res.64 , 1130–1139 (2004).
  • Huang B , PanPY, LiQ et al.: Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host.Cancer Res.66 , 1123–1131 (2006).
  • Curiel TJ , CoukosG, ZouL et al.: Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival.Nat. Med.10 , 942–949 (2004).
  • Larmonier N , MarronM, ZengY et al.: Tumor-derived CD4+CD25+ regulatory T cell suppression of dendritic cell function involves TGF-β and IL-10.Cancer Immunol. Immunother.56 , 48–59 (2007).
  • Larmonier N , JanikashviliN, LaCasseCJ et al.: Imatinib mesylate inhibits CD4+ CD25+ regulatory T cell activity and enhances active immunotherapy against BCR-ABL- tumors.J. Immunol.181 , 6955–6963 (2008).
  • Yang YA , DukhaninaO, TangB et al.: Lifetime exposure to a soluble TGF-β antagonist protects mice against metastasis without adverse side effects.J. Clin. Invest.109 , 1607–1615 (2002).
  • Muraoka RS , DumontN, RitterCA et al.: Blockade of TGF-β inhibits mammary tumor cell viability, migration, and metastases.J. Clin. Invest.109 , 1551–1559 (2002).
  • Uhl M , AulwurmS, WischhusenJ et al.: SD-208, a novel transforming growth factor β receptor I kinase inhibitor, inhibits growth and invasiveness and enhances immunogenicity of murine and human glioma cells in vitro and in vivo.Cancer Res.64 , 7954–7961 (2004).
  • Dannull J , SuZ, RizzieriD et al.: Enhancement of vaccine-mediated anti-tumor immunity in cancer patients after depletion of regulatory T cells.J. Clin. Invest.115 , 3623–3633 (2005).
  • Attia P , PowellDJ Jr, Maker AV, Kreitman RJ, Pastan I, Rosenberg SA: Selective elimination of human regulatory T lymphocytes in vitro with the recombinant immunotoxin LMB-2. J. Immunother.29 , 208–214 (2006).
  • North RJ : Cyclophosphamide-facilitated adoptive immunotherapy of an established tumor depends on elimination of tumor-induced suppressor T cells.J. Exp. Med.155 , 1063–1074 (1982).
  • Ghiringhelli F , LarmonierN, SchmittE et al.: CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative.Eur. J. Immunol.34 , 336–344 (2004).
  • Zeng Y , GranerMW, FengH, LiG, KatsanisE: Imatinib mesylate effectively combines with chaperone-rich cell lysate-loaded dendritic cells to treat BCR-ABL+ murine leukemia.Int. J. Cancer110 , 251–259 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.