585
Views
3
CrossRef citations to date
0
Altmetric
Perspective

Muc1 Immunotherapy

, &
Pages 305-327 | Published online: 10 May 2010

Bibliography

  • Rosenberg SA , YangJC, RestifoNP: Cancer immunotherapy: moving beyond current vaccines.Nat. Med.10(9) , 909–915 (2004).
  • Greenlee RT , Hill-HarmonMB, MurrayT, ThunM: Cancer statistics, 2001.CA Cancer J. Clin.51(1) , 15–36 (2001).
  • Arklie J , Taylor-PapadimitriousJ, BodmerW, EganM, MillisR: Differentiation antigens expressed by epithelial cells in the lactating breast are also detectable in breast cancers.Int. J. Cancer28(1) , 23–29 (1981).
  • Swallow DM , GendlerS, GriffithsBet al.: The hypervariable gene locus PUM, which codes for the tumour associated epithelial mucins, is located on chromosome 1, within the region 1q21–24.Ann. Hum. Genet.51(Pt 4) , 289–294 (1987).
  • Taylor-Papadimitriou J , BurchellJM, PlunkettTet al.: MUC1 and the immunobiology of cancer.J. Mammary Gland Biol. Neoplasia7(2) , 209–221 (2002).
  • Mcauley JL , LindenSK, PngCWet al.: MUC1 cell surface mucin is a critical element of the mucosal barrier to infection.J. Clin. Invest.117(8) , 2313–2324 (2007).
  • Linden SK , ShengYH, EveryALet al.: MUC1 limits Helicobacter pylori infection both by steric hindrance and by acting as a releasable decoy.PLoS Pathog.5(10) , E1000617 (2009).
  • Thathiah A , BlobelCP, CarsonDD: Tumor necrosis factor-α converting enzyme/ADAM 17 mediates MUC1 shedding.J. Biol. Chem.278(5) , 3386–3394 (2003).
  • Thathiah A , CarsonDD: MT1-MMP mediates MUC1 shedding independent of TACE/ADAM17.Biochem. J.382(Pt 1) , 363–373 (2004).
  • Gendler SJ : MUC1, the renaissance molecule.J. Mammary Gland Biol. Neoplasia6(3) , 339–353 (2001).
  • Gendler SJ , BurchellJM, DuhigTet al.: Cloning of partial cDNA encoding differentiation and tumor-associated mucin glycoproteins expressed by human mammary epithelium.Proc. Natl Acad. Sci. USA84(17) , 6060–6064 (1987).
  • Gendler SJ , LancasterCA, Taylor-PapadimitriouJet al.: Molecular cloning and expression of human tumor-associated polymorphic epithelial mucin.J. Biol. Chem.265(25) , 15286–15293 (1990).
  • Burchell JM , MungulA, Taylor-PapadimitriouJ: O- linked glycosylation in the mammary gland: changes that occur during malignancy.J. Mammary Gland Biol. Neoplasia6(3) , 355–364 (2001).
  • Engelmann K , BaldusSE, HanischFG: Identification and topology of variant sequences within individual repeat domains of the human epithelial tumor mucin MUC1.J. Biol. Chem.276(30) , 27764–27769 (2001).
  • Fowler JC , TeixeiraAS, VinallLE, SwallowDM: Hypervariability of the membrane-associated mucin and cancer marker MUC1.Hum. Genet.113(6) , 473–479 (2003).
  • Patton S , GendlerSJ, SpicerAP: The epithelial mucin, MUC1, of milk, mammary gland and other tissues.Biochim. Biophys. Acta1241(3) , 407–423 (1995).
  • Singh PK , HollingsworthMA: Cell surface-associated mucins in signal transduction.Trends Cell. Biol.16(9) , 467–476 (2006).
  • Hattrup CL , GendlerSJ: Structure and function of the cell surface (tethered) mucins.Annu. Rev. Physiol.70 , 431–457 (2008).
  • Zotter S , HagemanPC, LossnitzerAet al.: Monoclonal antibodies to epithelial sialomucins recognize epitopes at different cellular sites in adenolymphomas of the parotid gland.Int. J. Cancer Suppl.3 , 38–44 (1988).
  • Dent GA , CivalierCJ, BrecherME, BentleySA: MUC1 expression in hematopoietic tissues.Am. J. Clin. Pathol.111(6) , 741–747 (1999).
  • Wykes M , MacdonaldKP, TranMet al.: MUC1 epithelial mucin (CD227) is expressed by activated dendritic cells.J. Leukoc. Biol.72(4) , 692–701 (2002).
  • Correa I , PlunkettT, VladAet al.: Form and pattern of MUC1 expression on T cells activated in vivo or in vitro suggests a function in T-cell migration.Immunology108(1) , 32–41 (2003).
  • Brugger W , BuhringHJ, GrunebachFet al.: Expression of MUC-1 epitopes on normal bone marrow: implications for the detection of micrometastatic tumor cells.J. Clin. Oncol.17(5) , 1535–1544 (1999).
  • Fatrai S , SchepersH, TademaH, VellengaE, DaenenSM, SchuringaJJ: Mucin1 expression is enriched in the human stem cell fraction of cord blood and is upregulated in majority of the AML cases.Exp. Hematol.36(10) , 1254–1265 (2008).
  • Coulie PG , HanagiriT, TakenoyamaM: From tumor antigens to immunotherapy.Int. J. Clin. Oncol.6(4) , 163–170 (2001).
  • Lloyd KO , BurchellJ, KudryashovV, YinBW, Taylor-PapadimitriouJ: Comparison of O- linked carbohydrate chains in MUC-1 mucin from normal breast epithelial cell lines and breast carcinoma cell lines. Demonstration of simpler and fewer glycan chains in tumor cells.J. Biol. Chem.271(52) , 33325–33334 (1996).
  • Girling A , BartkovaJ, BurchellJ, GendlerS, GillettC, Taylor-PapadimitriouJ: A core protein epitope of the polymorphic epithelial mucin detected by the monoclonal antibody SM-3 is selectively exposed in a range of primary carcinomas.Int. J. Cancer43(6) , 1072–1076 (1989).
  • Nitta T , SugiharaK, TsuyamaS, MurataF: Immunohistochemical study of MUC1 mucin in premalignant oral lesions and oral squamous cell carcinoma: association with disease progression, mode of invasion, and lymph node metastasis.Cancer88(2) , 245–254 (2000).
  • Li SH , WangZ, LiuXY, LiuFY, SunZY, XueH: Lymph node micrometastasis: a predictor of early tumor relapse after complete resection of histologically node-negative esophageal cancer.Surg. Today37(12) , 1047–1052 (2007).
  • Woenckhaus M , MerkJ, StoehrRet al.: Prognostic value of FHIT, CTNNB1, and MUC1 expression in non-small cell lung cancer.Hum. Pathol.39(1) , 126–136 (2008).
  • Croce MV , RabassaME, PereyraA, Segal-EirasA: Differential expression of MUC1 and carbohydrate antigens in primary and secondary head and neck squamous cell carcinoma.Head Neck30(5) , 647–657 (2008).
  • Cloosen S , GratamaJ, Van Leeuwen EB et al.: Cancer specific mucin-1 glycoforms are expressed on multiple myeloma. Br. J. Haematol.135(4) , 513–516 (2006).
  • Sakurai J , HattoriN, NakajimaMet al.: Differential expression of the glycosylated forms of MUC1 during lung development.Eur. J. Histochem.51(2) , 95–102 (2007).
  • Demichelis SO , AlberdiCG, ServiWJ, Isla-LarrainMT, Segal-EirasA, CroceMV: Comparative immunohistochemical study of MUC1 and carbohydrate antigens in breast benign disease and normal mammary gland.Appl. Immunohistochem. Mol. Morphol.18(1) , 41–50 (2010).
  • Whitehouse C , BurchellJ, GschmeissnerS, BrockhausenI, LloydKO, Taylor-PapadimitriouJ: A transfected sialyltransferase that is elevated in breast cancer and localizes to the medial/trans-golgi apparatus inhibits the development of core-2-based O- glycans.J. Cell. Biol.137(6) , 1229–1241 (1997).
  • Dalziel M , WhitehouseC, McFarlaneIet al.: The relative activities of the C2GnT1 and ST3Gal-I glycosyltransferases determine O- glycan structure and expression of a tumor-associated epitope on MUC1.J. Biol. Chem.276(14) , 11007–11015 (2001).
  • Brockhausen I , YangJM, BurchellJ, WhitehouseC, Taylor-PapadimitriouJ: Mechanisms underlying aberrant glycosylation of MUC1 mucin in breast cancer cells.Eur. J. Biochem.233(2) , 607–617 (1995).
  • Burchell J , PoulsomR, HanbyAet al.: An α2,3 sialyltransferase (ST3Gal I) is elevated in primary breast carcinomas.Glycobiology9(12) , 1307–1311 (1999).
  • Sewell R , BackstromM, DalzielMet al.: The ST6GalNAc-I sialyltransferase localizes throughout the golgi and is responsible for the synthesis of the tumor-associated sialyl-TN O- glycan in human breast cancer.J. Biol. Chem.281(6) , 3586–3594 (2006).
  • Julien S , AdriaenssensE, OttenbergKet al.: ST6GalNAc I expression in MDA-MB-231 breast cancer cells greatly modifies their O- glycosylation pattern and enhances their tumourigenicity.Glycobiology16(1) , 54–64 (2006).
  • Marcos NT , PinhoS, GrandelaCet al.: Role of the human ST6GalNAc-I and ST6GalNAc-II in the synthesis of the cancer-associated sialyl-TN antigen.Cancer Res.64(19) , 7050–7057 (2004).
  • Rahn JJ , DabbaghL, PasdarM, HughJC: The importance of MUC1 cellular localization in patients with breast carcinoma: an immunohistologic study of 71 patients and review of the literature.Cancer91(11) , 1973–1982 (2001).
  • Wesseling J , Van Der Valk SW, Vos HL, Sonnenberg A, Hilkens J: Episialin (MUC1) overexpression inhibits integrin-mediated cell adhesion to extracellular matrix components. J. Cell. Biol.129(1) , 255–265 (1995).
  • Cloosen S , ArnoldJ, ThioM, BosGM, KyewskiB, GermeraadWT: Expression of tumor-associated differentiation antigens, MUC1 glycoforms and CEA, in human thymic epithelial cells: implications for self-tolerance and tumor therapy.Cancer Res.67(8) , 3919–3926 (2007).
  • Von Mensdorff-Pouilly S , GourevitchMM, KenemansPet al.: Humoral immune response to polymorphic epithelial mucin (MUC-1) in patients with benign and malignant breast tumours.Eur. J. Cancer32A(8) , 1325–1331 (1996).
  • Von Mensdorff-Pouilly S , VerstraetenAA, KenemansPet al.: Survival in early breast cancer patients is favorably influenced by a natural humoral immune response to polymorphic epithelial mucin.J. Clin. Oncol.18(3) , 574–583 (2000).
  • Kurtenkov O , KlaamasK, Mensdorff-PouillyS, MiljukhinaL, ShljapnikovaL, ChuzmarovV: Humoral immune response to MUC1 and to the Thomsen–Friedenreich (TF) glycotope in patients with gastric cancer: relation to survival.Acta Oncol.46(3) , 316–323 (2007).
  • Silk AW , SchoenRE, PotterDM, FinnOJ: Humoral immune response to abnormal MUC1 in subjects with colorectal adenoma and cancer.Mol. Immunol.47(1) , 52–56 (2009).
  • Isla Larrain M , DemichelisS, CrespoMet al.: Breast cancer humoral immune response: involvement of Lewis y through the detection of circulating immune complexes and association with mucin 1 (MUC1).J. Exp. Clin. Cancer Res.28 , 121 (2009).
  • Correa I , PlunkettT, ColemanJet al.: Responses of human T cells to peptides flanking the tandem repeat and overlapping the signal sequence of MUC1.Int. J. Cancer115(5) , 760–768 (2005).
  • Feuerer M , BeckhoveP, BaiLet al.: Therapy of human tumors in NOD/SCID mice with patient-derived reactivated memory T cells from bone marrow.Nat. Med.7(4) , 452–458 (2001).
  • Domschke C , SchuetzF, SommerfeldtNet al.: Effects of distant metastasis and peripheral CA 15–13 on the induction of spontaneous T cell responses in breast cancer patients.Cancer Immunol Immunother59(3) , 479–486 (2010).
  • Choi C , WitzensM, BucurMet al.: Enrichment of functional CD8 memory T cells specific for MUC1 in bone marrow of patients with multiple myeloma.Blood105(5) , 2132–2134 (2005).
  • Klaamas K , KurtenkovO, Von Mensdorff-Pouilly S et al.: Impact of Helicobacter pylori infection on the humoral immune response to MUC1 peptide in patients with chronic gastric diseases and gastric cancer. Immunol. Invest.36(4) , 371–386 (2007).
  • Agrawal B , ReddishMA, KrantzMJ, LongeneckerBM: Does pregnancy immunize against breast cancer?Cancer Res.55(11) , 2257–2261 (1995).
  • Jerome KR , KirkAD, PecherG, FergusonWW, FinnOJ: A survivor of breast cancer with immunity to MUC-1 mucin, and lactational mastitis.Cancer Immunol. Immunother.43(6) , 355–360 (1997).
  • Al-Azemi M , RefaatB, AplinJ, LedgerW: The expression of MUC1 in human fallopian tube during the menstrual cycle and in ectopic pregnancy.Hum. Reprod.24(10) , 2582–2587 (2009).
  • Shyu MK , LinMC, LiuCHet al.: MUC1 expression is increased during human placental development and suppresses trophoblast-like cell invasion in vitro.Biol. Reprod.79(2) , 233–239 (2008).
  • Richter DU , JeschkeU, BergemannCet al.: Expression of the Thomsen–Friedenreich (TF) tumor antigen in human abort placentas.AntiCancer Res.25(3A) , 1675–1678 (2005).
  • Pemberton L , Taylor-PapadimitriouJ, GendlerSJ: Antibodies to the cytoplasmic domain of the MUC1 mucin show conservation throughout mammals.Biochem. Biophys. Res. Commun.185(1) , 167–175 (1992).
  • Kufe DW : Functional targeting of the MUC1 oncogene in human cancers.Cancer Biol. Ther.8(13) , 1197–1203 (2009).
  • Schroeder JA , AdrianceMC, ThompsonMC, CamenischTD, GendlerSJ: MUC1 alters β-catenin-dependent tumor formation and promotes cellular invasion.Oncogene22(9) , 1324–1332 (2003).
  • Zhang W , TangW, InagakiYet al.: Positive KL-6 mucin expression combined with decreased membranous β-catenin expression indicates worse prognosis in colorectal carcinoma.Oncol. Rep.20(5) , 1013–1019 (2008).
  • Siragusa M , ZerilliM, IovinoFet al.: MUC1 oncoprotein promotes refractoriness to chemotherapy in thyroid cancer cells.Cancer Res.67(11) , 5522–5530 (2007).
  • Nath D , HartnellA, HapperfieldLet al.: Macrophage-tumour cell interactions: identification of MUC1 on breast cancer cells as a potential counter-receptor for the macrophage-restricted receptor, sialoadhesin.Immunology98(2) , 213–219 (1999).
  • Saeland E , Van Vliet SJ, Backstrom M et al.: The C-type lectin MGL expressed by dendritic cells detects glycan changes on MUC1 in colon carcinoma. Cancer Immunol. Immunother.56(8) , 1225–1236 (2007).
  • Napoletano C , RughettiA, Agervig Tarp MP et al.: Tumor-associated TN-MUC1 glycoform is internalized through the macrophage galactose-type C-type lectin and delivered to the HLA class I and II compartments in dendritic cells. Cancer Res.67(17) , 8358–8367 (2007).
  • Schroeder JA , ThompsonMC, GardnerMM, GendlerSJ: Transgenic MUC1 interacts with epidermal growth factor receptor and correlates with mitogen-activated protein kinase activation in the mouse mammary gland.J. Biol. Chem.276(16) , 13057–13064 (2001).
  • Li Y , RenJ, YuWet al.: The epidermal growth factor receptor regulates interaction of the human DF3/MUC1 carcinoma antigen with c-Src and β-catenin.J. Biol. Chem.276(38) , 35239–35242 (2001).
  • Wei X , XuH, KufeD: Human MUC1 oncoprotein regulates p53-responsive gene transcription in the genotoxic stress response.Cancer Cell7(2) , 167–178 (2005).
  • Raina D , AhmadR, ChenD, KumarS, KharbandaS, KufeD: MUC1 oncoprotein suppresses activation of the ARF-MDM2-p53 pathway.Cancer Biol. Ther.7(12) , 1959–1967 (2008).
  • Schroeder JA , MasriAA, AdrianceMCet al.: MUC1 overexpression results in mammary gland tumorigenesis and prolonged alveolar differentiation.Oncogene23(34) , 5739–5747 (2004).
  • Bioportfolio: There are 21 FDA approved therapeutic monoclonals. In: Therapeutic Monoclonal Antibodies Report 2008–2023. Chapter 2.3, Visiongain, UK (2008).
  • Mollick JA , HodiFS, SoifferRJ, NadlerLM, DranoffG: MUC1-like tandem repeat proteins are broadly immunogenic in cancer patients.Cancer Immun.3 , 3 (2003).
  • Graham RA , BurchellJM, Taylor-PapadimitriouJ: The polymorphic epithelial mucin: potential as an immunogen for a cancer vaccine.Cancer Immunol. Immunother.42(2) , 71–80 (1996).
  • Cardillo TM , BlumenthalR, YingZ, GoldDV: Combined gemcitabine and radioimmunotherapy for the treatment of pancreatic cancer.Int. J. Cancer97(3) , 386–392 (2002).
  • Kodama H , SuzukiM, KatayoseYet al.: Specific and effective targeting cancer immunotherapy with a combination of three bispecific antibodies.Immunol. Lett.81(2) , 99–106 (2002).
  • Verheijen RH , MassugerLF, BenignoBBet al.: Phase III trial of intraperitoneal therapy with yttrium-90-labeled HMFG1 murine monoclonal antibody in patients with epithelial ovarian cancer after a surgically defined complete remission.J. Clin. Oncol.24(4) , 571–578 (2006).
  • Oei AL , MassugerLF, OyenWJ: Extraperitoneal leakage as a possible explanation for failure of one-time intraperitoneal treatment in ovarian cancer.Cancer Biother. Radiopharm.22(4) , 508–514 (2007).
  • Browne BC , O‘brienN, DuffyMJ, CrownJ, O‘DonovanN: HER-2 signaling and inhibition in breast cancer.Curr. Cancer Drug Targets9(3) , 419–438 (2009).
  • Moreno M , BontkesHJ, ScheperRJ, KenemansP, VerheijenRH, Von Mensdorff-Pouilly S: High level of MUC1 in serum of ovarian and breast cancer patients inhibits huHMFG-1 dependent cell-mediated cytotoxicity (ADCC). Cancer Lett.257(1) , 47–55 (2007).
  • Storr SJ , RoyleL, ChapmanCJet al.: The O- linked glycosylation of secretory/shed MUC1 from an advanced breast cancer patient‘s serum.Glycobiology18(6) , 456–462 (2008).
  • Fujiwara Y , KiuraK, ToyookaSet al.: Elevated serum level of sialylated glycoprotein KL-6 predicts a poor prognosis in patients with non-small cell lung cancer treated with gefitinib.Lung Cancer59(1) , 81–87 (2008).
  • Gourevitch MM , Von Mensdorff-Pouilly S, Litvinov SV et al.: Polymorphic epithelial mucin (MUC-1)-containing circulating immune complexes in carcinoma patients. Br. J. Cancer72(4) , 934–938 (1995).
  • Moller H , SerttasN, PaulsenH, BurchellJM, Taylor-PapadimitriouJ: NMR-based determination of the binding epitope and conformational analysis of MUC-1 glycopeptides and peptides bound to the breast cancer-selective monoclonal antibody SM3.Eur. J. Biochem.269(5) , 1444–1455 (2002).
  • Hughes OD , BishopMC, PerkinsACet al.: Preclinical evaluation of copper-67 labelled anti-MUC1 mucin antibody C595 for therapeutic use in bladder cancer.Eur. J. Nucl. Med.24(4) , 439–443 (1997).
  • Mcguckin MA , HurstTG, WardBG: Heterogeneity in production, secretion and glycosylation of MUC1 epithelial mucin by primary cultures of ovarian carcinoma.Int. J. Cancer63(3) , 412–418 (1995).
  • Schoonooghe S , KaigorodovV, ZawiszaMet al.: Efficient production of human bivalent and trivalent anti-MUC1 Fab-scFv antibodies in pichia pastoris.BMC Biotechnol.9 , 70 (2009).
  • Ismaili A , Jalali-JavaranM, RasaeeMJ, RahbarizadehF, Forouzandeh-MoghadamM, MemariHR: Production and characterization of anti-(mucin MUC1) single-domain antibody in tobacco (nicotiana tabacum cultivar xanthi).Biotechnol. Appl. Biochem.47(Pt 1) , 11–19 (2007).
  • Rosenberg SA , RestifoNP, YangJC, MorganRA, DudleyME: Adoptive cell transfer: a clinical path to effective cancer immunotherapy.Nat. Rev. Cancer8(4) , 299–308 (2008).
  • Ioannides CG , FiskB, JeromeKR, IrimuraT, WhartonJT, FinnOJ: Cytotoxic T cells from ovarian malignant tumors can recognize polymorphic epithelial mucin core peptides.J. Immunol.151(7) , 3693–3703 (1993).
  • Mulder WM , StukartMJ, De Windt E, Wagstaff J, Scheper RJ, Bloemena E: Mucin-1-related T cell infiltration in colorectal carcinoma. Cancer Immunol. Immunother.42(6) , 351–356 (1996).
  • Mukherjee P , GinardiAR, TinderTL, SternerCJ, GendlerSJ: MUC1-specific cytotoxic T lymphocytes eradicate tumors when adoptively transferred in vivo.Clin. Cancer Res.7(3 Suppl.) , 848S–855S (2001).
  • Mukherjee P , GinardiAR, MadsenCSet al.: Mice with spontaneous pancreatic cancer naturally develop MUC-1-specific CTLs that eradicate tumors when adoptively transferred.J. Immunol.165(6) , 3451–3460 (2000).
  • Mukherjee P , GinardiAR, MadsenCSet al.: MUC1-specific CTLs are non-functional within a pancreatic tumor microenvironment.Glycoconj. J.18(11–12) , 931–942 (2001).
  • Mukherjee P , TinderTL, BasuGD, PathangeyLB, ChenL, GendlerSJ: Therapeutic efficacy of MUC1-specific cytotoxic T lymphocytes and CD137 co-stimulation in a spontaneous breast cancer model.Breast Dis.20 , 53–63 (2004).
  • Garrido F , AlgarraI: MHC antigens and tumor escape from immune surveillance.Adv. Cancer Res.83 , 117–158 (2001).
  • Maher J , BrentjensRJ, GunsetG, RiviereI, SadelainM: Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCR-ζ/CD28 receptor.Nat. Biotechnol.20(1) , 70–75 (2002).
  • Wilkie S , PiccoG, FosterJet al.: Retargeting of human T cells to tumor-associated MUC1: the evolution of a chimeric antigen receptor.J. Immunol.180(7) , 4901–4909 (2008).
  • Arbyn M , DillnerJ: Review of current knowledge on HPV vaccination: an appendix to the European guidelines for quality assurance in cervical cancer screening.J. Clin. Virol.38(3) , 189–197 (2007).
  • Spicer AP , ParryG, PattonS, GendlerSJ: Molecular cloning and analysis of the mouse homologue of the tumor-associated mucin, MUC1, reveals conservation of potential O- glycosylation sites, transmembrane, and cytoplasmic domains and a loss of minisatellite-like polymorphism.J. Biol. Chem.266(23) , 15099–15109 (1991).
  • Peat N , GendlerSJ, LalaniN, DuhigT, Taylor-PapadimitriouJ: Tissue-specific expression of a human polymorphic epithelial mucin (MUC1) in transgenic mice.Cancer Res.52(7) , 1954–1960 (1992).
  • Graham RA , MorrisJR, CohenEP, Taylor-PapadimitriouJ: Up-regulation of MUC1 in mammary tumors generated in a double-transgenic mouse expressing human MUC1 cDNA, under the control of 1.4-kb 5´ MUC1 promoter sequence and the middle T oncogene, expressed from the MMTV promoter.Int. J. Cancer92(3) , 382–387 (2001).
  • Ramanathan RK , LeeKM, MckolanisJet al.: Phase I study of a MUC1 vaccine composed of different doses of MUC1 peptide with SB-AS2 adjuvant in resected and locally advanced pancreatic cancer.Cancer Immunol. Immunother.54(3) , 254–264 (2005).
  • Yamamoto K , UenoT, KawaokaTet al.: MUC1 peptide vaccination in patients with advanced pancreas or biliary tract cancer.AntiCancer Res.25(5) , 3575–3579 (2005).
  • Gilewski T , AdluriS, RagupathiGet al.: Vaccination of high-risk breast cancer patients with mucin-1 (MUC1) keyhole limpet hemocyanin conjugate plus QS-21.Clin. Cancer Res.6(5) , 1693–1701 (2000).
  • Reddish M , MacleanGD, KogantyRRet al.: Anti-MUC1 class I restricted CTLs in metastatic breast cancer patients immunized with a synthetic MUC1 peptide.Int. J. Cancer76(6) , 817–823 (1998).
  • Musselli C , RagupathiG, GilewskiT, PanageasKS, SpinatY, LivingstonPO: Reevaluation of the cellular immune response in breast cancer patients vaccinated with MUC1.Int. J. Cancer97(5) , 660–667 (2002).
  • Goydos JS , ElderE, WhitesideTL, FinnOJ, LotzeMT: A Phase I trial of a synthetic mucin peptide vaccine. Induction of specific immune reactivity in patients with adenocarcinoma.J. Surg. Res.63(1) , 298–304 (1996).
  • Butts C , MurrayN, MaksymiukAet al.: Randomized Phase IIB trial of BLP25 liposome vaccine in stage IIIB and IV non-small-cell lung cancer.J. Clin. Oncol.23(27) , 6674–6681 (2005).
  • Lees CJ , ApostolopoulosV, AcresBet al.: Immunotherapy with mannan-MUC1 and IL-12 in MUC1 transgenic mice.Vaccine19(2–3) , 158–162 (2000).
  • Apostolopoulos V , BarnesN, PieterszGA, MckenzieIF: Ex vivo targeting of the macrophage mannose receptor generates anti-tumor CTL responses.Vaccine18(27) , 3174–3184 (2000).
  • Karanikas V , LoddingJ, MainoVC, MckenzieIF: Flow cytometric measurement of intracellular cytokines detects immune responses in MUC1 immunotherapy.Clin. Cancer Res.6(3) , 829–837 (2000).
  • Apostolopoulos V , PieterszGA, TsibanisAet al.: Pilot Phase III immunotherapy study in early-stage breast cancer patients using oxidized mannan-MUC1 [ISRC TN71711835].Breast Cancer Res.8(3) , R27 (2006).
  • Tang CK , KatsaraM, ApostolopoulosV: Strategies used for MUC1 immunotherapy: human clinical studies.Expert Rev. Vaccines7(7) , 963–975 (2008).
  • Sheng KC , PouniotisDS, WrightMDet al.: Mannan derivatives induce phenotypic and functional maturation of mouse dendritic cells.Immunology118(3) , 372–383 (2006).
  • Kotera Y , FontenotJD, PecherG, MetzgarRS, FinnOJ: Humoral immunity against a tandem repeat epitope of human mucin MUC-1 in sera from breast, pancreatic, and colon cancer patients.Cancer Res.54(11) , 2856–2860 (1994).
  • Sorensen AL , ReisCA, TarpMAet al.: Chemoenzymatically synthesized multimeric Tn/STn MUC1 glycopeptides elicit cancer-specific anti-MUC1 antibody responses and override tolerance.Glycobiology16(2) , 96–107 (2006).
  • Bohm CM , MulderMC, ZennadiRet al.: Carbohydrate recognition on MUC1-expressing targets enhances cytotoxicity of a T cell subpopulation.Scand. J. Immunol.46(1) , 27–34 (1997).
  • Ryan SO , VladAM, IslamK, GariepyJ, FinnOJ: Tumor-associated MUC1 glycopeptide epitopes are not subject to self-tolerance and improve responses to MUC1 peptide epitopes in MUC1 transgenic mice.Biol. Chem.390(7) , 611–618 (2009).
  • Miles DW , HapperfieldLC, SmithPet al.: Expression of sialyl-Tn predicts the effect of adjuvant chemotherapy in node-positive breast cancer.Br. J. Cancer70(6) , 1272–1275 (1994).
  • Miles D , PapazisisK: Rationale for the clinical development of STn-KLH (theratope) and anti-MUC-1 vaccines in breast cancer.Clin. Breast Cancer3(Suppl. 4) , S134–S138 (2003).
  • Miles DW , TowlsonKE, GrahamRet al.: A randomised Phase II study of sialyl-Tn and detox-B adjuvant with or without cyclophosphamide pretreatment for the active specific immunotherapy of breast cancer.Br. J. Cancer74(8) , 1292–1296 (1996).
  • Holmberg LA , SandmaierBM: Vaccination with theratope (STn-KLH) as treatment for breast cancer.Expert Rev. Vaccines3(6) , 655–663 (2004).
  • Julien S , PiccoG, SewellRet al.: Sialyl-Tn vaccine induces antibody-mediated tumour protection in a relevant murine model.Br. J. Cancer100(11) , 1746–1754 (2009).
  • Slovin SF , RagupathiG, FernandezCet al.: A polyvalent vaccine for high-risk prostate patients: ‘are more antigens better?‘.Cancer Immunol. Immunother.56(12) , 1921–1930 (2007)
  • Sabbatini PJ , RagupathiG, HoodCet al.: Pilot study of a heptavalent vaccine-keyhole limpet hemocyanin conjugate plus QS21 in patients with epithelial ovarian, fallopian tube, or peritoneal cancer.Clin. Cancer Res.13(14) , 4170–4177 (2007).
  • Nencioni A , GrunebachF, SchmidtSMet al.: The use of dendritic cells in cancer immunotherapy.Crit. Rev. Oncol. Hematol.65(3) , 191–199 (2008).
  • Soares MM , MehtaV, FinnOJ: Three different vaccines based on the 140-amino acid MUC1 peptide with seven tandemly repeated tumor-specific epitopes elicit distinct immune effector mechanisms in wild-type versus MUC1-transgenic mice with different potential for tumor rejection.J. Immunol.166(11) , 6555–6563 (2001).
  • Loveland BE , ZhaoA, WhiteSet al.: Mannan-MUC1-pulsed dendritic cell immunotherapy: a Phase I trial in patients with adenocarcinoma.Clin. Cancer Res.12(3 Pt 1) , 869–877 (2006).
  • Brossart P : Dendritic cells in vaccination therapies of malignant diseases.Transfus. Apher. Sci.27(2) , 183–186 (2002).
  • Brossart P , WirthsS, StuhlerG, ReichardtVL, KanzL, BruggerW: Induction of cytotoxic T-lymphocyte responses in vivo after vaccinations with peptide-pulsed dendritic cells.Blood96(9) , 3102–3108 (2000).
  • Bohnenkamp HR , ColemanJ, BurchellJM, Taylor-PapadimitriouJ, NollT: Breast carcinoma cell lysate-pulsed dendritic cells cross-prime MUC1-specific CD8+ T cells identified by peptide-MHC-class-I tetramers.Cell. Immunol.231(1–2) , 112–125 (2004).
  • Kontani K , TaguchiO, OzakiYet al.: Dendritic cell vaccine immunotherapy of cancer targeting MUC1 mucin.Int. J. Mol. Med.12(4) , 493–502 (2003).
  • Chang GC , LanHC, JuangSHet al.: A pilot clinical trial of vaccination with dendritic cells pulsed with autologous tumor cells derived from malignant pleural effusion in patients with late-stage lung carcinoma.Cancer103(4) , 763–771 (2005).
  • Chen D , XiaJ, TanakaYet al.: Immunotherapy of spontaneous mammary carcinoma with fusions of dendritic cells and mucin 1-positive carcinoma cells.Immunology109(2) , 300–307 (2003).
  • Koido S , TanakaY, ChenD, KufeD, GongJ: The kinetics of in vivo priming of CD4 and CD8 T cells by dendritic/tumor fusion cells in MUC1-transgenic mice.J. Immunol.168(5) , 2111–2117 (2002).
  • Tanaka Y , KoidoS, ChenD, GendlerSJ, KufeD, GongJ: Vaccination with allogeneic dendritic cells fused to carcinoma cells induces antitumor immunity in MUC1 transgenic mice.Clin. Immunol.101(2) , 192–200 (2001).
  • Gong J , ApostolopoulosV, ChenDet al.: Selection and characterization of MUC1-specific CD8+ T cells from MUC1 transgenic mice immunized with dendritic-carcinoma fusion cells.Immunology101(3) , 316–324 (2000).
  • Avigan D , VasirB, GongJet al.: Fusion cell vaccination of patients with metastatic breast and renal cancer induces immunological and clinical responses.Clin. Cancer Res.10(14) , 4699–4708 (2004).
  • Avigan D : Dendritic cell-tumor fusion vaccines for renal cell carcinoma.Clin. Cancer Res.10(18 Pt 2) , 6347S–6352S (2004).
  • Koido S , KashiwabaM, ChenD, GendlerS, KufeD, GongJ: Induction of antitumor immunity by vaccination of dendritic cells transfected with MUC1 rna.J. Immunol.165(10) , 5713–5719 (2000).
  • Dorfel D , AppelS, GrunebachFet al.: Processing and presentation of HLA class I and II epitopes by dendritic cells after transfection with in vitro-transcribed MUC1 RNA.Blood105(8) , 3199–3205 (2005).
  • Brossart P , HeinrichKS, StuhlerGet al.: Identification of HLA-A2-restricted T-cell epitopes derived from the MUC1 tumor antigen for broadly applicable vaccine therapies.Blood93(12) , 4309–4317 (1999).
  • Kondo H , HazamaS, KawaokaTet al.: Adoptive immunotherapy for pancreatic cancer using MUC1 peptide-pulsed dendritic cells and activated T lymphocytes.AntiCancer Res.28(1B) , 379–387 (2008).
  • Dobrzanski MJ , Rewers-FelkinsKA, QuinlinISet al.: Autologous MUC1-specific Th1 effector cell immunotherapy induces differential levels of systemic Treg cell subpopulations that result in increased ovarian cancer patient survival.Clin. Immunol.133(3) , 333–352 (2009).
  • Vasir B , WuZ, CrawfordKet al.: Fusions of dendritic cells with breast carcinoma stimulate the expansion of regulatory T cells while concomitant exposure to IL-12, CPG oligodeoxynucleotides, and anti-CD3/CD28 promotes the expansion of activated tumor reactive cells.J. Immunol.181(1) , 808–821 (2008).
  • Homma S , KikuchiT, IshijiNet al.: Cancer immunotherapy by fusions of dendritic cells and tumour cells.Immunotherapy1(1) , 49–62 (2009).
  • Muller MR , GrunebachF, NencioniA, BrossartP: Transfection of dendritic cells with RNA induces CD4- and CD8-mediated T cell immunity against breast carcinomas and reveals the immunodominance of presented T cell epitopes.J. Immunol.170(12) , 5892–5896 (2003).
  • Wang K , ZhouQ, GuoAL, XuCR, AnSJ, WuYL: An autologous therapeutic dendritic cell vaccine transfected with total lung carcinoma RNA stimulates cytotoxic T lymphocyte responses against non-small cell lung cancer.Immunol. Invest.38(7) , 665–680 (2009).
  • Grimshaw MJ , PapazisisK, PiccoGet al.: Immunisation with ‘naive‘ syngeneic dendritic cells protects mice from tumour challenge.Br. J. Cancer98(4) , 784–791 (2008).
  • Plunkett T , GrahamR, CorreaIet al.: Protection against MUC1 expressing mouse tumours by intra-muscular injection of MUC1 cDNA requires functional CD8+ and CD4+ T cells but does not require the MUC1 tandem repeat domain.Int. J. Cancer109(5) , 691–697 (2004).
  • Johnen H , KulbeH, PecherG: Long-term tumor growth suppression in mice immunized with naked DNA of the human tumor antigen mucin (MUC1).Cancer Immunol. Immunother.50(7) , 356–360 (2001).
  • Scholl S , SquibanP, BizouarneNet al.: Metastatic breast tumour regression following treatment by a gene-modified vaccinia virus expressing MUC1 and IL-2.J. Biomed. Biotechnol.2003(3) , 194–201 (2003).
  • Acres B : Cancer immunotherapy: Phase II clinical studies with TG4010 (MVA-MUC1-IL2).J. BUON12(Suppl. 1) , S71–S75 (2007).
  • Ramlau R , QuoixE, RolskiJet al.: A Phase II study of Tg4010 (MVA-MUC1-IL2) in association with chemotherapy in patients with stage III/IV non-small cell lung cancer.J. Thorac. Oncol.3(7) , 735–744 (2008).
  • Dreicer R , StadlerWM, AhmannFRet al.: MVA-MUC1-IL2 vaccine immunotherapy (Tg4010) improves PSA doubling time in patients with prostate cancer with biochemical failure.Invest. New Drugs27(4) , 379–386 (2009).
  • Kaufman HL , Kim-SchulzeS, MansonKet al.: Poxvirus-based vaccine therapy for patients with advanced pancreatic cancer.J. Transl. Med.5 , 60 (2007).
  • Gulley JL , ArlenPM, TsangKYet al.: Pilot study of vaccination with recombinant CEA-MUC-1-TRICOM poxviral-based vaccines in patients with metastatic carcinoma.Clin. Cancer Res.14(10) , 3060–3069 (2008).
  • Domenech N , HendersonRA, FinnOJ: Identification of an HLA-A11-restricted epitope from the tandem repeat domain of the epithelial tumor antigen mucin.J. Immunol.155(10) , 4766–4774 (1995).
  • Sancho D , Mourão-SáD, JoffreOPet al.: Tumor therapy in mice via antigen targeting to a novel, DC-restricted C-type lectin.J. Clin. Invest.118(6) , 2098–2110 (2008).
  • Brandes M , WillimannK, BioleyGet al.: Cross-presenting human γδ T cells induce robust CD8+ αβ T cell responses.Proc. Natl Acad. Sci. USA106(7) , 2307–2312 (2009).
  • Apostolopoulos V , PieterszGA, GordonS, Martinez-PomaresL, MckenzieIF: Aldehyde-mannan antigen complexes target the MHC class I antigen-presentation pathway.Eur J. Immunol.30(6) , 1714–1723 (2000).
  • Ninkovic T , HanischFG: O- glycosylated human MUC1 repeats are processed in vitro by immunoproteasomes.J. Immunol.179(4) , 2380–2388 (2007).
  • Ninkovic T , KinarskyL, EngelmannKet al.: Identification of O-glycosylated decapeptides within the MUC1 repeat domain as potential MHC class I (A2) binding epitopes.Mol. Immunol.47(1) , 131–140 (2009).
  • Vlad AM , MullerS, CudicMet al.: Complex carbohydrates are not removed during processing of glycoproteins by dendritic cells: processing of tumor antigen MUC1 glycopeptides for presentation to major histocompatibility complex class II-restricted T cells.J. Exp. Med.196(11) , 1435–1446 (2002).
  • Haurum JS , HoierIB, ArsequellGet al.: Presentation of cytosolic glycosylated peptides by human class I major histocompatibility complex molecules in vivo.J. Exp. Med.190(1) , 145–150 (1999).
  • Stepensky D , TzehovalE, VadaiE, EisenbachL: O-glycosylated versus non-glycosylated MUC1-derived peptides as potential targets for cytotoxic immunotherapy of carcinoma.Clin. Exp. Immunol.143(1) , 139–149 (2006).
  • Apostolopoulos V , YurievE, RamslandPAet al.: A glycopeptide in complex with MHC class I uses the galnac residue as an anchor.Proc. Natl Acad. Sci. USA100(25) , 15029–15034 (2003).
  • Glithero A , TormoJ, HaurumJSet al.: Crystal structures of two H-2Db/glycopeptide complexes suggest a molecular basis for CTL cross-reactivity.Immunity10(1) , 63–74 (1999).
  • Dutoit V , Rubio-GodoyV, DouceyMAet al.: Functional avidity of tumor antigen-specific CTL recognition directly correlates with the stability of MHC/peptide multimer binding to TCR.J. Immunol.168(3) , 1167–1171 (2002).
  • Vlad AM , KettelJC, AlajezNM, CarlosCA, FinnOJ: MUC1 immunobiology: from discovery to clinical applications.Adv. Immunol.82 , 249–293 (2004).
  • Rudd PM , ElliottT, CresswellP, WilsonIA, DwekRA: Glycosylation and the immune system.Science291(5512) , 2370–2376 (2001).
  • Xu Y , GendlerSJ, FrancoA: Designer glycopeptides for cytotoxic T cell-based elimination of carcinomas.J. Exp. Med.199(5) , 707–716 (2004).
  • Haurum JS , ArsequellG, LellouchACet al.: Recognition of carbohydrate by major histocompatibility complex class I-restricted, glycopeptide-specific cytotoxic T lymphocytes.J. Exp. Med.180(2) , 739–744 (1994).
  • Tarp MA , ClausenH: Mucin-type O-glycosylation and its potential use in drug and vaccine development.Biochim. Biophys. Acta1780(3) , 546–563 (2008).
  • Hanada K , YewdellJW, YangJC: Immune recognition of a human renal cancer antigen through post-translational protein splicing.Nature427(6971) , 252–256 (2004).
  • Vigneron N , OomsA, MorelS, MaW, DegiovanniG, Van Den Eynde BJ: A peptide derived from melanocytic protein gp100 and presented by HLA-b35 is recognized by autologous cytolytic T lymphocytes on melanoma cells. Tissue Antigens65(2) , 156–162 (2005).
  • Godefroy E , Moreau-AubryA, DiezE, DrenoB, JotereauF, GuillouxY: α v β3-dependent cross-presentation of matrix metalloproteinase-2 by melanoma cells gives rise to a new tumor antigen.J. Exp. Med.202(1) , 61–72 (2005).
  • Paludan C , SchmidD, LandthalerMet al.: Endogenous MHC class II processing of a viral nuclear antigen after autophagy.Science307(5709) , 593–596 (2005).
  • Chapiro J , ClaverolS, PietteFet al.: Destructive cleavage of antigenic peptides either by the immunoproteasome or by the standard proteasome results in differential antigen presentation.J. Immunol.176(2) , 1053–1061 (2006).
  • Kuhn DJ , HunsuckerSA, ChenQ, VoorheesPM, OrlowskiM, OrlowskiRZ: Targeted inhibition of the immunoproteasome is a potent strategy against models of multiple myeloma that overcomes resistance to conventional drugs and nonspecific proteasome inhibitors.Blood113(19) , 4667–4676 (2009).
  • Nencioni A , GrunebachF, PatroneF, BallestreroA, BrossartP: Proteasome inhibitors: antitumor effects and beyond.Leukemia21(1) , 30–36 (2007).
  • Nakao M , SataM, SaitsuHet al.: CD4+ hepatic cancer-specific cytotoxic T lymphocytes in patients with hepatocellular carcinoma.Cell. Immunol.177(2) , 176–181 (1997).
  • Jerome KR , BarndDL, BendtKMet al.: Cytotoxic T-lymphocytes derived from patients with breast adenocarcinoma recognize an epitope present on the protein core of a mucin molecule preferentially expressed by malignant cells.Cancer Res.51(11) , 2908–2916 (1991).
  • Wright SE , Rewers-FelkinsKA, QuinlinISet al.: MHC-unrestricted lysis of MUC1-expressing cells by human peripheral blood mononuclear cells.Immunol. Invest.37(3) , 215–225 (2008).
  • Magarian-Blander J , CiborowskiP, HsiaS, WatkinsSC, FinnOJ: Intercellular and intracellular events following the MHC-unrestricted TCR recognition of a tumor-specific peptide epitope on the epithelial antigen MUC1.J. Immunol.160(7) , 3111–3120 (1998).
  • Alajez NM , SchmielauJ, AlterMD, CascioM, FinnOJ: Therapeutic potential of a tumor-specific, MHC-unrestricted T-cell receptor expressed on effector cells of the innate and the adaptive immune system through bone marrow transduction and immune reconstitution.Blood105(12) , 4583–4589 (2005).
  • Chen X , GaoW, GambottoA, FinnOJ: Lentiviral vectors encoding human MUC1-specific, MHC-unrestricted single-chain TCR and a fusion suicide gene: potential for universal and safe cancer immunotherapy.Cancer Immunol. Immunother.58(6) , 977–987 (2009).
  • Mbeunkui F , JohannDJ Jr: Cancer and the tumor microenvironment: a review of an essential relationship. Cancer Chemother. Pharmacol.63(4) , 571–582 (2009).
  • Rabinovich GA , GabrilovichD, SotomayorEM: Immunosuppressive strategies that are mediated by tumor cells.Annu. Rev. Immunol.25 , 267–296 (2007).
  • Domschke C , SchuetzF, GeYet al.: Intratumoral cytokines and tumor cell biology determine spontaneous breast cancer-specific immune responses and their correlation to prognosis.Cancer Res.69(21) , 8420–8428 (2009).
  • Wright SE , Rewers-FelkinsKA, QuinlinISet al.: Tumor burden influences cytotoxic T cell development in metastatic breast cancer patients – a Phase I/II study.Immunol. Invest.38(8) , 820–838 (2009).
  • Zhang K , SikutR, HanssonGC: A MUC1 mucin secreted from a colon carcinoma cell line inhibits target cell lysis by natural killer cells.Cell. Immunol.176(2) , 158–165 (1997).
  • Ogata S , MaimonisPJ, ItzkowitzSH: Mucins bearing the cancer-associated sialosyl-Tn antigen mediate inhibition of natural killer cell cytotoxicity.Cancer Res.52(17) , 4741–4746 (1992).
  • Yokoigawa N , TakeuchiN, TodaMet al.: Enhanced production of interleukin 6 in peripheral blood monocytes stimulated with mucins secreted into the bloodstream.Clin. Cancer Res.11(17) , 6127–6132 (2005).
  • Ishida A , OhtaM, TodaMet al.: Mucin-induced apoptosis of monocyte-derived dendritic cells during maturation.Proteomics8(16) , 3342–3349 (2008).
  • Mungul A , CooperL, BrockhausenIet al.: Sialylated core 1 based O- linked glycans enhance the growth rate of mammary carcinoma cells in MUC1 transgenic mice.Int. J. Oncol.25(4) , 937–943 (2004).
  • Rughetti A , PellicciottaI, BiffoniMet al.: Recombinant tumor-associated MUC1 glycoprotein impairs the differentiation and function of dendritic cells.J. Immunol.174(12) , 7764–7772 (2005).
  • Monti P , LeoneBE, ZerbiAet al.: Tumor-derived MUC1 mucins interact with differentiating monocytes and induce IL-10highIL-12low regulatory dendritic cell.J. Immunol.172(12) , 7341–7349 (2004).
  • Uehara F , OhbaN: MUC1 and sialoglycan expression associated with cytotoxic T lymphocyte infiltration in eyelid malignant tumors.Jpn J. Ophthalmol.46(3) , 237–243 (2002).
  • Chen D , KoidoS, LiY, GendlerS, GongJ: T cell suppression as a mechanism for tolerance to MUC1 antigen in MUC1 transgenic mice.Breast Cancer Res. Treat.60(2) , 107–115 (2000).
  • Agrawal B , KrantzMJ, ReddishMA, LongeneckerBM: Cancer-associated MUC1 mucin inhibits human T-cell proliferation, which is reversible by IL-2.Nat. Med.4(1) , 43–49 (1998).
  • Tinder TL , SubramaniDB, BasuGDet al.: MUC1 enhances tumor progression and contributes toward immunosuppression in a mouse model of spontaneous pancreatic adenocarcinoma.J. Immunol.181(5) , 3116–3125 (2008).
  • Ilkovitch D , LopezDM: Urokinase-mediated recruitment of myeloid-derived suppressor cells and their suppressive mechanisms are blocked by MUC1/sec.Blood113(19) , 4729–4739 (2009).
  • Rubinstein DB , KarmelyM, PichinukEet al.: The MUC1 oncoprotein as a functional target: Immunotoxin binding to α/β junction mediates cell killing.Int. J. Cancer124(1) , 46–54 (2009).
  • Mahanta S , FesslerSP, ParkJ, BamdadC: A minimal fragment of MUC1 mediates growth of cancer cells.PLoS One3(4) , E2054 (2008).
  • Hikita ST , KosikKS, CleggDO, BamdadC: MUC1* mediates the growth of human pluripotent stem cells.PLoS One3(10) , E3312 (2008).
  • Bitler BG , MenzlI, HuertaCLet al.: Intracellular MUC1 peptides inhibit cancer progression.Clin. Cancer Res.15(1) , 100–109 (2009).
  • Raina D , AhmadR, JoshiMDet al.: Direct targeting of the mucin 1 oncoprotein blocks survival and tumorigenicity of human breast carcinoma cells.Cancer Res.69(12) , 5133–5141 (2009).
  • Andre F , SchartzNE, ChaputNet al.: Tumor-derived exosomes: a new source of tumor rejection antigens.Vaccine20(Suppl. 4) , A28–A31 (2002).
  • Cho JA , YeoDJ, SonHYet al.: Exosomes: a new delivery system for tumor antigens in cancer immunotherapy.Int. J. Cancer114(4) , 613–622 (2005).
  • Bozzacco L , TrumpfhellerC, HuangYet al.: HIV gag protein is efficiently cross-presented when targeted with an antibody towards the DEC-205 receptor in Flt3 ligand-mobilized murine DC.Eur J. Immunol.40(1) , 36–46 (2009).
  • Nencioni A , BrossartP: Crosspresentation: a matter of pH.Blood112(12) , 4368–4369 (2008).
  • Accapezzato D , ViscoV, FrancavillaVet al.: Chloroquine enhances human CD8+ T cell responses against soluble antigens in vivo.J. Exp. Med.202(6) , 817–828 (2005).
  • Ding C , WangL, MarroquinJ, YanJ: Targeting of antigens to B cells augments antigen-specific T-cell responses and breaks immune tolerance to tumor-associated antigen MUC1.Blood112(7) , 2817–2825 (2008).
  • Zocchi MR , PoggiA: Role of γδ T lymphocytes in tumor defense.Front. Biosci.9 , 2588–2604 (2004).
  • Garnett CT , PalenaC, ChakrabortyM, TsangKY, SchlomJ, HodgeJW: Sublethal irradiation of human tumor cells modulates phenotype resulting in enhanced killing by cytotoxic T lymphocytes.Cancer Res.64(21) , 7985–7994 (2004).
  • Gelbard A , GarnettCT, AbramsSIet al.: Combination chemotherapy and radiation of human squamous cell carcinoma of the head and neck augments CTL-mediated lysis.Clin. Cancer Res.12(6) , 1897–1905 (2006).
  • Andarawewa KL , PaupertJ, PalA, Barcellos-HoffMH: New rationales for using TGFβ inhibitors in radiotherapy.Int. J. Radiat. Biol.83(11–12) , 803–811 (2007).
  • Zitvogel L , ApetohL, GhiringhelliF, KroemerG: Immunological aspects of cancer chemotherapy.Nat. Rev. Immunol.8(1) , 59–73 (2008).
  • Mukherjee P , BasuGD, TinderTLet al.: Progression of pancreatic adenocarcinoma is significantly impeded with a combination of vaccine and COX-2 inhibition.J. Immunol.182(1) , 216–224 (2009).
  • Moreno M , MolBM, Von Mensdorff-Pouilly S et al.: Toll-like receptor agonists and invariant natural killer T-cells enhance antibody-dependent cell-mediated cytotoxicity (ADCC). Cancer Lett.272(1) , 70–76 (2008).
  • Yuan S , ShiC, HanW, LingR, LiN, WangT: Effective anti-tumor responses induced by recombinant bacillus Calmette–Guerin vaccines based on different tandem repeats of MUC1 and GM-CSF.Eur. J. Cancer Prev.18(5) , 416–423 (2009).
  • Engelmann K , ShenH, FinnOJ: MCF7 side population cells with characteristics of cancer stem/progenitor cells express the tumor antigen MUC1.Cancer Res.68(7) , 2419–2426 (2008).

▪ Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.