101
Views
0
CrossRef citations to date
0
Altmetric
Review

Killer Artificial Antigen-Presenting Cells: The Synthetic Embodiment of a ‘Guided Missile‘

, , , &
Pages 539-550 | Published online: 16 Jul 2010

Bibliography

  • Euvrard S , KanitakisJ, ClaudyA: Skin cancers after organ transplantation.N. Engl. J. Med.348(17) , 1681–1691 (2003).
  • Tanaka Y : B cell targeting therapy using the anti-CD20 antibody in autoimmune diseases.Yakugaku Zasshi129(6) , 675–679 (2009).
  • Lawton JA , GhoshP: Novel therapeutic strategies based on Toll-like receptor signaling.Curr. Opin. Chem. Biol.7(4) , 446–451 (2003).
  • Polman CH , O‘ConnorPW, HavrdovaEet al.: A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis.N. Engl. J. Med.354(9) , 899–910 (2006).
  • Coles AJ , CompstonDA, SelmajKWet al.: Alemtuzumab vs interferon β-1a in early multiple sclerosis.N. Engl. J. Med.359(17) , 1786–1801 (2008).
  • Kremer JM , DougadosM, EmeryPet al.: Treatment of rheumatoid arthritis with the selective costimulation modulator abatacept: twelve-month results of a Phase IIb, double-blind, randomized, placebo-controlled trial.Arthritis Rheum.52(8) , 2263–2271 (2005).
  • Fink PJ , ShimonkevitzRP, BevanMJ: Veto cells.Annu. Rev. Immunol.6 , 115–137 (1988).
  • Tykocinski ML , KaplanDR, MedofME: Antigen-presenting cell engineering. The molecular toolbox.Am. J. Pathol.148(1) , 1–16 (1996).
  • Lu L , LeeWC, TakayamaTet al.: Genetic engineering of dendritic cells to express immunosuppressive molecules (viral IL-10, TGF-β, and CTLA4IG).J. Leukoc. Biol.66(2) , 293–296 (1999).
  • Hackstein H , MorelliAE, ThomsonAW: Designer dendritic cells for tolerance induction: guided not misguided missiles.Trends Immunol.22(8) , 437–442 (2001).
  • Kosiewicz MM , KrishnanA, WorthingtonMT, MatrianoJA, RossWG: B cells engineered to express Fas ligand suppress pre-sensitized antigen-specific T cell responses in vivo.Eur. J. Immunol.32(6) , 1679–1687 (2002).
  • Zhang HG , SuX, LiuDet al.: Induction of specific T cell tolerance by Fas ligand-expressing antigen-presenting cells.J. Immunol.162(3) , 1423–1430 (1999).
  • Buonocore S , PaulartF, Le Moine A et al.: Dendritic cells overexpressing CD95 (Fas) ligand elicit vigorous allospecific T-cell responses in vivo. Blood101(4) , 1469–1476 (2003).
  • Kim SH , KimS, OliginoTJ, RobbinsPD: Effective treatment of established mouse collagen-induced arthritis by systemic administration of dendritic cells genetically modified to express FasL.Mol. Ther.6(5) , 584–590 (2002).
  • Walczak H , KrammerPH: The CD95 (Apo-1/Fas) and the TRAIL (Apo-2L) apoptosis systems.Exp. Cell. Res.256(1) , 58–66 (2000).
  • Min WP , GorczynskiR, HuangXYet al.: Dendritic cells genetically engineered to express Fas ligand induce donor-specific hyporesponsiveness and prolong allograft survival.J. Immunol.164(1) , 161–167 (2000).
  • Kusuhara M , MatsueK, EdelbaumD, LoftusJ, TakashimaA, MatsueH: Killing of naive T cells by CD95L-transfected dendritic cells (DC): in vivo study using killer DC–DC hybrids and CD4+ T cells from DO11.10 mice.Eur. J. Immunol.32(4) , 1035–1043 (2002).
  • Matsue H , MatsueK, KusuharaMet al.: Immunosuppressive properties of CD95L-transduced “killer” hybrids created by fusing donor- and recipient-derived dendritic cells.Blood98(12) , 3465–3472 (2001).
  • Chuang YH , SuenJL, ChiangBL: Fas-ligand-expressing adenovirus-transfected dendritic cells decrease allergen-specific T cells and airway inflammation in a murine model of asthma.J. Mol. Med.84(7) , 595–603 (2006).
  • Matsue H , MatsueK, WaltersM, OkumuraK, YagitaH, TakashimaA: Induction of antigen-specific immunosuppression by CD95L cDNA-transfected ‘killer‘ dendritic cells.Nat. Med.5(8) , 930–937 (1999).
  • Wolfe T , AssemanC, HughesA, MatsueH, TakashimaA, Von Herrath MG: Reduction of antiviral CD8 lymphocytes in vivo with dendritic cells expressing Fas ligand-increased survival of viral (lymphocytic choriomeningitis virus) central nervous system infection. J. Immunol.169(9) , 4867–4872 (2002).
  • Wu B , WuJM, MiagkovA, AdamsRN, LevitskyHI, DrachmanDB: Specific immunotherapy by genetically engineered APCs: the ‘guided missile‘ strategy.J. Immunol.166(7) , 4773–4779 (2001).
  • Zhang HG , FleckM, KernERet al.: Antigen presenting cells expressing Fas ligand down-modulate chronic inflammatory disease in Fas ligand-deficient mice.J. Clin. Invest.105(6) , 813–821 (2000).
  • Wu JM , WuB, MiagkovA, AdamsRN, DrachmanDB: Specific immunotherapy of experimental myasthenia gravis in vitro: the “guided missile” strategy.Cell. Immunol.208(2) , 137–147 (2001).
  • Hoves S , KrauseSW, HalbritterDet al.: Mature but not immature Fas ligand (CD95L)-transduced human monocyte-derived dendritic cells are protected from Fas-mediated apoptosis and can be used as killer APC.J. Immunol.170(11) , 5406–5413 (2003).
  • Hoves S , KrauseSW, HerfarthHet al.: Elimination of activated but not resting primary human CD4+ and CD8+ T cells by Fas ligand (FasL/CD95L)-expressing killer-dendritic cells.Immunobiology208(5) , 463–475 (2004).
  • Dulat HJ , Von Grumbkow C, Baars W, Schröder N, Wonigeit K, Schwinzer R: Down-regulation of human alloimmune responses by genetically engineered expression of CD95 ligand on stimulatory and target cells. Eur. J. Immunol.31(7) , 2217–2226 (2001).
  • Strauss G , OsenW, KnapeI, JacobsenEM, MullerSM, DebatinKM: Membrane-bound CD95 ligand expressed on human antigen-presenting cells prevents alloantigen-specific T cell response without impairment of viral and third-party T cell immunity.Cell Death. Differ.14(3) , 480–488 (2006).
  • Georgantas RW III, Leong KW, August JT: Antigen-specific induction of peripheral T cell tolerance in vivo by codelivery of DNA vectors encoding antigen and Fas ligand. Hum. Gene Ther.11(6) , 851–858 (2000).
  • Whartenby KA , StraleyEE, KimHet al.: Transduction of donor hematopoietic stem-progenitor cells with Fas ligand enhanced short-term engraftment in a murine model of allogeneic bone marrow transplantation.Blood100(9) , 3147–3154 (2002).
  • Elhalel MD , HuangJH, SchmidtW, RachmilewitzJ, TykocinskiML: CTLA-4. FasL induces alloantigen-specific hyporesponsiveness.J. Immunol.170(12) , 5842–5850 (2003).
  • Yolcu ES , AskenasyN, SinghNP, CherradiSE, ShirwanH: Cell membrane modification for rapid display of proteins as a novel means of immunomodulation: FasL-decorated cells prevent islet graft rejection.Immunity17(6) , 795–808 (2002).
  • Yagita H , SeinoK, KayagakiN, OkumuraK: CD95 ligand in graft rejection.Nature379(6567) , 682 (1996).
  • Lau HT , YuM, FontanaA, StoeckertCJ Jr: Prevention of islet allograft rejection with engineered myoblasts expressing FasL in mice. Science273(5271) , 109–112 (1996).
  • Zhang J , RoschkeV, BakerKPet al.: Cutting edge: a role for B-lymphocyte stimulator in systemic lupus erythematosus.J. Immunol.166(1) , 6–10 (2001).
  • Askenasy N , YolcuES, YanivI, ShirwanH: Induction of tolerance using Fas ligand: a double-edged immunomodulator.Blood105(4) , 1396–1404 (2005).
  • Symes JC , SiatskasC, FowlerDH, MedinJA: Retrovirally transduced murine T lymphocytes expressing FasL mediate effective killing of prostate cancer cells.Cancer Gene Ther.16(5) , 439–452 (2009).
  • Hermans IF , RitchieDS, YangJ, RobertsJM, RoncheseF: CD8+ T cell-dependent elimination of dendritic cells in vivo limits the induction of antitumor immunity.J. Immunol.164(6) , 3095–3101 (2000).
  • Constantin CM , BonneyEE, AltmanJD, StricklandOL: Major histocompatibility complex (MHC) tetramer technology: an evaluation.Biol. Res. Nurs.4(2) , 115–127 (2002).
  • Prakken B , WaubenM, GeniniDet al.: Artificial antigen-presenting cells as a tool to exploit the immune ‘synapse‘.Nat. Med.6(12) , 1406–1410 (2000).
  • Dal Porto J , JohansenTE, CatipovicBet al.: A soluble divalent class I major histocompatibility complex molecule inhibits alloreactive T cells at nanomolar concentrations.Proc. Natl Acad. Sci. USA90(14) , 6671–6675 (1993).
  • Maile R , WangB, SchoolerW, MeyerA, CollinsEJ, FrelingerJA: Antigen-specific modulation of an immune response by in vivo administration of soluble MHC class I tetramers.J. Immunol.167(7) , 3708–3714 (2001).
  • Yuan RR , WongP, McdevittMRet al.: Targeted deletion of T-cell clones using a-emitting suicide MHC tetramers.Blood104(8) , 2397–2402 (2004).
  • Hess PR , BarnesC, WoolardMDet al.: Selective deletion of antigen-specific CD8+ T cells by MHC class I tetramers coupled to the type I ribosome-inactivating protein saporin.Blood109(8) , 3300–3307 (2007).
  • Yee C , ThompsonJA, ByrdDet al.: Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells.Proc. Natl Acad. Sci. USA99(25) , 16168–16173 (2002).
  • Mackensen A , MeidenbauerN, VoglS, LaumerM, BergerJ, AndreesenR: Phase I study of adoptive T-cell therapy using antigen-specific CD8+ T cells for the treatment of patients with metastatic melanoma.J. Clin. Oncol.24(31) , 5060–5069 (2006).
  • Hunder NN , WallenH, CaoJet al.: Treatment of metastatic melanoma with autologous CD4+ T cells against NY-ESO-1.N. Engl. J. Med.358(25) , 2698–2703 (2008).
  • Bollard CM , AguilarL, StraathofKCet al.: Cytotoxic T lymphocyte therapy for Epstein–Barr virus + Hodgkin‘s disease.J. Exp. Med.200(12) , 1623–1633 (2004).
  • Maus MV , ThomasAK, LeonardDGet al.: Ex vivo expansion of polyclonal and antigen-specific cytotoxic T lymphocytes by artificial APCs expressing ligands for the T-cell receptor, CD28 and 4-1BB.Nat. Biotechnol.20(2) , 143–148 (2002).
  • Sasawatari S , TadakiT, IsogaiM, TakaharaM, NiedaM, KakimiK: Efficient priming and expansion of antigen-specific CD8+ T cells by a novel cell-based artificial APC.Immunol. Cell. Biol.84(6) , 512–521 (2006).
  • Zappasodi R , Di Nicola M, Carlo-Stella C et al.: The effect of artificial antigen-presenting cells with preclustered anti-CD28/-CD3/-LFA-1 monoclonal antibodies on the induction of ex vivo expansion of functional human antitumor T cells. Haematologica93(10) , 1523–1534 (2008).
  • Tham EL , JensenPL, MescherMF: Activation of antigen-specific T cells by artificial cell constructs having immobilized multimeric peptide-class I complexes and recombinant B7-FC proteins.J. Immunol. Methods249(1–2) , 111–119 (2001).
  • Maus MV , RileyJL, KwokWW, NepomGT, JuneCH: HLA tetramer-based artificial antigen-presenting cells for stimulation of CD4+ T cells.Clin. Immunol.106(1) , 16–22 (2003).
  • Oelke M , MausMV, DidianoD, JuneCH, MackensenA, SchneckJP: Ex vivo induction and expansion of antigen-specific cytotoxic T cells by HLA-Ig-coated artificial antigen-presenting cells.Nat. Med.9(5) , 619–624 (2003).
  • Levine BL , CotteJ, Small Cc et al.: Large-scale production of CD4+ T cells from HIV-1-infected donors after CD3/CD28 costimulation. J. Hematother.7(5) , 437–448 (1998).
  • Latouche JB , SadelainM: Induction of human cytotoxic T lymphocytes by artificial antigen-presenting cells.Nat. Biotechnol.18(4) , 405–409 (2000).
  • Oelke M , KruegerC, SchneckJP: Technological advances in adoptive immunotherapy.Drugs Today (Barc.)41(1) , 13–21 (2005).
  • Ugel S , ZosoA, De Santo C et al.: In vivo administration of artificial antigen-presenting cells activates low-avidity T cells for treatment of cancer. Cancer Res.69(24) , 9376–9384 (2009).
  • Schütz C , FischerK, VolklSet al.: A new flow cytometric assay for the simultaneous analysis of antigen-specific elimination of T cells in heterogeneous T cell populations.J. Immunol. Methods344(2) , 98–108 (2009).
  • Schütz C , FleckM, MackensenAet al.: Killer artificial antigen-presenting cells: a novel strategy to delete specific T cells.Blood111(7) , 3546–3552 (2008).
  • Vanderlugt CL , MillerSD: Epitope spreading in immune-mediated diseases: implications for immunotherapy.Nat. Rev. Immunol.2(2) , 85–95 (2002).
  • Nakayama M , AbiruN, MoriyamaHet al.: Prime role for an insulin epitope in the development of Type 1 diabetes in Nod mice.Nature435(7039) , 220–223 (2005).
  • Krishnamurthy B , DudekNL, MckenzieMDet al.: Responses against islet antigens in nod mice are prevented by tolerance to proinsulin but not IGRP.J. Clin. Invest.116(12) , 3258–3265 (2006).
  • Hild WA , BreunigM, GoepferichA: Quantum dots – nano-sized probes for the exploration of cellular and intracellular targeting.Eur. J. Pharm. Biopharm.68(2) , 153–168 (2008).
  • Van Rensen AJ , WaubenMH, Grosfeld-StulemeyerMC, Van Eden W, Crommelin DJ: Liposomes with incorporated MHC class II/peptide complexes as antigen presenting vesicles for specific T cell activation. Pharm. Res.16(2) , 198–204 (1999).
  • Giannoni F , BarnettJ, BiKet al.: Clustering of T cell ligands on artificial APC membranes influences T cell activation and protein kinase C theta translocation to the T cell plasma membrane.J. Immunol.174(6) , 3204–3211 (2005).
  • Nagata S : Apoptosis by death factor.Cell88(3) , 355–365 (1997).
  • Shen HM , PervaizS: TNF receptor superfamily-induced cell death: redox-dependent execution.FASEB J.20(10) , 1589–1598 (2006).
  • Fife BT , PaukenKE, EagarTNet al.: Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal.Nat. Immunol.10(11) , 1185–1192 (2009).
  • Hirata S , SenjuS, MatsuyoshiH, FukumaD, UemuraY, NishimuraY: Prevention of experimental autoimmune encephalomyelitis by transfer of embryonic stem cell-derived dendritic cells expressing myelin oligodendrocyte glycoprotein peptide along with trail or programmed death-1 ligand.J. Immunol.174(4) , 1888–1897 (2005).
  • Peakman M , DayanCM: Antigen-specific immunotherapy for autoimmune disease: fighting fire with fire?Immunology104(4) , 361–366 (2001).
  • Pittet MJ , GatiA, Le Gal FA et al.: Ex vivo characterization of allo-MHC-restricted T cells specific for a single MHC-peptide complex. J. Immunol.176(4) , 2330–2336 (2006).
  • Weng X , LuS, ZhongMet al.: Allo-restricted CTLs generated by coculturing of PBLs and autologous monocytes loaded with allogeneic peptide/HLA/IgG1–FC fusion protein.J. Leukoc. Biol.85(3) , 574–581 (2009).
  • Godfrey WR , KrampfMR, TaylorPA, BlazarBR: Ex vivo depletion of alloreactive cells based on cfse dye dilution, activation antigen selection, and dendritic cell stimulation.Blood103(3) , 1158–1165 (2004).
  • Blanco B , Perez-SimonJA, Sanchez-AbarcaLIet al.: Bortezomib induces selective depletion of alloreactive T lymphocytes and decreases the production of Th1 cytokines.Blood107(9) , 3575–3583 (2006).
  • Strauss G , OsenW, KnapeI, JacobsenEM, MullerSM, DebatinKM: Membrane-bound CD95 ligand expressed on human antigen-presenting cells prevents alloantigen-specific T cell response without impairment of viral and third-party T cell immunity.Cell Death Differ.14(3) , 480–488 (2007).
  • Panina-Bordignon P , LangR, Van Endert PM et al.: Cytotoxic T cells specific for glutamic acid decarboxylase in autoimmune diabetes. J. Exp. Med.181(5) , 1923–1927 (1995).
  • Ouyang Q , StandiferNE, QinHet al.: Recognition of HLA class I-restricted β-cell epitopes in Type 1 diabetes.Diabetes55(11) , 3068–3074 (2006).
  • Takahashi K , HoneymanMC, HarrisonLC: Cytotoxic T cells to an epitope in the islet autoantigen IA-2 are not disease-specific.Clin. Immunol.99(3) , 360–364 (2001).
  • Standifer NE , OuyangQ, PanagiotopoulosCet al.: Identification of novel HLA-A*0201-restricted epitopes in recent-onset Type 1 diabetic subjects and antibody-positive relatives.Diabetes55(11) , 3061–3067 (2006).
  • Panagiotopoulos C , QinH, TanR, VerchereCB: Identification of a β-cell-specific HLA class I restricted epitope in Type 1 diabetes.Diabetes52(11) , 2647–2651 (2003).
  • Jarchum I , NicholL, TruccoM, SantamariaP, DilorenzoTP: Identification of novel IGRP epitopes targeted in Type 1 diabetes patients.Clin. Immunol.127(3) , 359–365 (2008).
  • Takaki T , MarronMP, MathewsCEet al.: HLA-A*0201-restricted T cells from humanized nod mice recognize autoantigens of potential clinical relevance to Type 1 diabetes.J. Immunol.176(5) , 3257–3265 (2006).
  • Hassainya Y , Garcia-PonsF, KratzerRet al.: Identification of naturally processed HLA-A2-restricted proinsulin epitopes by reverse immunology.Diabetes54(7) , 2053–2059 (2005).
  • Toma A , HaddoukS, BriandJPet al.: Recognition of a subregion of human proinsulin by class I-restricted T cells in Type 1 diabetic patients.Proc. Natl Acad. Sci. USA102(30) , 10581–10586 (2005).
  • Pinkse GG , TysmaOH, BergenCAet al.: Autoreactive CD8 T cells associated with b cell destruction in Type 1 diabetes.Proc. Natl Acad. Sci. USA102(51) , 18425–18430 (2005).
  • van Endert P , HassainyaY, LindoVet al.: HLA class I epitope discovery in Type 1 diabetes.Ann. NY Acad. Sci.1079 , 190–197 (2006).
  • Zang YC , LiS, RiveraVMet al.: Increased CD8+ cytotoxic T cell responses to myelin basic protein in multiple sclerosis.J. Immunol.172(8) , 5120–5127 (2004).
  • Berthelot L , LaplaudDA, PettreSet al.: Blood CD8+ T cell responses against myelin determinants in multiple sclerosis and healthy individuals.Eur. J. Immunol.38(7) , 1889–1899 (2008).
  • Tsuchida T , ParkerKC, TurnerRV, McfarlandHF, ColiganJE, BiddisonWE: Autoreactive CD8+ T-cell responses to human myelin protein-derived peptides.Proc. Natl Acad. Sci. USA91(23) , 10859–10863 (1994).
  • Biddison WE , TaubDD, CruikshankWW, CenterDM, ConnorEW, HonmaK: Chemokine and matrix metalloproteinase secretion by myelin proteolipid protein-specific CD8+ T cells: potential roles in inflammation.J. Immunol.158(7) , 3046–3053 (1997).
  • Dressel A , ChinJL, SetteA, GauslingR, HollsbergP, HaflerDA: Autoantigen recognition by human CD8 T cell clones: enhanced agonist response induced by altered peptide ligands.J. Immunol.159(10) , 4943–4951 (1997).
  • Niland B , BankiK, BiddisonWE, PerlA: CD8+ T cell-mediated HLA-A*0201-restricted cytotoxicity to transaldolase peptide 168–176 in patients with multiple sclerosis.J. Immunol.175(12) , 8365–8378 (2005).
  • Kita H , LianZX, Van De Water J et al.: Identification of HLA-A2-restricted CD8+ cytotoxic T cell responses in primary biliary cirrhosis: T cell activation is augmented by immune complexes cross-presented by dendritic cells. J. Exp. Med.195(1) , 113–123 (2002).
  • Matsumura S , KitaH, HeXSet al.: Comprehensive mapping of HLA-A0201-restricted CD8 T-cell epitopes on PDC-E2 in primary biliary cirrhosis.Hepatology36(5) , 1125–1134 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.