206
Views
1
CrossRef citations to date
0
Altmetric
Review

Immunotherapy of Chronic Myeloid Leukemia: Present State and Future Prospects

Pages 227-241 | Published online: 05 Mar 2010

Bibliography

  • Buchdunger E , CioffiCL, LawNet al.: Abl protein-tyrosine kinase inhibitor ST171 inhibits in vitro signal transduction mediated by c-kit and platelet-derived growth factor receptors.J. Pharmacol. Exp. Ther.295 , 137–145 (2000).
  • Druker BJ , GuilhotF, O‘BrienSGet al.: Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia.N. Engl. J. Med.355 , 2408–2417 (2006).
  • Druker BJ , SawyersC, KantarjianHet al.: Activity of a specific inhibitor of the BCR–ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblasti leukemia with the Philadelphia chromosome.N. Engl. J. Med.344 , 1038–1042 (2001).
  • le Coutre P , TassiE, Varella-GarciaMet al.: Induction of resistence to the Abelson inhibitor ST1571 in human leukemic cells through gene amplification.Blood95 , 1758–1766 (2000).
  • Hochhaus A , KreilS, CorbinASet al.: Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy.Leukemia16 , 2190–2196 (2002).
  • Azam M , DaleyGQ: Anticipating clinical resistance to target-directed agents: the BCR–ABL paradigm.Mol. Diagn. Ther.10 , 67–76 (2006).
  • Shah NP , TranNP, LeeFYet al.: Overriding imatinib resistence with a novel ABL kinase inhibitor.Science305 , 399–401 (2004).
  • Weisberg E , ManleyPW, BreitenstreinWet al.: Characterization of AMN107, a selective inhibitor of native and mutant Bcr–Abl.Cancer Cell7 , 129–141 (2005).
  • Seggewiss R , PriceDA, PurbhooMA: Immunomodulatory effects of imatinib and second-generation tyrosine kinase inhibitors on T cells and dendritic cells: an update.Cytotherapy10 , 633–641 (2008).
  • Berke Z , AndersenMH, PedersenM, FuggerL, ZeuthenJ, HaurumJS: Peptides spanning the junctional region of both the bcr–abl fusion proteins bind common HLA class I molecules.Leukemia14 , 419–426 (2000).
  • Pittet MJ : Behaviour of immune players in the tumor microienvirnoment.Curr. Opin. Oncol.21 , 2153–2159 (2009).
  • Stewart TJ , AbramsSI: How tumours escape mass destruction.Oncogene27 , 5894–5903 (2008).
  • Bronte V , MocellinS: Suppressive influences in the immune response to cancer.J. Immunother.32 , 1–11 (2009).
  • Biernaux C , LoosM, SelsA, HuezG, StryckmansP: Detection of major bcr–abl gene expression at a very low level in blood cells of some healthy individuals.Blood86 , 3118–3122 (1995).
  • Bose S , DeiningerM, Gora-TyborJ, GoldmanJM, MeloJV: The presence of typical and atypical BCR–ABL fusion genes in leukocytes of normal individuals: biologic significance and implication for the assessment of minimal residual disease.Blood92 , 3362–3367 (1998).
  • Posthuma EF , FalkenburgJH, ApperleyJFet al.: HLA-B8 and HLA-A3 coexpressed with HLA B8 are associated with a reduced risk of the development of chronic myeloid leukemia. The Chronic Leukemia Working Party of the EBHT.Blood93 , 3863–3865 (1999).
  • Khosravi F , AmirzargarA, SarafnejadA et al: HLA class II allele and haplotype frequencies in Iranian patients with leukemia. Iran J. Allergy Asthma Immunol.6 , 137–142 (2007).
  • Naugler C , LiwskiR: HLA risk markers for chronic myelogenous leukemia in eastern Canada.Leuk. Lymphoma50 , 254–259 (2009).
  • Chakrabarti D , HultgrenB, StewartTA: IFN-α induces autoimmune T cells through the induction of intracellular adhesion molecule-1 and B7.2.J. Immunol.157 , 522–528 (1996).
  • Molldrem JL , LeePP, WangC et al: Evidence that specific T lymphocytes may participate in the elimination of chronic myelogenous leukemia. Nat. Med.6 , 1018–1023 (2000).
  • Burchert A , WolflS, SchmidtMet al.: Interferon-α but not the ABL-kinase inhibitor imatinib (STI571), induces expression of myeloblastin and specific T-cell response in chronic myeloid leukemia.Blood101 , 259–264 (2003).
  • Gabriele L , BorghiP, RozeraCet al.: IFN-α promotes the rapid differentiation of monocytes from patients with chronic myeloid leukemia into activated dendritic cells tuned to undergo full maturation after LPS treatment.Blood103 , 980–987 (2004).
  • Collins RH Jr, Spilberg O, Drobyski WR et al.: Donor leukocyte infusions in 140 patients with relapsed malignancy after allogeneic bone marrow transplantation. J. Clin. Oncol.15 , 433–434 (1997).
  • Norde WJ , OveresIM, MaasFet al.: Myeloid leukemic progenitor cells can be specifically targeted by minor histocompatibility antigen LRH-1-reactive cytotoxic T cells.Blood113 , 2312–2323 (2009).
  • Bocchia M , WentworthPA, SouthwoodSet al.: Specific binding of leukemia oncogene fusion protein peptides to HLA class I molecules.Blood85 , 2680–2684 (1995)
  • Bocchia M , KorontsvitT, XuQ et al: Specific human cellular immunity to bcr-abl oncogene derived peptides. Blood87 , 3587–3592 (1996).
  • ten Bosch GJ , JoostenAM, KesslerJH, MeliefCJ, LeeksmaOC: Recognition of BCR–ABL positive leukemic blasts by human CD4+ T cells elicited by primary in vitro immunization with a BCR–ABL breakpoint peptides.Blood88 , 3522–3527 (1996)
  • ten Bosch GJ , ToornvlietAC, FriedeT, MeliefCJ, LeeksmaOC: Recognition of peptides corresponding to the joining region of p210BCR–ABL protein by human T cells.Leukemia9 , 1344–1348 (1995).
  • Pawelec G , MaxH, HalderTet al.: BCR/ABL leukemia oncogene fusion peptides selectively bind to certain HLA-DR alleles and can be recognized by T cells found in low frequency in the repertoire of normal donors.Blood88 , 2118–2124 (1996).
  • Osman Y , TakahashiM, ZhengZet al.: Generation of bcr-abl-specific cytotoxic T-lymphocytes by using dendritic cells pulsed with bcr-abl (b3a2) peptide: its application for donor leukocyte transfusions in marrow grafted CML patients.Leukemia13 , 166–174 (1999).
  • Pinilla-Ibarz J , CathcartK, ScheinbergDA: CML vaccines as a paradigm of the specific immunotherapy of cancer.Blood Rev.14 , 11–20 (2000).
  • Yotnda P , FiratP, Garcia-PonsFet al.: Cytotoxic T cells response against the chimeric p210 BCR–ABL protein in patients with chronic myelogenous leukaemia.J. Clin. Invest.101 , 2290–2296, (1998).
  • Clark RE , DodiIA, HillSCet al.: Direkt evidence that leukemic cells present HLA-associated immunogenic peptides derived from BCR–ABL b3a2 fusion protein.Blood98 , 2887–2893 (2001).
  • Wagner WM , OuyangQ, PawelecG: The abl-bcr gene product as a novel leukemia specific antigen: peptides spanning the fusion region of abl/bcr can be recognized by both CD4+ and CD8+ T lymphocytes.Cancer Immunol. Immunother.52 , 89–96 (2003).
  • Gannagé M , AbelM, MichalletASet al.: Ex vivo characterization of multiepitopic tumor-specific CD8 T cells in patients with chronic myeloid leukemia: implications for vaccine development and adoptive cellular immunotherapy.J. Immunol.174 , 8210–8218 (2005).
  • El-Shami K , SmithBD: Immunotherapy for myeloid leukemias: current status and future directions.Leukemia22 , 1658–1664 (2008).
  • Grünebach F , MirakajV, MirakajV, MillerMR, BrümmendorfT, BrossartP: BCR–ABL is not an immunodominant in chronic myeloid leukemia.Cancer Res.66 , 5892–5900 (2006)
  • Brauer KM , WerthD, von Schwarzenberg K et al.: BCR–ABL activity is critical for the immunogenicity of chronic myelogenous leukemia cells. Cancer Res.67 , 5489–5497 (2007)
  • Scheich F , DuysterJ, PeschelC, BernhardtH: The immunogenicity of Bcr–Abl-expressing dendritic cells is dependent on the Bcr–Abl kinase activity and dominated by Bcr–Abl-regulated antigens.Blood110 , 2556–2560 (2007).
  • Witko-Sarsat V , CanteloupS, DurantSet al.: Cleavage of p21waf1 by proteinase 3, a myeloid-specific serine protease, potentiates cell proliferation.J. Biol. Chem.277 , 47338–47347 (2002).
  • El-Ouriaghli F , SloandE, MainwaringL, FujiwaraH, KeyvanfarK, MelenhorstJJ: Clonal dominance of chronic myelogenous leukaemia is associated with diminished sensitivity to the antiproliferative effects of neutrophil elastaseBlood15 , 3786–3792 (2003).
  • Wilson TJ , NannuruKC, SinghRK: Cathepsin G recruits osteoclast precursors via proteolytic activation of protease-activated receptor-1.Cancer Res.69 , 3186–3195 (2009).
  • Reed JC , PelecchiaM: Apoptosis-based therapies for hematologic malignancies.Blood106 , 408–418 (2005).
  • Lam JS , PantucAJ, BelldegrunAS, FiglinRA: G 250: a carbonic anhydrase IX monoclonal antibody.Curr. Oncol. Rep.7 , 109–115 (2005).
  • Beatty GL , VonderheideRH: Telomerase as a universal tumor antigen for cancer vaccines.Expert Rev. Vaccines7 , 881–887 (2008).
  • Resto VA , CaballeroOL, ButaMRet al.: A putative oncogenic role for MPP11 in head and neck squamous cell cancer.Cancer Res.60 , 5529–5535 (2000).
  • Scanlan MJ , SimpsonJG, OldLJ: The cancer/testis genes: review, standardization and commentary.Cancer Immunol.4 , 1–13 (2004).
  • Oehler VG , GuthrieKA, CummingsCLet al.: The preferentially expressed antigen in melanoma (PRAME) inhibits myeloid differentiation in normal hematotopoietic and leukemic progenitor cells.Blood114 , 3299–3308 (2009).
  • van Baren N , ChambostH, FerrantAet al.: PRAME, a gene encoding an antigen recognized in human melanoma by cytolytic T cells, is expressed in acute leukaemia cells.Br. J. Haematol.102 , 1376–1379 (1998).
  • Reiter R , GaisP, JüttingUet al.: Aurora-kinase A messenger RNA overexpression is correlated with tumor progression and shortened survival in head and neck squamous cell carcinoma.Clin. Cancer Res.12 , 5136–5141 (2006).
  • Yang XF , WuCJ, ChenLet al.: CML 28 is broadly immunogenic antigen, which is expressed in tumor cells.Cancer Res.62 , 5517–5522 (2002).
  • Wang Q , LiM, WangYJ et al: RNA interference targeting CML66, a novel tumor antigen, inhibits proliferation, invasion and metastasis of Hela cells. Cancer Lett.269 , 127–138 (2008).
  • Schmidt SM , SchagK, MullerMR et al: Induction of adipophilin-specific cytotoxic lymphocytes using a novel HLA-A2-binding peptide that mediates tumor cell lysis. Cancer Res.64 , 1164–1170 (2004).
  • Shin S , SungBJ, ChoYS et al: An anti-apoptotic protein human survivin is direct inhibitor of caspase-3 and -7. Biochemistry40 , 1117–1123 (2001).
  • Carter BZ , MakDH, SchoberWD et al: Regulation of survivin expression through Bcr–Abl/MARK cascade: targeting survivin overcomes imatinib resistence and increases imatinib sensitivity in imatinib-responsive CML cells. Blood107 , 1555–1563 (2006).
  • Postel EH , BerberichSJ, RooneyJW, KaetzelDM: Human NM23-H2 nucleoside diphosphate kinase regulates gene expression through DNA binding to nuclease-hypersensitive transcriptional elements.J. Bioenerg. Biomembr.32 , 277–284 (2000).
  • Greiner J , SchmittM: Leukemia-associated antigens as target structures for a specific immunotherapy in chronic myeloid leukemia.Eur. J. Haematol.80 , 461–468 (2008).
  • Mumprecht S , SchurchC, SchwallerJ, SolenthalerM, OchsenbeinAF: Programmed death 1 signaling on chronic myeloid leukemia-specific T cells results in T cell exhaustion and disease progression.Blood114 , 1528–1536 (2009).
  • Papallardo F , PennisiM, CastiglioneF, MottaS: Vaccine protocols optimization: in silico experiments.Biotechnol. Adv.28 , 82–93 (2100).
  • Gowthaman U , AgrewalaJN: In silico methods for predicting the cell epitopes: Dr Jekyll or Mr Hyde?Expert Rev. Protomics6 , 527–537 (2010).
  • He L , FengH, RaymondA et al: Dendritic-cell-peptide immunization provides immunoprotection against bcr-abl-positive leukemia in mice. Cancer Immunol. Immunother.50 , 31–40 (2001).
  • Kislin KL , MarronMT, LiG, GranerMW, KatsanisE: Chaperone-rich cell lysate embedded with BCR–ABL peptide demonstrates enhanced anti-tumor activity against a murine BCR–ABL positive leukemia.FASEB J.21 , 2173–2184 (2007).
  • Krause DS , Van Etten RA: Adoptive immunotherapy of BCR–ABL- induced chronic myeloid leukemia-like myeloproliferative disease in a murine model Blood, 104 , 4236–4244 (2004).
  • Ling X , WangY, DietrichMF, AndreeffM, ArlinghausRB: Vaccination with leukemia cells expressing cell-surface-associated GM-CSF blocks leukemia induction in immunocompetent mice.Oncogene25 , 4483–4490 (2006).
  • Deeb D , GaoX, JiangH, DivineG, DulchavskySA, GautamBC: Vaccination with leukemia-loaded dendritic cells eradicates residual diseases and prevent relapse.J. Exp. Ther. Oncol.5 , 183–193 (2006).
  • McLaughlin J , ChianeseE, WitteON: In vitro transformation of immature haematopoietic cells by the P210 BCR/ABL oncogene product of the Philadelphia chromosome.Proc. Natl Acad. Sci USA84 , 6558–6562 (1987).
  • Daley GQ , BaltimoreD: Transformation of an interleukin 3-dependent hematopoietic cell line by the chronic myelogenous leukaemia-specific P210bcr/abl protein.Proc. Natl. Acd. Sci. USA85 , 9312–9316 (1988).
  • Sobotková E , LudvíkováV, PetráčkováMet al.: Characteristics of two mouse bcr-abl-transformed cell lines I. General properties of the cells.Folia Biol. (Praha)51 , 12–18 (2005).
  • Jelínek F , SobotkováE, VonkaV: Characteristics of two mouse bcr-abl-transformed cell lines. II. Pathological lesions induced in mice.Folia Biol. (Praha)51 , 93–102 (2005).
  • Lucanský V , SobotkováE, TachezyR, DuškováM, VonkaV: DNA vaccination against bcr-abl- transfornmed cells in mice.Int. J. Oncol.35 , 941–951 (2009).
  • Hrušková V , MorávkováA, BabiarovaK et al: Bcr-Abl fusion sequences do not induce immune responses in mice when administered in mouse polyomavirus based virus-like particles. Int. J. Oncol.35 , 1247–1256 (2009).
  • Petráčková M , SobotkováE, DuškováM, JinochP, VonkaV: Isolation and properties of gene-modified mouse bcr–abl-transformed cells expressing various immunostimulatory factors.Neoplasma56 , 194–201 (2009).
  • Sobotková E , DuškováM, TachezyR, PetrackovaM, VonkaV: Combined chemo- and immunotherapy of tumors induced in mice by bcr-abl-transformed cells.Oncol. Rep.21 , 793–799 (2009).
  • Orsini E , CalabreseE, MaggioRet al.: Circulating myeloid dendritic cells directly isolated from patients with chronic myelogenous leukemia are functional and carry the bcr–abl translocation.Leuk. Res.30 , 785–794 (2006).
  • Mumprecht S , ClausC, SchürchCH, PavelicV, MatterMS, OchsenbeinAF: Defective homing and impaired induction of cytotoxic T cells by BCR/ABL-expressing dendritic cells.Blood113 , 4681–4689 (2009).
  • Humlová Z , KlamováH, JanatkováIet al.: Immunological profiles of patients with chronic myeloid leukaemia I. State before the start of treatment.Folia Biol. Prague)52 , 47–58 (2006).
  • Reuschenbach M , von Knebel-Doeberitz M, Wentzensen N: A systemic review of humoral immune responses against tumor antigens. Cancer Immunol. Immunother.58 , 1535–1544 (2009).
  • De Gruijl TD , van der Eertwegh AJ, Pinedo HM, Scheper RJ: Whole-cell cancer vaccination: from autologous to allogenic tumor- and dendritic cell-based vaccines. Cancer Immunol. Immunother.57 , 1569–1577 (2008).
  • Michor F , HughesTP, IwasaYet al.: Dynamics of chronic myeloid leukaemiaNature435 , 1267–1270 (2005).
  • Abbott LH , MichorF: Mathematical models of targeted cancer therapy.Br. J. Cancer95 , 1136–1141 (2006).
  • Graham SM , JorgensenHG, AllanEet al.: Primitive quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia cells are insensitive to STI571 in vitro.Blood99 , 319–325 (2002).
  • Roeder I , HornM, GlaucheI, HochausA, MuellerMC, LoefflerM: Dynamic modeling of imatinib-treated chronic myeloid leukemia: functional insights and clinical implicationsNat. Med.12 , 1181–1184 (2006).
  • Chávez-Gonzáles A , Ayala-SánchezM, Sánchez-ValleEet al.: Functional integrity in vitro of hematopoietic progenitor cells from patients with chronic myeloid leukemia that have achieved haematological remission after different therapeutic procedures.Leuk. Res.30 , 286–295(2006).
  • Glauche I , HornM, RoederI: Leukemia stem cells: hit or miss?Br. J. Cancer96 , 677–678 (2007).
  • Komarova NL , WodarzD: Drug resistance in cancer. Principles of emergence and prevention.Proc. Natl Acad. Sci. USA102 , 9714–9719 (2005).
  • Guo XY , CuillerotT, WangTet al.: Peptide containing the BCR oligomerization domain (AA 1–160) reverses the transformed phenotype of p210bcr–abl positive 32D myeloid leukemia cells.Oncogene17 , 825–833 (1998).
  • Tolcher AW , MitaA, LewisLDet al.: Phase I and pharmacokinetic study of YM155, a small-molecule inhibitor of survivin.J. Clin. Oncol.26 , 5198–5203 (2008).
  • Tolcher A : Targeting Bcl-2 protein expression in solid tumors and haematological malignancies with antisense oligonucleotides.Clin. Adv. Hematol. Oncol.3 , 635–642 (2005).
  • Jayanthan A , HowardSC, TrippettTet al.: Targeting the Bcl-2 family of proteins in Hodgkin lymphoma: in vitro cytotoxicity, target modulation and drug combination studies of the Bcl-2 homology 3 mimetic ABT-737.Leuk. Lymphoma50 , 1069–1072 (2009).
  • Ochi T , FujiwaraH, SuemoriKet al.: Aurora-A kinase: a novel target of cellular immunotherapy for leukaemia.Blood113 , 66–74 (2008).
  • Chen CI , MaeckerHT, LeePP: Development and dynamics of robust T cell response to CML under imatinib treatment.Blood111 , 5342–5349 (2008).
  • Kim PS , LeePP, LevyD: Dynamics and potential impact of the immune response to chronic myelogenous leukemia.PLoS Comput. Biol.4 , E1000095 (2008).
  • Pinilla-Ibarz J , CathcartK, KorontsvitTet al.: Vaccination of patients with chronic myelogenous leukemia with bcr-abl oncogene breakpoint fusion peptides generates specific immune responses.Blood95 , 1781–1787 (2000).
  • Takahashi T , TanakaY, NiedaMet al.: Dendritic cell vaccination for patients with chronic myelogenous leukemia.Leuk. Res.27 , 795–802 (2003).
  • Ossenkoppele GJ , StamAG, WestersTMet al.: Vaccination of chronic myeloid leukemia patients with autologous in vitro cultured leukemia dendritic cells.Leukemia17 , 1424–1426 (2003).
  • Heslop HE , StevensonFK, MolldremJJ: Immunotherapy of hematologic malignancy.Hematology Am. Soc. Hematol. Educ. Program331–349 (2003).
  • Cathcart K , Pinilla-IbarzJ, KorontsvitTet al.: A multivalent bcr-abl fusion peptide vaccination trial in patients with chronic myeloid leukemia.Blood103 , 1037–1042 (2004).
  • Bocchia M , GentiliS, AbruzzeseEet al.: Effect of a p210 multipeptide vaccine associated with imatinib or interferon in patients with chronic myeloid leukaemia and persistent residual disease: a multicentre observational trial.Lancet365 , 657–662 (2005).
  • Li Z , QiaoY, LiuBet al.: Combination of imatinib mesylate with autologous leukocyte-derived heat shock protein and chronic myelogenous leukemia.Clin. Cancer Res.11 , 4460–4468 (2005).
  • Rojas JM , KnightK, WangL, ClarkRE: Clinical evaluation of BCR–ABL peptide immunisation in chronic myeloid leukemia: results of the EPIC study.Leukemia21 , 2287–2295 (2007).
  • Westermann J , KoopJ, van Lessen A et al.: Vaccination with autologous non-irradiated dendritic cells in patients with bcr-abl+ chronic myeloid leukemia. Br. J. Hematol.137 , 297–306 (2007).
  • Rezvani K , YongAS, MielkeS et al: Leukemia-associated antigen-specific T cell responses following combined PR1 and WT1 peptide vaccination in patients with myeloid malignancies. Blood111 , 236–242 (2008).
  • Jain N , ReubenJM, KantarjianHet al.: Synthetic tumor-specific breakpoint vaccine in patients with chronic myeloid leukaemia and minimal residual disease: a Phase 2 trial.Cancer115 , 3924–3934 (2009).
  • Maslak PG , DaoT, GomezMet al.: A pilot vaccination trial of synthetic analog peptides derived from the BCR–ABL breakpoints in CML patients with minimal disease.Leukemia22 , 1613–1616 (2008).
  • Bellantuono I , GaoL, ParryS et al: Two distinct HLA-A0201-presented epitopes of the Wilms tumor antigen 1 can function as targets for leukemia-reactive CTL. Blood100 , 3835–3837 (2002).
  • Millerem JJ , LeePP, WangC, ChamplinRE, DavisMM: A Pr1- human antigen-A2 tetramer can be used to isolate low-frequency cytotoxic T lymphocytes from healthy donors that selectively lyse chronic myelologenous leukemia.Cancer Res.59 , 2675–2681 (1999).
  • Schmitt M , LiL, GiannopoulosKet al.: Chronic myeloid leukemia cells express tumor-associated antigens eliciting specific CD8+ T-cell responses and are lacking co-stimulatory molecules.Exp. Hematol.34 , 1709–1719 (2006).
  • Yong AS , KeyvanfarK, EniafeRet al.: Hematopoietic stem cells and progenitors of chronic myeloid leukemia express leukaemia-associated antigens: implications for the graft-versus-leukemia effects and peptide vaccine based immunotherapy.Leukemia22 , 1721–1727 (2008).
  • Fujiwara H , MelenhortsJJ, OuriaghliFet al.: In vitro induction of myeloid leukaemia-specific CD4 and CD8 T cells by CD40 ligand-activated B cells gene modified to express primary granule proteins.Clin. Cancer Res.11 , 4495–4503 (2005).
  • Adams SP , SahotaSS, MilovicA et al: Frequent expression of HAGE in presentation chronic myeloid leukemias. Leukemia16 , 2238–2242 (2002).
  • Riley CL , MathieuMG, ClarkRE, McArdleSE, ReesR: Tumour antigen-targeted immunotherapy for chronic myeloid leukemia: is it still viable?Cancer Immunol. Immunother.58 , 1489–1499 (2009).
  • Rezvani K , YongAS, TawabAet al.: Ex vivo characterization of polyclonal memory CD8+ T cell responses to PRAME- specific peptides in patients with acute lymphoblastic leukemia and acute and chronic myeloid leukemia.Blood113 , 2245–2255 (2009).
  • Kessler JH , BeekmanNJ, Bres-VloemansSAet al.: Efficient identification of novel HLA-A(*)0201-presented cytotoxic T lymphocyte epitopes in the widely expressed tumor antigen PRAME by proteasome-mediated digestion analysis.J. Exp. Med.193 , 73–88 (2001).
  • Quintarelli C , DottiG, DeAngelisBet al.: Cytoxic T lymphocytes directed to the perefertially expressed antigen of melanoma (PRAME) target chronic myelod leukemia.Blood112 , 1876–1885 (2008).
  • Ochi T , FujiwaraH, SuemoriKet al.: Aurora-A kinase: a novel target of cellular immunotherapy for leukemia.Blood113 , 66–74 (2009).
  • Han JF , ZhaoTT, LiuHLet al.: Identification of a new HLA-A 0201-restricted cytotoxic T. lymphocyte epitope from CLM28.Cancer Immunol. Immunother.55 , 1575–1583 (2006)
  • Suemori K , FujiwaraH, OchiTet al.: Identification of an epitope derived from CML 66 a novel tumor-associated antigen expressed broadly in human leukaemia, recognized by human leukocyte antigen-A*2402-restricted cytotoxic T lymhocytes.Cancer Sci.99 , 1414–1419 (2008).
  • Chen J , SchmittA, BunjesD et al: The receptor for hyaluronic acid-mediated motility induces specific CD8+ T cell response in healthy donors and patients with chronic myeloid leukemia after allogenic stem cell transplantation. Int. J. Oncol.30 , 1119–1127 (2007).
  • Hernández-Boluda JC , BellosilloB, VelaMC, ColomerD, Alvarez-LarránA, CervantesF: Survivin expression in the progression of chronic myeloid leukemia: a sequential study in 16 patients.Leuk. Lymphoma46 , 717–722(2005).
  • Zeis M , SiegelS, WagnerAet al.: Generation of cytotoxic responses in mice and human individuals against hematological malignancies using survivin-RNA-transfected dendritic cells.J. Immunol.170 , 5391–5397 (2003).
  • Tschiedel S , GentiliniC, LangeTet al.: Indentification of NM23-H2 as a tumour-associated antigen in chronic myeloid leukaemia.Leukemia22 , 1542–1550 (2008).
  • Andersen MH , SvaneIM, KvistborgPet al.: Immunogenicity of Bcl-2 in patients with cancer.Blood105 , 728–734 (2004).
  • Andersen MH , RekerS, KvistborgP, BeckerJC, thor Straten P: Spontaneous immunity against Bcl-xL in cancer patients. J. Immunol.175 , 2709–2714 (2005).
  • Greiner J , SchmittM, LiLet al.: Expression of tumor-associated antigens in acute myeloid leukemia: implications for specific immunotherapeutic approaches.Blood108 , 4109–4117 (2006).
  • Schmidt SM , SchagK, MüllerMRet al.: Induction of adipophillin-specific cytotoxic T lymphocytes using a novel HLA-A2-binding peptide that mediates tumor cell lysis.Cancer Res.64 , 1164–1170 (2004).
  • Aqui NA , VonderheideRH: Survinin as a universal tumor antigen for novel cancer immunotherapy.Cancer Biol. Ther.1888–1889 (2008).
  • Smith BD , KasamonYL, KowalskiJ, GockeC, MurphyK, MillerCB: K562/GM-CSF immunotherapy reduces tumor burden in chronic myeloid leukemia patients with residual disese on imatinib mesylate.Clin. Cancer Res.16 , 338–347 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.