188
Views
0
CrossRef citations to date
0
Altmetric
Review

HER-2/neu as a Target for Cancer Vaccines

, , , &
Pages 213-226 | Published online: 05 Mar 2010

Bibliography

  • Rosenberg SA : Progress in human tumour immunology and immunotherapy.Nature411(6835) , 380–384 (2001).
  • Rubin I , YardenY: The basic biology of HER2.Ann Oncol.12(Suppl. 1) , S3–S8 (2001).
  • Yarden Y , SliwkowskiMX: Untangling the ErbB signalling network.Nat. Rev. Mol. Cell Biol.2(2) , 127–137 (2001).
  • Press MF , PikeMC, ChazinVRet al.: Her-2/neu expression in node-negative breast cancer: direct tissue quantitation by computerized image analysis and association of overexpression with increased risk of recurrent disease.Cancer Res.53(20) , 4960–4970 (1993).
  • Ross JS , FletcherJA, LinetteGPet al.: The Her-2/neu gene and protein in breast cancer 2003: biomarker and target of therapy.Oncologist8(4) , 307–325 (2003).
  • Koeppen HK , WrightBD, BurtADet al.: Overexpression of HER2/neu in solid tumours: an immunohistochemical survey.Histopathology38(2) , 96–104 (2001).
  • Curcio C , KhanAS, AmiciAet al.: DNA immunization using constant-current electroporation affords long-term protection from autochthonous mammary carcinomas in cancer-prone transgenic mice.Cancer Gene Ther.15(2) , 108–114 (2008).
  • Baxevanis CN , SotiropoulouPA, SotiriadouNN, PapamichailM: Immunobiology of HER-2/neu oncoprotein and its potential application in cancer immunotherapy.Cancer Immunol. Immunother.53(3) , 166–175 (2004).
  • Mamalaki A , GritzapisAD, KretsovaliAet al.: In vitro and in vivo antitumor activity of a mouse CTL hybridoma expressing chimeric receptors bearing the single chain Fv from HER-2/neu- specific antibody and the γ-chain from Fc(epsilon) RI.Cancer Immunol. Immunother.52(8) , 513–522 (2003).
  • Disis ML , CalenoffE, McLaughlinGet al.: Existent T-cell and antibody immunity to HER-2/neu protein in patients with breast cancer.Cancer Res.54(1) , 16–20 (1994).
  • Kiessling R , WeiWZ, HerrmannFet al.: Cellular immunity to the Her-2/neu protooncogene.Adv. Cancer Res.85 , 101–144 (2002).
  • Ward RL , HawkinsNJ, CoomberD, DisisML: Antibody immunity to the HER-2/neu oncogenic protein in patients with colorectal cancer.Hum. Immunol.60(6) , 510–515 (1999).
  • Baxevanis CN , SotiriadouNN, GritzapisADet al.: Immunogenic HER-2/neu peptides as tumor vaccines.Cancer Immunol. Immunother.55(1) , 85–95 (2006).
  • Baxevanis CN , PerezSA, PapamichailM: Cancer immunotherapy.Crit. Rev. Clin. Lab. Sci.46(4) , 167–189 (2009).
  • Disis ML , BernhardH, JaffeeEM: Use of tumour-responsive T cells as cancer treatment.Lancet373(9664) , 673–683 (2009).
  • Mittendorf EA , HolmesJP, PonniahS, PeoplesGE: The E75 HER2/neu peptide vaccine.Cancer Immunol. Immunother.57(10) , 1511–1521 (2008).
  • Reilly RT , GottliebMB, ErcoliniAMet al.: HER-2/neu is a tumor rejection target in tolerized HER-2/neu transgenic mice.Cancer Res.60(13) , 3569–3576 (2000).
  • Derbinski J , SchulteA, KyewskiB, KleinL: Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self.Nat. Immunol.2(11) , 1032–1039 (2001).
  • Anderson MS , VenanziES, KleinLet al.: Projection of an immunological self shadow within the thymus by the aire protein.Science298(5597) , 1395–1401 (2002).
  • Sakaguchi N , TakahashiT, HataHet al.: Altered thymic T-cell selection due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice.Nature426(6965) , 454–460 (2003).
  • Finnish–German APECED Consortium: An autoimmune disease: APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nat Genet.17(4) , 399–403 (1997).
  • Mapara MY , SykesM: Tolerance and cancer: mechanisms of tumor evasion and strategies for breaking tolerance.J. Clin. Oncol.22(6) , 1136–1151 (2004).
  • Lustgarten J , DominguezAL, CuadrosC: The CD8+ T cell repertoire against Her-2/neu antigens in neu transgenic mice is of low avidity with antitumor activity.Eur. J. Immunol.34(3) , 752–761 (2004).
  • Yasutomo K : The cellular and molecular mechanism of CD4/CD8 lineage commitment.J. Med. Invest.49(1–2) , 1–6 (2002).
  • Rolla S , NicoloC, MalinarichSet al.: Distinct and non-overlapping T cell receptor repertoires expanded by DNA vaccination in wild-type and HER-2 transgenic BALB/c mice.J. Immunol.177(11) , 7626–7633 (2006).
  • Ambrosino E , SpadaroM, IezziMet al.: Immunosurveillance of Erbb2 carcinogenesis in transgenic mice is concealed by a dominant regulatory T-cell self-tolerance.Cancer Res.66(15) , 7734–7740 (2006).
  • Knutson KL , DangY, LuHet al.: IL-2 immunotoxin therapy modulates tumor-associated regulatory T cells and leads to lasting immune-mediated rejection of breast cancers in neu-transgenic mice.J. Immunol.177(1) , 84–91 (2006).
  • Ercolini AM , LadleBH, ManningEAet al.: Recruitment of latent pools of high-avidity CD8+ T cells to the antitumor immune response.J. Exp. Med.201(10) , 1591–1602 (2005).
  • Gritzapis AD , VoutsasIF, LekkaEet al.: Identification of a novel immunogenic HLA-A*0201-binding epitope of HER-2/neu with potent antitumor properties.J. Immunol.181(1) , 146–154 (2008).
  • Gritzapis AD , VoutsasIF, LekkaE, PapamichailM, BaxevanisCN: Peptide vaccination breaks tolerance to HER-2/neu by generating peptide specific FasL+CD4+ T cells: first evidence for intratumor apoptotic regulatory T cells.Cancer Res. (2010) (In press).
  • Rolla S , MarchiniC, MalinarichSet al.: Protective immunity against neu-positive carcinomas elicited by electroporation of plasmids encoding decreasing fragments of rat neu extracellular domain.Hum. Gene Ther.19(3) , 229–240 (2008).
  • Cipriani B , FridmanA, BendtsenCet al.: Therapeutic vaccination halts disease progression in BALB-neuT mice: the amplitude of elicited immune response is predictive of vaccine efficacy.Hum. Gene Ther.19(7) , 670–680 (2008).
  • Astolfi A , LanduzziL, NicolettiGet al.: Gene expression analysis of immune-mediated arrest of tumorigenesis in a transgenic mouse model of HER-2/neu-positive basal-like mammary carcinoma.Am. J. Pathol.166(4) , 1205–1216 (2005).
  • Pannellini T , ForniG, MusianiP: Immunobiology of her-2/neu transgenic mice.Breast Dis.20 , 33–42 (2004).
  • Nanni P , LanduzziL, NicolettiGet al.: Immunoprevention of mammary carcinoma in HER-2/neu transgenic mice is IFN-γ and B cell dependent.J. Immunol.173(4) , 2288–2296 (2004).
  • Stevanovic S , SchildH: Quantitative aspects of T cell activation – peptide generation and editing by MHC class I molecules.Semin. Immunol.11(6) , 375–384 (1999).
  • Weinzierl AO , LemmelC, SchoorOet al.: Distorted relation between mRNA copy number and corresponding major histocompatibility complex ligand density on the cell surface.Mol. Cell Proteomics6(1) , 102–113 (2007).
  • Disis ML , CheeverMA: HER-2/neu oncogenic protein: issues in vaccine development.Crit. Rev. Immunol.18(1–2) , 37–45 (1998).
  • Rongcun Y , Salazar-OnfrayF, CharoJet al.: Identification of new HER2/neu-derived peptide epitopes that can elicit specific CTL against autologous and allogeneic carcinomas and melanomas.J. Immunol.163(2) , 1037–1044 (1999).
  • Kono K , RongcunY, CharoJet al.: Identification of HER2/neu-derived peptide epitopes recognized by gastric cancer-specific cytotoxic T lymphocytes.Int. J. Cancer78(2) , 202–208 (1998).
  • Fisk B , BlevinsTL, WhartonJT, IoannidesCG: Identification of an immunodominant peptide of HER-2/neu protooncogene recognized by ovarian tumor-specific cytotoxic T lymphocyte lines.J. Exp. Med.181(6) , 2109–2117 (1995).
  • Baxevanis CN , GritzapisAD, TsitsilonisOE, KatsoulasHL, PapamichailM: HER-2/neu-derived peptide epitopes are also recognized by cytotoxic CD3+CD56+ (natural killer T) lymphocytes.Int. J. Cancer98(6) , 864–872 (2002).
  • Gritzapis AD , PerezSA, BaxevanisCN, PapamichailM: Pooled peptides from HER-2/neu-overexpressing primary ovarian tumours induce CTL with potent antitumour responses in vitro and in vivo.Br. J. Cancer92(1) , 72–79 (2005).
  • Brossart P , StuhlerG, FladTet al.: Her-2/neu-derived peptides are tumor-associated antigens expressed by human renal cell and colon carcinoma lines and are recognized by in vitro induced specific cytotoxic T lymphocytes.Cancer Res.58(4) , 732–736 (1998).
  • Knutson KL , SchiffmanK, DisisML: Immunization with a HER-2/neu helper peptide vaccine generates HER-2/neu CD8 T-cell immunity in cancer patients.J. Clin. Invest.107(4) , 477–484 (2001).
  • Gritzapis AD , SotiriadouNN, PapamichailM, BaxevanisCN: Generation of human tumor-specific CTLs in HLA-A2.1-transgenic mice using unfractionated peptides from eluates of human primary breast and ovarian tumors.Cancer Immunol. Immunother.53(11) , 1027–1040 (2004).
  • Kawashima I , TsaiV, SouthwoodS, TakesakoK, SetteA, CelisE: Identification of HLA-A3-restricted cytotoxic T lymphocyte epitopes from carcinoembryonic antigen and HER-2/neu by primary in vitro immunization with peptide-pulsed dendritic cells.Cancer Res.59(2) , 431–435 (1999).
  • Lekka E . Gritzapis AD, Perez SA et al.: Identification and characterization of a HER-2/neu epitope as a potential target for cancer immunotherapy. Cancer Immunol. Immunother. DOI: 10.1007/s00262-009-0791-7 (2010) (In press).
  • Peiper M , GoedegebuurePS, LinehanDC, GangulyE, DouvilleCC, EberleinTJ: The HER2/neu-derived peptide p654–662 is a tumor-associated antigen in human pancreatic cancer recognized by cytotoxic T lymphocytes.Eur. J. Immunol.27(5) , 1115–1123 (1997).
  • Scardino A , AlvesP, GrossDAet al.: Identification of HER-2/neu immunogenic epitopes presented by renal cell carcinoma and other human epithelial tumors.Eur. J. Immunol.31(11) , 3261–3270 (2001).
  • Shiku H , WangL, IkutaYet al.: Development of a cancer vaccine: peptides, proteins, and DNA.Cancer Chemother. Pharmacol.46(Suppl.) , S77–S82 (2000).
  • Toes RE , SchoenbergerSP, van der Voort EI, Offringa R, Melief CJ: CD40–CD40 ligand interactions and their role in cytotoxic T lymphocyte priming and anti-tumor immunity. Semin. Immunol.10(6) , 443–448 (1998).
  • Bennett SR , CarboneFR, KaramalisF, FlavellRA, MillerJF, HeathWR: Help for cytotoxic-T-cell responses is mediated by CD40 signalling.Nature393(6684) , 478–480 (1998).
  • Schoenberger SP , ToesRE, van der Voort EI, Offringa R, Melief CJ: T-cell help for cytotoxic T lymphocytes is mediated by CD40–CD40L interactions. Nature393(6684) , 480–483 (1998).
  • Koide Y , InaY, NezuN, YoshidaTO: Calcium influx and the Ca2+-calmodulin complex are involved in interferon-γ-induced expression of HLA class II molecules on HL-60 cells.Proc. Natl Acad. Sci. USA85(9) , 3120–3124 (1988).
  • Celada A , MakiRA: IFN-γ induces the expression of the genes for MHC class II I-A b and tumor necrosis factor through a protein kinase C-independent pathway.J. Immunol.146(1) , 114–120 (1991).
  • Baxevanis CN , VoutsasIF, TsitsilonisOE, GritzapisAD, SotiriadouR, PapamichailM: Tumor-specific CD4+ T lymphocytes from cancer patients are required for optimal induction of cytotoxic T cells against the autologous tumor.J. Immunol.164(7) , 3902–3912 (2000).
  • Anderson BW , KudelkaAP, HondaTet al.: Induction of determinant spreading and of Th1 responses by in vitro stimulation with HER-2 peptides.Cancer Immunol. Immunother.49(9) , 459–468 (2000).
  • Disis ML , RinnK, KnutsonKLet al.: Flt3 ligand as a vaccine adjuvant in association with HER-2/neu peptide-based vaccines in patients with HER-2/neu-overexpressing cancers.Blood99(8) , 2845–2850 (2002).
  • Fisk B , HudsonJM, KavanaghJet al.: Existent proliferative responses of peripheral blood mononuclear cells from healthy donors and ovarian cancer patients to HER-2 peptides.Anticancer Res.17(1A) , 45–53 (1997).
  • Perez SA , SotiropoulouPA, SotiriadouNNet al.: HER-2/neu-derived peptide 884–899 is expressed by human breast, colorectal and pancreatic adenocarcinomas and is recognized by in-vitro-induced specific CD4+ T cell clones.Cancer Immunol. Immunother.50(11) , 615–624 (2002).
  • Sotiriadou R , PerezSA, GritzapisADet al.: Peptide HER2(776–788) represents a naturally processed broad MHC class II-restricted T cell epitope.Br. J. Cancer85(10) , 1527–1534 (2001).
  • Janssen EM , LemmensEE, WolfeT, ChristenU, von Herrath MG, Schoenberger SP: CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature421(6925) , 852–856 (2003).
  • Bourgeois C , TanchotC: CD4 T cells are required for CD8 T cell memory generation.Eur. J. Immunol.33(12) , 3225–3231 (2003).
  • Sun JC , BevanMJ: Defective CD8 T cell memory following acute infection without CD4 T cell help.Science300(5617) , 339–342 (2003).
  • Shedlock DJ , ShenH: Requirement for CD4 T cell help in generating functional CD8 T cell memory.Science300(5617) , 337–339 (2003).
  • Hamilton SE , WolkersMC, SchoenbergerSP, JamesonSC: The generation of protective memory-like CD8+ T cells during homeostatic proliferation requires CD4+ T cells.Nat. Immunol.7(5) , 475–481 (2006).
  • Lollini PL , CavalloF, NanniP, ForniG: Vaccines for tumour prevention.Nat. Rev. Cancer6(3) , 204–216 (2006).
  • Rodolfo M , MelaniC, ZilocchiCet al.: IgG2a induced by interleukin (IL) 12-producing tumor cell vaccines but not IgG1 induced by IL-4 vaccine is associated with the eradication of experimental metastases.Cancer Res.58(24) , 5812–5817 (1998).
  • Quaglino E , IezziM, MastiniCet al.: Electroporated DNA vaccine clears away multifocal mammary carcinomas in her-2/neu transgenic mice.Cancer Res.64(8) , 2858–2864 (2004).
  • Nanni P , NicolettiG, De Giovanni C et al.: Combined allogeneic tumor cell vaccination and systemic interleukin 12 prevents mammary carcinogenesis in HER-2/neu transgenic mice. J. Exp. Med.194(9) , 1195–1205 (2001).
  • Zaks TZ , RosenbergSA: Immunization with a peptide epitope (p369–377) from HER-2/neu leads to peptide-specific cytotoxic T lymphocytes that fail to recognize HER-2/neu+ tumors.Cancer Res.58(21) , 4902–4908 (1998).
  • Murray JL , PrzepiorkaD, IoannidesCG: Clinical trials of HER-2/neu-specific vaccines.Semin. Oncol.27(6 Suppl. 11) , 71–75 (2000).
  • Disis ML , GooleyTA, RinnKet al.: Generation of T-cell immunity to the HER-2/neu protein after active immunization with HER-2/neu peptide-based vaccines.J. Clin. Oncol.20(11) , 2624–2632 (2002).
  • Knutson KL , SchiffmanK, CheeverMA, DisisML: Immunization of cancer patients with a HER-2/neu, HLA-A2 peptide, p369–377, results in short-lived peptide-specific immunity.Clin. Cancer Res.8(5) , 1014–1018 (2002).
  • Czerniecki BJ , RosesRE, KoskiGK: Development of vaccines for high-risk ductal carcinoma in situ of the breast.Cancer Res.67(14) , 6531–6534 (2007).
  • Berd D , SatoT, MaguireHC Jr, Kairys J, Mastrangelo MJ: Immunopharmacologic analysis of an autologous, hapten-modified human melanoma vaccine. J. Clin. Oncol.22(3) , 403–415 (2004).
  • Hsueh EC , FamatigaE, ShuS, YeX, MortonDL: Peripheral blood CD4+ T-cell response before postoperative active immunotherapy correlates with clinical outcome in metastatic melanoma.Ann. Surg. Oncol.11(10) , 892–899 (2004).
  • Takeuchi H , MortonDL, ElashoffD, HoonDS: Survivin expression by metastatic melanoma predicts poor disease outcome in patients receiving adjuvant polyvalent vaccine.Int. J. Cancer117(6) , 1032–1038 (2005).
  • Tagawa ST , CheungE, BantaW, GeeC, WeberJS: Survival analysis after resection of metastatic disease followed by peptide vaccines in patients with stage IV melanoma.Cancer106(6) , 1353–1357 (2006).
  • Sanderson K , ScotlandR, LeePet al.: Autoimmunity in a Phase I trial of a fully human anti-cytotoxic T-lymphocyte antigen-4 monoclonal antibody with multiple melanoma peptides and montanide ISA 51 for patients with resected stages III and IV melanoma.J. Clin. Oncol.23(4) , 741–750 (2005).
  • Kirkwood JM , IbrahimJG, SosmanJAet al.: High-dose interferon α-2b significantly prolongs relapse-free and overall survival compared with the GM2-KLH/QS-21 vaccine in patients with resected stage IIB–III melanoma: results of intergroup trial E1694/S9512/C509801.J. Clin. Oncol.19(9) , 2370–2380 (2001).
  • Reinartz S , KohlerS, SchlebuschHet al.: Vaccination of patients with advanced ovarian carcinoma with the anti-idiotype ACA125: immunological response and survival (Phase Ib/II).Clin. Cancer Res.10(5) , 1580–1587 (2004).
  • Berek JS , TaylorPT, GordonAet al.: Randomized, placebo-controlled study of oregovomab for consolidation of clinical remission in patients with advanced ovarian cancer.J. Clin. Oncol.22(17) , 3507–3516 (2004).
  • Giaccone G , DebruyneC, FelipEet al.: Phase III study of adjuvant vaccination with Bec2/bacille Calmette-Guerin in responding patients with limited-disease small-cell lung cancer (European Organisation for Research and Treatment of Cancer 08971–08971B; Silva Study).J. Clin. Oncol.23(28) , 6854–6864 (2005).
  • Sportes C , McCarthyNJ, HakimFet al.: Establishing a platform for immunotherapy: clinical outcome and study of immune reconstitution after high-dose chemotherapy with progenitor cell support in breast cancer patients.Biol. Blood Marrow Transplant.11(6) , 472–483 (2005).
  • Finn OJ : Tumor immunology top 10 list.Immunol. Rev.222 , 5–8 (2008).
  • Cho WC : Contribution of oncoproteomics to cancer biomarker discovery.Mol. Cancer6 , 25 (2007).
  • Hueman MT , DehqanzadaZA, NovakTEet al.: Phase I clinical trial of a HER-2/neu peptide (E75) vaccine for the prevention of prostate-specific antigen recurrence in high-risk prostate cancer patients.Clin. Cancer Res.11(20) , 7470–7479 (2005).
  • Gates JD , CarmichaelMG, BenavidesLCet al.: Longterm followup assessment of a HER2/neu peptide (E75) vaccine for prevention of recurrence in high-risk prostate cancer patients.J. Am. Coll. Surg.208(2) , 193–201 (2009).
  • Peoples GE , GurneyJM, HuemanMTet al.: Clinical trial results of a HER2/neu (E75) vaccine to prevent recurrence in high-risk breast cancer patients.J. Clin. Oncol.23(30) , 7536–7545 (2005).
  • Amin A , BenavidesLC, HolmesJPet al.: Assessment of immunologic response and recurrence patterns among patients with clinical recurrence after vaccination with a preventive HER2/neu peptide vaccine: from US Military Cancer Institute Clinical Trials Group Study I-01 and I-02.Cancer Immunol. Immunother.57(12) , 1817–1825 (2008).
  • Peoples GE , HolmesJP, HuemanMTet al.: Combined clinical trial results of a HER2/neu (E75) vaccine for the prevention of recurrence in high-risk breast cancer patients: US Military Cancer Institute Clinical Trials Group Study I-01 and I-02.Clin. Cancer Res.14(3) , 797–803 (2008).
  • Humphreys RE , AdamsS, KoldzicG, NedelescuB, von Hofe E, Xu M: Increasing the potency of MHC class II-presented epitopes by linkage to Ii-Key peptide. Vaccine18(24) , 2693–2697 (2000).
  • Xu M , CapraroGA, DaibataM, ReyesVE, HumphreysRE: Cathepsin B cleavage and release of invariant chain from MHC class II molecules follow a staged pattern.Mol. Immunol.31(10) , 723–731 (1994).
  • Kallinteris NL , LuX, BlackwellCE, von Hofe E, Humphreys RE, Xu M: Ii-Key/MHC class II epitope hybrids: a strategy that enhances MHC class II epitope loading to create more potent peptide vaccines. Expert Opin. Biol. Ther.6(12) , 1311–1321 (2006).
  • Sotiriadou NN , KallinterisNL, GritzapisADet al.: Ii-Key/HER-2/neu(776–790) hybrid peptides induce more effective immunological responses over the native peptide in lymphocyte cultures from patients with HER-2/neu+ tumors.Cancer Immunol. Immunother.56(5) , 601–613 (2007).
  • Voutsas IF , GritzapisAD, MahairaLGet al.: Induction of potent CD4+ T cell-mediated antitumor responses by a helper HER-2/neu peptide linked to the Ii-Key moiety of the invariant chain.Int. J. Cancer121(9) , 2031–2041 (2007).
  • Holmes JP , BenavidesLC, GatesJDet al.: Results of the first Phase I clinical trial of the novel II-key hybrid preventive HER-2/neu peptide (AE37) vaccine.J. Clin. Oncol.26(20) , 3426–3433 (2008).
  • Disis ML , WallaceDR, GooleyTAet al.: Concurrent trastuzumab and HER2/neu-specific vaccination in patients with metastatic breast cancer.J. Clin. Oncol.27(28) , 4685–4692 (2009).
  • Manoukian G , HagemeisterF: Denileukin diftitox: a novel immunotoxin.Expert Opin. Biol. Ther.9(11) , 1445–1451 (2009).
  • Kreitman RJ : Recombinant immunotoxins for the treatment of chemoresistant hematologic malignancies.Curr. Pharm. Des.15(23) , 2652–2664 (2009).
  • Lob S , KonigsrainerA, RammenseeHG, OpelzG, TernessP: Inhibitors of indoleamine-2,3-dioxygenase for cancer therapy: can we see the wood for the trees?Nat. Rev. Cancer9(6) , 445–452 (2009).
  • Ross JS , SlodkowskaEA, SymmansWF, PusztaiL, RavdinPM, HortobagyiGN: The HER-2 receptor and breast cancer: ten years of targeted anti-HER-2 therapy and personalized medicine.Oncologist14(4) , 320–368 (2009).
  • Zhang L , Conejo-GarciaJR, KatsarosDet al.: Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer.N. Engl. J. Med.348(3) , 203–213 (2003).
  • Zhang B : Targeting the stroma by T cells to limit tumor growth.Cancer Res.68(23) , 9570–9573 (2008).
  • Nefedova Y , FishmanM, ShermanS, WangX, BegAA, GabrilovichDI: Mechanism of all-trans retinoic acid effect on tumor-associated myeloid-derived suppressor cells.Cancer Res.67(22) , 11021–11028 (2007).
  • Yee C , ThompsonJA, ByrdDet al.: Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells.Proc. Natl Acad. Sci. USA99(25) , 16168–16173 (2002).
  • Riddell SR , GreenbergPD: The use of anti-CD3 and anti-CD28 monoclonal antibodies to clone and expand human antigen-specific T cells.J. Immunol. Methods128(2) , 189–201 (1990).
  • Bernhard H , NeudorferJ, GebhardKet al.: Adoptive transfer of autologous, HER2-specific, cytotoxic T lymphocytes for the treatment of HER2-overexpressing breast cancer.Cancer Immunol. Immunother.57(2) , 271–280 (2008).
  • Disis ML , SalazarLG, CoverelAet al.: Phase I study of infusion of HER2/neu (HER2) specific T cells in patients with advanced-stage HER-2 overexpressing cancers who have received a HER2 vaccine.J. Clin. Oncol.129S (2009) (Abstract 3000).
  • Pilon SA , PiechockiMP, WeiWZ: Vaccination with cytoplasmic ErbB-2 DNA protects mice from mammary tumor growth without anti-ErbB-2 antibody.J. Immunol.167(6) , 3201–3206 (2001).
  • Piechocki MP , PilonSA, WeiWZ: Complementary antitumor immunity induced by plasmid DNA encoding secreted and cytoplasmic human ErbB-2.J. Immunol.167(6) , 3367–3374 (2001).
  • Gallo P , DharmapuriS, NuzzoMet al.: Xenogeneic immunization in mice using HER2 DNA delivered by an adenoviral vector.Int. J. Cancer113(1) , 67–77 (2005).
  • Pupa SM , IezziM, Di Carlo E et al.: Inhibition of mammary carcinoma development in HER-2/neu transgenic mice through induction of autoimmunity by xenogeneic DNA vaccination. Cancer Res.65(3) , 1071–1078 (2005).
  • Cappello P , TriebelF, IezziMet al.: LAG-3 enables DNA vaccination to persistently prevent mammary carcinogenesis in HER-2/neu transgenic BALB/c mice.Cancer Res.63(10) , 2518–2525 (2003).
  • Sumida SM , McKayPF, TruittDMet al.: Recruitment and expansion of dendritic cells in vivo potentiate the immunogenicity of plasmid DNA vaccines.J. Clin. Invest.114(9) , 1334–1342 (2004).
  • Sakai Y , MorrisonBJ, BurkeJDet al.: Vaccination by genetically modified dendritic cells expressing a truncated neu oncogene prevents development of breast cancer in transgenic mice.Cancer Res.64(21) , 8022–8028 (2004).
  • Cavallo F , OffringaR, van der Burg SH, Forni G, Melief CJ: Vaccination for treatment and prevention of cancer in animal models. Adv. Immunol.90 , 175–213 (2006).

▪ Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.