149
Views
0
CrossRef citations to date
0
Altmetric
Review

Recent Advances in Antigen-Loaded Dendritic Cell-Based Strategies for Treatment of Minimal Residual Disease in Acute Myeloid Leukemia

, , , , , , & show all
Pages 69-83 | Published online: 17 Dec 2009

Bibliography

  • Provan D , SingerCRJ, BaglinT, LilleymanJ: Acute myeloblastic leukaemia (AML). In: Oxford Handbook of Clinical Haematology. Provan D, Singer CRJ, Baglin T, Lilleyman J (Eds). Oxford University Press, Oxford, UK, 149–157 (2004).
  • Ridgway D : The first 1000 dendritic cell vaccinees.Cancer Invest.21(6) , 873–886 (2003).
  • Banchereau J , PaluckaAK: Dendritic cells as therapeutic vaccines against cancer.Nat. Rev. Immunol.5(4) , 296–306 (2005).
  • Ballestrero A , BoyD, MoranE, CirmenaG, BrossartP, NencioniA: Immunotherapy with dendritic cells for cancer.Adv. Drug Deliv. Rev.60(2) , 173–183 (2008).
  • Rosenberg SA , YangJC, RestifoNP: Cancer immunotherapy: moving beyond current vaccines.Nat. Med.10(9) , 909–915 (2004).
  • Itoh K , YamadaA, MineT, NoguchiM: Recent advances in cancer vaccines: an overview.Jpn J. Clin. Oncol.39(2) , 73–80 (2009).
  • Figdor CG , de Vries IJ, Lesterhuis WJ, Melief CJ: Dendritic cell immunotherapy: mapping the way. Nat. Med.10(5) , 475–480 (2004).
  • Small EJ , SchellhammerPF, HiganoCS et al.: Placebo-controlled Phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer.J. Clin. Oncol.24(19) , 3089–3094 (2006).
  • Dunn GP , BruceAT, IkedaH, OldLJ, SchreiberRD: Cancer immunoediting: from immunosurveillance to tumor escape.Nat. Immunol.3(11) , 991–998 (2002).
  • Chamuleau ME , WestersTM, vanDL et al.: Immune mediated autologous cytotoxicity against hematopoietic precursor cells in patients with myelodysplastic syndrome.Haematologica94(4) , 496–506 (2009).
  • Koebel CM , VermiW, SwannJB et al.: Adaptive immunity maintains occult cancer in an equilibrium state.Nature450(7171) , 903–907 (2007).
  • Binder RJ , SrivastavaPK: Peptides chaperoned by heat-shock proteins are a necessary and sufficient source of antigen in the cross-priming of CD8+ T cells.Nat.Immunol.6(6) , 593–599 (2005).
  • Burgdorf S , KautzA, BohnertV, KnollePA, KurtsC: Distinct pathways of antigen uptake and intracellular routing in CD4 and CD8 T cell activation.Science316(5824) , 612–616 (2007).
  • Pardoll DM : Spinning molecular immunology into successful immunotherapy.Nat. Rev. Immunol.2(4) , 227–238 (2002).
  • Padovan E , LandmannRM, De Libero G: How pattern recognition receptor triggering influences T cell responses: a new look into the system. Trends Immunol.28(7) , 308–314 (2007).
  • Schnare M , BartonGM, HoltAC, TakedaK, AkiraS, MedzhitovR: Toll-like receptors control activation of adaptive immune responses.Nat. Immunol.2(10) , 947–950 (2001).
  • West MA , WallinRP, MatthewsSP et al.: Enhanced dendritic cell antigen capture via toll-like receptor-induced actin remodeling.Science305(5687) , 1153–1157 (2004).
  • Greiner J , SchmittM, LiL et al.: Expression of tumor-associated antigens in acute myeloid leukemia: implications for specific immunotherapeutic approaches.Blood108(13) , 4109–4117 (2006).
  • Saudemont A , QuesnelB: In a model of tumor dormancy, long-term persistent leukemic cells have increased B7-H1 and B7.1 expression and resist CTL-mediated lysis.Blood104(7) , 2124–2133 (2004).
  • Van luijn M , ChamuleauME, ThompsonJA et al.: CLIP down-modulation enhances the immunogenicity of myeloid leukemic blasts resulting in increased CD4+ T cell responses.Haematologica (2009) DOI:10.3324/haematol.2009.010595.
  • Chamuleau ME , FellerN, KelderA, van de Loosdrecht AA, Ossenkoppele GJ: High CLIP (class II associated invariant chain peptide) expression on minimal residual disease cells is associated with high relapse rate in AML patients. Blood108 , 11 (2006) (Abstract).
  • Chamuleau ME , van de Loosdrecht AA, Hess CJ et al.: High INDO (indoleamine 2,3-dioxygenase) mRNA level in blasts of acute myeloid leukemic patients predicts poor clinical outcome. Haematologica93(12) , 1894–1898 (2008).
  • Bronte V , MocellinS: Suppressive influences in the immune response to cancer.J. Immunother.32(1) , 1–11 (2009).
  • Szczepanski MJ , SzajnikM, CzystowskaM et al.: Increased frequency and suppression by regulatory T cells in patients with acute myelogenous leukemia.Clin. Cancer Res.15(10) , 3325–3332 (2009).
  • Jedema I , MeijP, SteeneveldE et al.: Early detection and rapid isolation of leukemia-reactive donor T cells for adoptive transfer using the IFN-γ secretion assay.Clin. Cancer Res.13(2 Pt 1) , 636–643 (2007).
  • O‘Neill DW , AdamsS, BhardwajN: Manipulating dendritic cell biology for the active immunotherapy of cancer.Blood104(8) , 2235–2246 (2004).
  • Andersen MH , SorensenRB, SchramaD, SvaneIM, BeckerJC, ThorSP: Cancer treatment: the combination of vaccination with other therapies.Cancer Immunol. Immunother.57(11) , 1735–1743 (2008).
  • Li L , ReinhardtP, SchmittA et al.: Dendritic cells generated from acute myeloid leukemia (AML) blasts maintain the expression of immunogenic leukemia associated antigens.Cancer Immunol. Immunother.54(7) , 685–693 (2005).
  • Roddie H , KlammerM, ThomasC et al.: Phase I/II study of vaccination with dendritic-like leukaemia cells for the immunotherapy of acute myeloid leukaemia.Br. J. Haematol.133(2) , 152–157 (2006).
  • Houtenbos I , WestersTM, OssenkoppeleGJ, van de Loosdrecht AA: Feasibility of clinical dendritic cell vaccination in acute myeloid leukemia. Immunobiology211(6–8) , 677–685 (2006).
  • Santegoets SJ , MastersonAJ, van der Sluis PC et al.: A CD34+ human cell line model of myeloid dendritic cell differentiation: evidence for a CD14+CD11b+ Langerhans cell precursor. J. Leukoc. Biol.80(6) , 1337–1344 (2006).
  • Masterson AJ , SombroekCC, de Gruijl TD et al.: MUTZ-3, a human cell line model for the cytokine-induced differentiation of dendritic cells from CD34+ precursors. Blood100(2) , 701–703 (2002).
  • Santegoets SJ , van den Eertwegh AJ, van de Loosdrecht AA, Scheper RJ, de Gruijl TD: Human dendritic cell line models for DC differentiation and clinical DC vaccination studies. J. Leukoc. Biol.84(6) , 1364–1373 (2008).
  • Rasaiyaah J , NoursadeghiM, KellamP, ChainB: Transcriptional and functional defects of dendritic cells derived from the MUTZ-3 leukaemia line.Immunology127(3) , 429–441 (2009).
  • Lee JJ , ChoiBH, KangHK et al.: Monocyte-derived dendritic cells from HLA-matched allogeneic donors showed a greater ability to induce leukemic cell-specific T cells in comparison to leukemic cell-derived dendritic cells or monocyte-derived dendritic cells from AML patients.Leuk. Res.32(11) , 1653–1660 (2008).
  • Lee JJ , NamCE, NamJH et al.: Generation of cytotoxic donor CD8+ T cells against relapsing leukemic cells following allogeneic transplantation by stimulation with leukemic cell- or leukemic lysate pulsed donor cell-derived dendritic cells.Leuk. Res.28(5) , 517–524 (2004).
  • van de Loosdrecht AA : The dendritic cell: the piano player in orchestrating the immune response in leukemia.Leuk. Lymphoma48(2) , 217–218 (2007).
  • Gong J , KoidoS, KatoY et al.: Induction of anti-leukemic cytotoxic T lymphocytes by fusion of patient-derived dendritic cells with autologous myeloblasts.Leuk. Res.28(12) , 1303–1312 (2004).
  • Spisek R , ChevallierP, MorineauN et al.: Induction of leukemia-specific cytotoxic response by cross-presentation of late-apoptotic leukemic blasts by autologous dendritic cells of nonleukemic origin.Cancer Res.62(10) , 2861–2868 (2002).
  • Hasebe H , NagayamaH, SatoK et al.: Dysfunctional regulation of the development of monocyte-derived dendritic cells in cancer patients.Biomed. Pharmacother.54(6) , 291–298 (2000).
  • Royer PJ , BougrasG, EbsteinF et al.: Efficient monocyte-derived dendritic cell generation in patients with acute myeloid leukemia after chemotherapy treatment: application to active immunotherapy.Exp. Hematol.36(3) , 329–339 (2008).
  • Merrick A , DiazRM, O‘DonnellD, SelbyP, VileR, MelcherA: Autologous versus allogeneic peptide-pulsed dendritic cells for anti-tumour vaccination: expression of allogeneic MHC supports activation of antigen specific T cells, but impairs early naive cytotoxic priming and anti-tumour therapy.Cancer Immunol. Immunother.57(6) , 897–906 (2008).
  • Felix NJ , AllenPM: Specificity of T-cell alloreactivity.Nat. Rev. Immunol.7(12) , 942–953 (2007).
  • Hus I , RolinskiJ, TabarkiewiczJ et al.: Allogeneic dendritic cells pulsed with tumor lysates or apoptotic bodies as immunotherapy for patients with early-stage B-cell chronic lymphocytic leukemia.Leukemia19(9) , 1621–1627 (2005).
  • Holtl L , RamonerR, Zelle-RieserC et al.: Allogeneic dendritic cell vaccination against metastatic renal cell carcinoma with or without cyclophosphamide.Cancer Immunol. Immunother.54(7) , 663–670 (2005).
  • van der Bruggen P ., Van den Eynde BJ: Processing and presentation of tumor antigens and vaccination strategies. Curr. Opin. Immunol.18(1) , 98–104 (2006).
  • Greiner J , RinghofferM, TaniguchiM et al.: mRNA expression of leukemia-associated antigens in patients with acute myeloid leukemia for the development of specific immunotherapies.Int. J. Cancer108(5) , 704–711 (2004).
  • Amoscato AA , PrenovitzDA, LotzeMT: Rapid extracellular degradation of synthetic class I peptides by human dendritic cells.J. Immunol.161(8) , 4023–4032 (1998).
  • Toes RE , OffringaR, BlomRJ, MeliefCJ, KastWM: Peptide vaccination can lead to enhanced tumor growth through specific T-cell tolerance induction.Proc. Natl Acad. Sci. USA93(15) , 7855–7860 (1996).
  • Melief CJ , van der Burg SH: Immunotherapy of established (pre)malignant disease by synthetic long peptide vaccines. Nat. Rev. Cancer8(5) , 351–360 (2008).
  • Van Driessche A , Van de Velde AL, Nijs G et al.: Clinical-grade manufacturing of autologous mature mRNA-electroporated dendritic cells and safety testing in acute myeloid leukemia patients in a Phase I dose-escalation clinical trial. Cytotherapy1–16 (2009).
  • Delluc S , TourneurL, FradeliziD et al.: DC-based vaccine loaded with acid-eluted peptides in acute myeloid leukemia: the importance of choosing the best elution method.Cancer Immunol. Immunother.56(1) , 1–12 (2006).
  • Delluc S , TourneurL, MichalletAS et al.: Autologous peptides eluted from acute myeloid leukemia cells can be used to generate specific antileukemic CD4 helper and CD8 cytotoxic T lymphocyte responses in vitro.Haematologica90(8) , 1050–1062 (2005).
  • Delluc S , HachemP, RusakiewiczS et al.: Dramatic efficacy improvement of a DC-based vaccine against AML by CD25 T cell depletion allowing the induction of a long-lasting T cell response.Cancer Immunol. Immunother.58(10) , 1669–1677 (2009).
  • Obeid M , TesniereA, GhiringhelliF et al.: Calreticulin exposure dictates the immunogenicity of cancer cell death.Nat. Med.13(1) , 54–61 (2007).
  • Kono H , RockKL: How dying cells alert the immune system to danger.Nat. Rev. Immunol.8(4) , 279–289 (2008).
  • Panaretakis T , KeppO, BrockmeierU et al.: Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death.EMBO J.28(5) , 578–590 (2009).
  • Fujii S , FujimotoK, ShimizuK et al.: Presentation of tumor antigens by phagocytic dendritic cell clusters generated from human CD34+ hematopoietic progenitor cells: induction of autologous cytotoxic T lymphocytes against leukemic cells in acute myelogenous leukemia patients.Cancer Res.59(9) , 2150–2158 (1999).
  • Thomas-Kaskel AK , ves Portugal TG, Herchenbach D, Houet L, Veelken H, Finke J: Allogeneic HLA-matched donor dendritic cells loaded with patient leukemic blasts preferentially induce CD4+ leukemia-reactive donor lymphocytes. Acta Haematol.117(4) , 226–235 (2007).
  • Spisek R , CharalambousA, MazumderA, VesoleDH, JagannathS, DhodapkarMV: Bortezomib enhances dendritic cell (DC) mediated induction of immunity to human myeloma via exposure of cell surface heat shock protein 90 on dying tumor cells: therapeutic implications.Blood109(11) , 4839–4845 (2007).
  • Johansson U , Walther-JallowL, Smed-SorensenA, SpetzAL: Triggering of dendritic cell responses after exposure to activated, but not resting, apoptotic PBMCs.J. Immunol.179(3) , 1711–1720 (2007).
  • Sen P , WalletMA, YiZ et al.: Apoptotic cells induce Mer tyrosine kinase-dependent blockade of NF-kB activation in dendritic cells.Blood.109(2) , 653–660 (2007).
  • Blander JM , MedzhitovR: On regulation of phagosome maturation and antigen presentation.Nat. Immunol.7(10) , 1029–1035 (2006).
  • Green DR , FergusonT, ZitvogelL, KroemerG: Immunogenic and tolerogenic cell death.Nat. Rev. Immunol.9(5) , 353–363 (2009).
  • Spisek R , DhodapkarMV: Towards a better way to die with chemotherapy: role of heat shock protein exposure on dying tumor cells.Cell Cycle6(16) , 1962–1965 (2007).
  • Smits EL , PonsaertsP, Van de Velde AL et al.: Proinflammatory response of human leukemic cells to dsRNA transfection linked to activation of dendritic cells. Leukemia21(8) , 1691–1699 (2007).
  • Lane JD , AllanVJ, WoodmanPG: Active relocation of chromatin and endoplasmic reticulum into blebs in late apoptotic cells.J. Cell Sci.118(Pt 17) , 4059–4071 (2005).
  • Fransen JH , HilbrandsLB, RubenJ et al.: Mouse dendritic cells matured by ingestion of apoptotic blebs induce T cells to produce interleukin-17.Arthritis Rheum.60(8) , 2304–2313 (2009).
  • Iero M , ValentiR, HuberV et al.: Tumour-released exosomes and their implications in cancer immunity.Cell Death Differ.15(1) , 80–88 (2008).
  • Steinman RM , TurleyS, MellmanI, InabaK: The induction of tolerance by dendritic cells that have captured apoptotic cells.J. Exp. Med.191(3) , 411–416 (2000).
  • Sauter B , AlbertML, FranciscoL, LarssonM, SomersanS, BhardwajN: Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells.J. Exp. Med.191(3) , 423–434 (2000).
  • Rock KL , KonoH: The inflammatory response to cell death.Annu. Rev. Pathol.3 , 99–126 (2008).
  • Vakkila J , LotzeMT: Inflammation and necrosis promote tumour growth.Nat. Rev. Immunol.4(8) , 641–648 (2004).
  • Roskrow MA , DillooD, SuzukiN, ZhongW, RooneyCM, BrennerMK: Autoimmune disease induced by dendritic cell immunization against leukemia.Leuk. Res.23(6) , 549–557 (1999).
  • Schui DK , SinghL, SchneiderB, KnauA, HoelzerD, WeidmannE: Inhibiting effects on the induction of cytotoxic T lymphocytes by dendritic cells pulsed with lysates from acute myeloid leukemia blasts.Leuk. Res.26(4) , 383–389 (2002).
  • Galea-Lauri J , WellsJW, DarlingD, HarrisonP, FarzanehF: Strategies for antigen choice and priming of dendritic cells influence the polarization and efficacy of anti-tumor T-cell responses in dendritic cell-based cancer vaccination.Cancer Immunol. Immunother.53(11) , 963–977 (2004).
  • Qiu J , LiGW, SuiYF, SongHP, SiSY, GeW: Heat-shocked tumor cell lysate-pulsed dendritic cells induce effective anti-tumor immune response in vivo.World J. Gastroenterol.12(3) , 473–478 (2006).
  • Xing D , DeckerWK, LiS et al.: AML-loaded DC generate Th1-type cellular immune responses in vitro.Cytotherapy8(2) , 95–104 (2006).
  • Lee JJ , ParkMS, ParkJS et al.: Induction of leukemic-cell-specific cytotoxic T lymphocytes by autologous monocyte-derived dendritic cells presenting leukemic cell antigens.J. Clin. Apher.21(3) , 188–194 (2006).
  • Lee JJ , KookH, ParkMS et al.: Immunotherapy using autologous monocyte-derived dendritic cells pulsed with leukemic cell lysates for acute myeloid leukemia relapse after autologous peripheral blood stem cell transplantation.J. Clin. Apher.19(2) , 66–70 (2004).
  • Hsu AK , KerrBM, JonesKL, LockRB, HartDN, RiceAM: RNA loading of leukemic antigens into cord blood-derived dendritic cells for immunotherapy.Biol. Blood Marrow Transplant12(8) , 855–867 (2006).
  • Jarnjak-Jankovic S , PettersenRD, Saeboe-LarssenS, WesenbergF, GaudernackG: Evaluation of dendritic cells loaded with apoptotic cancer cells or expressing tumour mRNA as potential cancer vaccines against leukemia.BMC Cance.5 , 20–30 (2005).
  • Jarnjak-Jankovic S , HammerstadH, Saeboe-LarssenS, KvalheimG, GaudernackG: A full scale comparative study of methods for generation of functional Dendritic cells for use as cancer vaccines.BMC Cancer7 , 119 (2007).
  • Dissanayake SK , TueraN, Ostrand-RosenbergS: Presentation of endogenously synthesized MHC class II-restricted epitopes by MHC class II cancer vaccines is independent of transporter associated with Ag processing and the proteasome.J. Immunol.174(4) , 1811–1819 (2005).
  • Decker WK , XingD, LiS et al.: Double loading of dendritic cell MHC class I and MHC class II with an AML antigen repertoire enhances correlates of T-cell immunity in vitro via amplification of T-cell help.Vaccine24(16) , 3203–3216 (2006).
  • Ji H , WangTL, ChenCH et al.: Targeting human papillomavirus type 16 E7 to the endosomal/lysosomal compartment enhances the anti-tumor immunity of DNA vaccines against murine human papillomavirus type 16 E7-expressing tumors.Hum. Gene Ther.10(17) , 2727–2740 (1999).
  • Banat GA , UsluogluN, HoeckM, IhlowK, HoppmannS, PralleH: Dendritic cells fused with core binding factor-β positive acute myeloid leukaemia blasT cells induce activation of cytotoxic lymphocytes.Br. J. Haematol.126(4) , 593–601 (2004).
  • Klammer M , WaterfallM, SamuelK, TurnerML, RoddiePH: Fusion hybrids of dendritic cells and autologous myeloid blasts as a potential cellular vaccine for acute myeloid leukaemia.Br. J. Haematol.129(3) , 340–349 (2005).
  • Lei Z , ZhangGM, HongM, FengZH, HuangB: Fusion of dendritic cells and CD34+CD38- acute myeloid leukemia (AML) cells potentiates targeting AML-initiating cells by specific CTL induction.J. Immunother.32(4) , 408–414 (2009).
  • Weigel BJ , Panoskaltsis-MortariA, DiersM et al.: Dendritic cells pulsed or fused with AML cellular antigen provide comparable in vivo anti-tumor protective responses.Exp. Hematol.34(10) , 1403–1412 (2006).
  • Galea-Lauri J , DarlingD, MuftiG, HarrisonP, FarzanehF: Eliciting cytotoxic T lymphocytes against acute myeloid leukemia-derived antigens: evaluation of dendritic cell-leukemia cell hybrids and other antigen-loading strategies for dendritic cell-based vaccination.Cancer Immunol. Immunother.51(6) , 299–310 (2002).
  • Kotera Y , ShimizuK, MuleJJ: Comparative analysis of necrotic and apoptotic tumor cells as a source of antigen(s) in dendritic cell-based immunization.Cancer Res.61(22) , 8105–8109 (2001).
  • Larmonier N , MerinoD, NicolasA et al.: Apoptotic, necrotic, or fused tumor cells: an equivalent source of antigen for dendritic cell loading.Apoptosis11(9) , 1513–1524 (2006).
  • Guy B : The perfect mix: recent progress in adjuvant research.Nat. Rev. Microbiol.5(7) , 505–517 (2007).
  • Amigorena S : Fc-γ receptors and cross-presentation in dendritic cells.J. Exp. Med.195(1) , F1–F3 (2002).
  • Franki SN , StewardKK, BettingDJ, KafiK, YamadaRE, TimmermanJM: Dendritic cells loaded with apoptotic antibody-coated tumor cells provide protective immunity against B cell lymphoma in vivo.Blood111(3) , 1504–1511 (2007).
  • Castellino F , BoucherPE, EichelbergK et al.: Receptor-mediated uptake of antigen/heat shock protein complexes results in major histocompatibility complex class I antigen presentation via two distinct processing pathways.J. Exp. Med.191(11) , 1957–1964 (2000).
  • Shi H , CaoT, ConnollyJE et al.: Hyperthermia enhances CTL cross-priming.J. Immunol.176(4) , 2134–2141 (2006).
  • Gavin AL , HoebeK, DuongB et al.: Adjuvant-enhanced antibody responses in the absence of toll-like receptor signaling.Science314(5807) , 1936–1938 (2006).
  • Wilson NS , BehrensGM, LundieRJ et al.: Systemic activation of dendritic cells by Toll-like receptor ligands or malaria infection impairs cross-presentation and antiviral immunity.Nat. Immunol.7(2) , 165–172 (2006).
  • Ten Brinke A , KarstenML, DiekerMC, ZwagingaJJ, Van Ham SM: The clinical grade maturation cocktail monophosphoryl lipid A plus IFN-γ generates monocyte-derived dendritic cells with the capacity to migrate and induce Th1 polarization. Vaccine25(41) , 7145–7152 (2007).
  • Seya T , AkazawaT, TsujitaT, MatsumotoM: Role of Toll-like receptors in adjuvant-augmented immune therapies.Evid. Based Complement Alternat. Med.3(1) , 31–38 (2006).
  • Stary G , BangertC, AltrichterS, StrohalR, KoppT, StingleG: Dendritic cells with cytotoxic potential after Toll-like receptor 7/8-activation. Presented at: Dendritic Cells 9th International Conference. Edinburgh, UK, 16–20 September 2006.
  • Klinman DM : Immunotherapeutic uses of CpG oligodeoxynucleotides.Nat. Rev. Immunol.4(4) , 249–258 (2004).
  • Jarnicki AG , ConroyH, BreretonC et al.: Attenuating regulatory T cell induction by TLR agonists through inhibition of p38 MAPK signaling in dendritic cells enhances their efficacy as vaccine adjuvants and cancer immunotherapeutics.J. Immunol.180(6) , 3797–3806 (2008).
  • Li L , GiannopoulosK, ReinhardtP et al.: Immunotherapy for patients with acute myeloid leukemia using autologous dendritic cells generated from leukemic blasts.Int. J. Oncol.28(4) , 855–861 (2006).
  • Westers TM , OssenkoppeleGJ, van de Loosdrecht AA: Dendritic cell-based immunotherapy in acute and chronic myeloid leukaemia. Biomed. Pharmacother.61(6) , 306–314 (2007).
  • Oka Y , TsuboiA, TaguchiT et al.: Induction of WT1 (Wilms‘ tumor gene)-specific cytotoxic T lymphocytes by WT1 peptide vaccine and the resultant cancer regression.Proc. Natl Acad. Sci. USA101(38) , 13885–13890 (2004).
  • Rezvani K , YongAS, MielkeS et al.: Leukemia-associated antigen specific T-cell responses following combined PR1 and WT1 peptide vaccination in patients with myeloid malignancies.Blood111(1) , 236–242 (2007).
  • Gao L , BellantuonoI, ElsasserA et al.: Selective elimination of leukemic CD34+ progenitor cells by cytotoxic T lymphocytes specific for WT1.Blood95(7) , 2198–2203 (2000).
  • Bellantuono I , GaoL, ParryS et al.: Two distinct HLA-A0201-presented epitopes of the Wilms‘ tumor antigen 1 can function as targets for leukemia-reactive CTL.Blood100(10) , 3835–3837 (2002).
  • Kitawaki T , KadowakiN, KondoT et al.: Potential of dendritic cell immunotherapy for relapse after allogeneic hematopoietic stem cell transplantation, shown by WT1 peptide- and keyhole limpet hemocyanin-pulsed, donor-derived dendritic cell vaccine for acute myeloid leukemia.Am. J. Hematol.83(4) , 315–317 (2007).
  • Tacken PJ , deV, I, Torensma R, Figdor CG: Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nat. Rev. Immunol.7(10) , 790–802 (2007).
  • Rusakiewicz S , MadrigalA, TraversP, DodiAI: BCR/ABL-specific CD8+ T cells can be detected from CML patients, but are only expanded from healthy donors.Cancer Immunol. Immunother.58(9) , 1449–1457 (2009).
  • Westers TM , HoutenbosI, SnoijsNC, van de Loosdrecht AA, Ossenkoppele GJ: Leukemia-derived dendritic cells in acute myeloid leukemia exhibit potent migratory capacity. Leukemia19(7) , 1270–1272 (2005).
  • Feller N , van der Pol MA, van SA et al.: MRD parameters using immunophenotypic detection methods are highly reliable in predicting survival in acute myeloid leukaemia. Leukemia18(8) , 1380–1390 (2004).
  • Candoni A , TiribelliM, ToffolettiE et al.: Quantitative assessment of WT1 gene expression after allogeneic stem cell transplantation is a useful tool for monitoring minimal residual disease in acute myeloid leukemia.Eur. J. Haematol.82(1) , 61–68 (2009).
  • Xu W , CeleridadM, SankarS, WebbDR, BennettBL: CC-4047 promotes Th1 cell differentiation and reprograms polarized human Th2 cells by enhancing transcription factor T-bet.Clin. Immunol.128(3) , 392–399 (2008).
  • Khong T , SharkeyJ, SpencerA: The effect of azacitidine on interleukin-6 signaling and nuclear factor-kB activation and its in vitro and in vivo activity against multiple myeloma.Haematologica93(6) , 860–869 (2008).
  • Magner WJ , KazimAL, StewartC et al.: Activation of MHC class I, II, and CD40 gene expression by histone deacetylase inhibitors.J. Immunol.165(12) , 7017–7024 (2000).
  • Moldenhauer A , FrankRC, Pinilla-IbarzJ et al.: Histone deacetylase inhibition improves dendritic cell differentiation of leukemic blasts with AML1-containing fusion proteins.J. Leukoc. Biol.76(3) , 623–633 (2004).
  • Mullins DW , SheasleySL, ReamRM, BullockTN, FuYX, EngelhardVH: Route of immunization with peptide-pulsed dendritic cells controls the distribution of memory and effector T cells in lymphoid tissues and determines the pattern of regional tumor control.J. Exp. Med.198(7) , 1023–1034 (2003).
  • Fong L , BrockstedtD, BenikeC, WuL, EnglemanEG: Dendritic cells injected via different routes induce immunity in cancer patients.J. Immunol.166(6) , 4254–4259 (2001).
  • Butterfield LH , RibasA, DissetteVB et al.: Determinant spreading associated with clinical response in dendritic cell-based immunotherapy for malignant melanoma.Clin. Cancer Res.9(3) , 998–1008 (2003).
  • Krause P , BrucknerM, UermosiC, SingerE, GroettrupM, LeglerDF: Prostaglandin E(2) enhances T-cell proliferation by inducing the costimulatory molecules OX40L, CD70, and 4-1BBL on dendritic cells.Blood113(11) , 2451–2460 (2009).
  • de Vries I , LesterhuisWJ, ScharenborgNM et al.: Maturation of dendritic cells is a prerequisite for inducing immune responses in advanced melanoma patients.Clin. Cancer Res.9(14) , 5091–5100 (2003).
  • von Bergwelt-Baildon MS , PopovA, SaricT et al.: CD25 and indoleamine 2,3-dioxygenase are up-regulated by prostaglandin E2 and expressed by tumor-associated dendritic cells in vivo: additional mechanisms of T-cell inhibition.Blood108(1) , 228–237 (2006).
  • Luft T , JeffordM, LuetjensP et al.: Functionally distinct dendritic cell (DC) populations induced by physiologic stimuli: prostaglandin E(2) regulates the migratory capacity of specific DC subsets.Blood100(4) , 1362–1372 (2002).
  • Muthuswamy R , UrbanJ, LeeJJ, ReinhartTA, BartlettD, KalinskiP: Ability of mature dendritic cells to interact with regulatory T cells is imprinted during maturation.Cancer Res.68(14) , 5972–5978 (2008).
  • Dauer M , LamV, ArnoldH et al.: Combined use of toll-like receptor agonists and prostaglandin E(2) in the FastDC model: rapid generation of human monocyte-derived dendritic cells capable of migration and IL-12p70 production.J. Immunol. Methods337(2) , 97–105 (2008).
  • Bedrosian I , MickR, XuS et al.: Intranodal administration of peptide-pulsed mature dendritic cell vaccines results in superior CD8+ T-cell function in melanoma patients.J. Clin. Oncol.21(20) , 3826–3835 (2003).
  • Verdijk P , AarntzenEH, LesterhuisWJ et al.: Limited amounts of dendritic cells migrate into the T-cell area of lymph nodes but have high immune activating potential in melanoma patients.Clin. Cancer Res.15(7) , 2531–2540 (2009).

▪ Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.