127
Views
0
CrossRef citations to date
0
Altmetric
Review

Impaired Antigen Presentation in Neoplasia: Basic Mechanisms and Implications for Acute Myeloid Leukemia

, , , , &
Pages 85-97 | Published online: 17 Dec 2009

Bibliography

  • San Miguel JF , VidrialesMB, Lopez-BergesC et al.: Early immunophenotypical evaluation of minimal residual disease in acute myeloid leukemia identifies different patient risk groups and may contribute to postinduction treatment stratification.Blood98 , 1746–1751 (2001).
  • Kern W , VoskovaD, SchochC et al.: Determination of relapse risk based on assessment of minimal residual disease during complete remission by multiparameter flow cytometry in unselected patients with acute myeloid leukemia.Blood104 , 3078–3085 (2004).
  • Ruggeri L , CapanniM, UrbaniE et al.: Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants.Science295 , 2097–2100 (2002).
  • Ruggeri L , MancusiA, CapanniM et al.: Donor natural killer cell allorecognition of missing self in haploidentical hematopoietic transplantation for acute myeloid leukemia: challenging its predictive value.Blood110 , 433–440 (2007).
  • Kolb HJ : Graft-versus-leukemia effects of transplantation and donor lymphocytes.Blood112 , 4371–4383 (2008).
  • Schmid C , LabopinM, NaglerA et al.: Donor lymphocyte infusion in the treatment of first hematological relapse after allogeneic stem-cell transplantation in adults with acute myeloid leukemia: a retrospective risk factors analysis and comparison with other strategies by the EBMT Acute Leukemia Working Party.J. Clin. Oncol.25 , 4938–4945 (2007).
  • Kolb HJ , SchattenbergA, GoldmanJM et al.: Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients.Blood86 , 2041–2050 (1995).
  • Falkenburg JH , MarijtWA, HeemskerkMH, WillemzeR: Minor histocompatibility antigens as targets of graft-versus-leukemia reactions.Curr. Opin. Hematol.9 , 497–502 (2002).
  • Greiner J , DohnerH, SchmittM: Cancer vaccines for patients with acute myeloid leukemia – definition of leukemia-associated antigens and current clinical protocols targeting these antigens.Haematologica91 , 1653–1661 (2006).
  • Dunn GP , BruceAT, IkedaH, OldLJ, SchreiberRD: Cancer immunoediting:from immunosurveillance to tumor escape.Nat. Immunol.3 , 991–998 (2002).
  • Chamuleau ME , van de Loosdrecht AA, Hess CJ et al.: High INDO (indoleamine 2,3-dioxygenase) mRNA level in blasts of acute myeloid leukemic patients predicts poor clinical outcome. Haematologica93 , 1894–1898 (2008).
  • Whiteway A , CorbettT, AndersonR, MacdonaldI, PrenticeHG: Expression of co-stimulatory molecules on acute myeloid leukaemia blasts may effect duration of first remission.Br. J. Haematol.120 , 442–451 (2003).
  • Cheuk AT , GuinnBA: Immunotherapy of acute myeloid leukaemia: development of a whole cell vaccine.Front. Biosci.13 , 2022–2029 (2008).
  • Houtenbos I , WestersTM, OssenkoppeleGJ, van de Loosdrecht AA: Leukemia-derived dendritic cells: towards clinical vaccination protocols in acute myeloid leukemia. Haematologica91 , 348–355 (2006).
  • Li L , GiannopoulosK, ReinhardtP et al.: Immunotherapy for patients with acute myeloid leukemia using autologous dendritic cells generated from leukemic blasts.Int. J. Oncol.28 , 855–861 (2006).
  • Smyth MJ , GodfreyDI, TrapaniJA: A fresh look at tumor immunosurveillance and immunotherapy.Nat. Immunol.2 , 293–299 (2001).
  • Knutson KL , DisisML: Tumor antigen-specific T helper cells in cancer immunity and immunotherapy.Cancer Immunol. Immunother.54 , 721–728 (2005).
  • Kennedy R , CelisE: Multiple roles for CD4+ T cells in anti-tumor immune responses.Immunol. Rev.222 , 129–144 (2008).
  • Wieder T , BraumullerH, KneillingM, PichlerB, RockenM: T cell-mediated help against tumors.Cell Cycle7 , 2974–2977 (2008).
  • Driscoll J , GoldbergAL: The proteasome (multicatalytic protease) is a component of the 1500-kDa proteolytic complex which degrades ubiquitin-conjugated proteins.J. Biol. Chem.265 , 4789–4792 (1990).
  • Neefjes JJ , MomburgF, HammerlingGJ: Selective and ATP-dependent translocation of peptides by the MHC-encoded transporter.Science261 , 769–771 (1993).
  • Kanaseki T , BlanchardN, HammerGE, GonzalezF, ShastriN: ERAAP synergizes with MHC class I molecules to make the final cut in the antigenic peptide precursors in the endoplasmic reticulum.Immunity25 , 795–806 (2006).
  • Cresswell P , BangiaN, DickT, DiedrichG: The nature of the MHC class I peptide loading complex.Immunol. Rev.172 , 21–28 (1999).
  • Huang AY , BruceAT, PardollDM, LevitskyHI: In vivo cross-priming of MHC class I-restricted antigens requires the TAP transporter.Immunity4 , 349–355 (1996).
  • Burgdorf S , ScholzC, KautzA, TampeR, KurtsC: Spatial and mechanistic separation of cross-presentation and endogenous antigen presentation.Nat. Immunol.9 , 558–566 (2008).
  • Guermonprez P , SaveanuL, KleijmeerM et al.: ER-phagosome fusion defines an MHC class I cross-presentation compartment in dendritic cells.Nature425 , 397–402 (2003).
  • Bougneres L , HelftJ, TiwariS et al.: A role for lipid bodies in the cross-presentation of phagocytosed antigens by MHC class I in dendritic cells.Immunity31 , 232–244 (2009).
  • Shen L , SigalLJ, BoesM, RockKL: Important role of cathepsin S in generating peptides for TAP-independent MHC class I crosspresentation in vivo.Immunity21 , 155–165 (2004).
  • Di Pucchio T , ChatterjeeB, Smed-SorensenA et al.: Direct proteasome-independent cross-presentation of viral antigen by plasmacytoid dendritic cells on major histocompatibility complex class I.Nat. Immunol.9 , 551–557 (2008).
  • Wolf PR , PloeghHL: How MHC class II molecules acquire peptide cargo: biosynthesis and trafficking through the endocytic pathway.Annu. Rev. Cell Dev. Biol.11 , 267–306 (1995).
  • Pieters J , BakkeO, DobbersteinB: The MHC class II-associated invariant chain contains two endosomal targeting signals within its cytoplasmic tail.J. Cell Sci.106(Pt 3) , 831–846 (1993).
  • Anderson MS , MillerJ: Invariant chain can function as a chaperone protein for class II major histocompatibility complex molecules.Proc. Natl Acad. Sci. USA89 , 2282–2286 (1992).
  • Romagnoli P , GermainRN: The CLIP region of invariant chain plays a critical role in regulating major histocompatibility complex class II folding, transport, and peptide occupancy.J. Exp. Med.180 , 1107–1113 (1994).
  • Sloan VS , CameronP, PorterG et al.: Mediation by HLA-DM of dissociation of peptides from HLA-DR.Nature375 , 802–806 (1995).
  • van Ham M , van Lith M, Lillemeier Bet al.: Modulation of the major histocompatibility complex class II-associated peptide repertoire by human histocompatibility leukocyte antigen (HLA)-DO. J. Exp. Med.191 , 1127–1136 (2000).
  • Dani A , ChaudhryA, MukherjeeP et al.: The pathway for MHCII-mediated presentation of endogenous proteins involves peptide transport to the endolysosomal compartment.J. Cell Sci.117 , 4219–4230 (2004).
  • Dengjel J , SchoorO, FischerR et al.: Autophagy promotes MHC class II presentation of peptides from intracellular source proteins.Proc. Natl Acad. Sci. USA102 , 7922–7927 (2005).
  • Paludan C , SchmidD, LandthalerM et al.: Endogenous MHC class II processing of a viral nuclear antigen after autophagy.Science307 , 593–596 (2005).
  • Dorfel D , AppelS, Grunebach Fet al.: Processing and presentation of HLA class I and II epitopes by dendritic cells after transfection with in vitro-transcribed MUC1 RNA. Blood105 , 3199–3205 (2005).
  • Nimmerjahn F , MilosevicS, BehrendsU et al.: Major histocompatibility complex class II-restricted presentation of a cytosolic antigen by autophagy.Eur. J. Immunol.33 , 1250–1259 (2003).
  • Zhou D , LiP, LinY et al.: LAMP-2A facilitates MHC class II presentation of cytoplasmic antigens.Immunity22 , 571–581 (2005).
  • Crotzer VL , BlumJS: Cytosol tolysosome transport of intracellular antigens during immune surveillance.Traffic9 , 10–16 (2008).
  • Lich JD , ElliottJF, BlumJS: Cytoplasmic processing is a prerequisite for presentation of an endogenous antigen by major histocompatibility complex class II proteins.J. Exp. Med.191 , 1513–1524 (2000).
  • Tewari MK , SinnathambyG, RajagopalD, EisenlohrLC: A cytosolic pathway for MHC class II-restricted antigen processing that is proteasome and TAP dependent.Nat. Immunol.6 , 287–294 (2005).
  • Roche PA , CresswellP: Invariant chain association with HLA-DR molecules inhibits immunogenic peptide binding.Nature345 , 615–618 (1990).
  • Garrido F , Ruiz-CabelloF, CabreraT et al.: Implications for immunosurveillance of altered HLA class I phenotypes inhuman tumours.Immunol. Today18 , 89–95 (1997).
  • Garcia-Lora A , AlgarraI, GarridoF: MHC class I antigens, immune surveillance, and tumor immune escape.J. Cell. Physiol.195 , 346–355 (2003).
  • Serrano A , TanzarellaS, LionelloI et al.: Rexpression of HLA class I antigens and restoration of antigen-specific CTL response in melanoma cells following 5-aza-2´-deoxycytidine treatment.Int. J. Cancer94 , 243–251 (2001).
  • Blanchet O , BourgeJF, ZinsznerH et al.: DNA binding of regulatory factors interacting with MHC-class-I gene enhancer correlates with MHC-class-I transcriptional level in class-I-defective cell lines.Int. J. Cancer Suppl.6 , 138–145 (1991).
  • Chang CC , CampoliM, RestifoNP, WangX, FerroneS: Immune selection of hot-spot b 2-microglobulin gene mutations, HLA-A2 allospecificity loss, and antigen-processing machinery component down-regulation in melanoma cells derived from recurrent metastases following immunotherapy.J. Immunol.174 , 1462–1471 (2005).
  • Seliger B , MaeurerMJ, FerroneS: TAP off – tumors on.Immunol. Today18 , 292–299 (1997).
  • Jordanova ES , PhilippoK, GiphartMJ, SchuuringE, KluinPM: Mutations in the HLA class II genes leading toloss of expression of HLA-DR and HLA-DQ in diffuse large B-cell lymphoma.Immunogenetics55 , 203–209 (2003).
  • van der Stoep N , BiestaP, QuintenE, van den Elsen PJ: Lack of IFN-γ-mediated induction of the class II transactivator (CIITA) through promoter methylation is predominantly found in developmental tumor cell lines. Int. J. Cancer97 , 501–507 (2002).
  • Campoli M , FerroneS: HLA antigen changes in malignant cells: epigenetic mechanisms and biologic significance.Oncogene27 , 5869–5885 (2008).
  • Goldstein OG , HajiaghamohseniLM, AmriaS et al.: γ-IFN-inducible-lysosomal thiol reductase modulates acidic proteases and HLA class II antigen processing in melanoma.Cancer Immunol. Immunother.57 , 1461–1470 (2008).
  • Lemaire G , GuittetO, VesinMF, LepoivreM, CottetMH: Glutathione depletion reveals impairment of antigen processing and inhibition of cathepsin activity by nitric oxide in antigen-presenting cells.Mol. Immunol.46 , 1100–1108 (2009).
  • Savoia P , D‘AlfonsoS, PeruccioD et al.: Loss of surface HLA class I molecules in leukemic myeloblasts is correlated with an increased leukocyte concentration at onset.Haematologica77 , 127–129 (1992).
  • Brouwer RE , van der HP, Schreuder GM et al.: Loss or downregulation of HLAclass I expression at the allelic level in acute leukemia is infrequent but functionally relevant, and can be restored by interferon. Hum. Immunol.63 , 200–210 (2002).
  • Wetzler M , BaerMR, StewartSJ et al.: HLA class I antigen cell surface expression is preserved on acute myeloid leukemia blasts at diagnosis and at relapse.Leukemia15 , 128–133 (2001).
  • Masuda K , HirakiA, FujiiN et al.: Loss or down-regulation of HLA class I expression at the allelic level in freshly isolated leukemic blasts.Cancer Sci.98 , 102–108 (2007).
  • Vago L , PernaSK, ZanussiM et al.: Loss of mismatched HLA in leukemia after stem-cell transplantation.N. Engl. J. Med.361 , 478–488 (2009).
  • Majumder D , BandyopadhyayD, ChandraS et al.: Analysis of HLA class Ia transcripts in human leukaemias.Immunogenetics57 , 579–589 (2005).
  • Demanet C , MulderA, DeneysV et al.: Down-regulation of HLA-A and HLA-Bw6, but not HLA-Bw4, allospecificities in leukemic cells: an escape mechanism from CTL and NK attack?Blood103 , 3122–3130 (2004).
  • Wetzler M , McElwainBK, StewartCC et al.: HLA-DR antigen-negative acute myeloid leukemia.Leukemia17 , 707–715 (2003).
  • Chamuleau ME , SouwerY, van Ham SM et al. Class II-associated invariant chain peptide expression on myeloid leukemic blasts predicts poor clinical outcome. Cancer Res.64 , 5546–5550 (2004).
  • van Luijn, Chamuleau MED , ThompsonJA et al.: CLIP down-modulation enhances the immunogenicity of myeloid leukemic blasts resulting in increased CD4+ T cell responses. DOI:10.3324/haematol.2009.010595Haematologica (2009).
  • Armstrong TD , ClementsVK, MartinBK, TingJP, Ostrand-RosenbergS: Major histocompatibility complex class II-transfected tumor cells present endogenous antigen and are potent inducers of tumor-specific immunity.Proc. Natl Acad. Sci. USA94 , 6886–6891 (1997).
  • de Gruijl TD , van den Eertwegh AJ, Pinedo HM, Scheper RJ: Whole-cell cancer vaccination: from autologous to allogeneic tumor- and dendritic cell-based vaccines. Cancer Immunol. Immunother.57 , 1569–1577 (2008).
  • Westers TM , StamAG, ScheperRJ et al.: Rapid generation of antigen-presenting cells from leukaemic blasts in acute myeloid leukaemia.Cancer Immunol. Immunother.52 , 17–27 (2003).
  • Cheuk AT , ChanL, CzepulkowskiB et al.: Development of a whole cell vaccine for acute myeloid leukaemia.Cancer Immunol. Immunother.55 , 68–75 (2006).
  • Muhlethaler-Mottet A , OttenLA, SteimleV, MachB: Expression of MHC class II molecules in differentcellular and functional compartments is controlled by differential usage of multiple promoters of the transactivator CIITA.EMBO J.16 , 2851–2860 (1997).
  • Roucard C , ThomasC, PasquierMA et al.: In vivo and in vitro modulation of HLA-DM and HLA-DO is induced by B lymphocyte activation.J. Immunol.167 , 6849–6858 (2001).
  • Thompson JA , DissanayakeSK, KsanderBR et al.: Tumor cells transduced with the MHC class II Transactivator and CD80 activate tumor-specific CD4+ T cells whether or not they are silenced for invariant chain.Cancer Res.66 , 1147–1154 (2006).
  • Thompson JA , SrivastavaMK, BoschJJ et al.: The absence of invariant chain in MHC II cancer vaccines enhances the activation of tumor-reactive type 1 CD4+ T lymphocytes.Cancer Immunol. Immunother.57 , 389–398 (2008).
  • Setiadi AF , OmilusikK, DavidMD et al.: Epigenetic enhancement of antigen processing and presentation promotes immune recognition of tumors.Cancer Res.68 , 9601–9607 (2008).
  • Khan AN , GregorieCJ, TomasiTB: Histone deacetylase inhibitors induce TAP, LMP, Tapasin genes and MHC class I antigen presentation by melanoma cells.Cancer Immunol. Immunother.57 , 647–654 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.