156
Views
0
CrossRef citations to date
0
Altmetric
Review

TGF-β, IL-6, IL-17 and CTGF direct multiple pathologies of chronic cardiac allograft rejection

&
Pages 511-520 | Published online: 16 Jul 2010

Bibliography

  • Lloyd-Jones D , AdamsRJ, BrownTMet al.: Heart disease and stroke statistics – 2010 update. A report from the American Heart Association.Circulation119(3) , 480–486 (2009).
  • Keck BM , BennettLE, RosendaleJ, DailyOP, NovickRJ, HosenpudJD: Worldwide thoracic organ transplantation: a report from the UNOS/ISHLT International Registry for Thoracic Organ Transplantation.Clin. Transpl.35–49 (1999).
  • Waaga AM , GasserM, LaskowskiI, TilneyNL: Mechanisms of chronic rejection.Curr. Opin. Immunol.12(5) , 517–521 (2000).
  • Mehra MR : Contemporary concepts in prevention and treatment of cardiac allograft vasculopathy.Am. J. Transplant.6(6) , 1248–1256 (2006).
  • Mannon RB : Therapeutic targets in the treatment of allograft fibrosis.Am. J. Transplant.6(5 Pt 1) , 867–875 (2006).
  • Valantine H : Cardiac allograft vasculopathy after heart transplantation: risk factors and management.J. Heart Lung Transplant.23(5 Suppl.) , S187–S193 (2004).
  • Weiss MJ , MadsenJC, RosengardBR, AllanJS: Mechanisms of chronic rejection in cardiothoracic transplantation.Front. Biosci.13 , 2980–2988 (2008).
  • Hornick P , RoseM: Chronic rejection in the heart.Methods Mol. Biol.333 , 131–144 (2006).
  • Bieber CP , StinsonEB, ShumwayNE, PayneR, KosekJ: Cardiac transplantation in man. VII. Cardiac allograft pathology.Circulation41(5) , 753–772 (1970).
  • Yeung AC , DavisSF, HauptmanPJet al.: Incidence and progression of transplant coronary artery disease over 1 year: results of a multicenter trial with use of intravascular ultrasound. Multicenter Intravascular Ultrasound Transplant Study Group.J. Heart Lung Transplant.14(6 Pt 2) , S215–S220 (1995).
  • Weis M , von Scheidt W: Cardiac allograft vasculopathy: a review. Circulation96(6) , 2069–2077 (1997).
  • Wahlers T , MuggeA, OppeltPet al.: Coronary vasculopathy following cardiac transplantation and cyclosporine immunosuppression: preventive treatment with angiopeptin, a somatostatin analog.Transplant. Proc.26(5) , 2741–2742 (1994).
  • Ewel CH , FoeghML: Chronic graft rejection: accelerated transplant arteriosclerosis.Immunol. Rev.134 , 21–31 (1993).
  • Li H , TanakaK, ChhabraA, OeserB, KobashigawaJA, TobisJM: Vascular remodeling 1 year after cardiac transplantation.J. Heart Lung Transplant.26(1) , 56–62 (2007).
  • Raichlin E , BaeJH, KhalpeyZet al.: Conversion to sirolimus as primary immunosuppression attenuates the progression of allograft vasculopathy after cardiac transplantation.Circulation116(23) , 2726–2733 (2007).
  • Eisen H : Long-term cardiovascular risk in transplantation – insights from the use of everolimus in heart transplantation.Nephrol. Dial. Transplant.21(Suppl. 3) , III9–III13 (2006).
  • Segovia J , Gomez-BuenoM, Alonso-PulponL: Treatment of allograft vasculopathy in heart transplantation.Expert Opin. Pharmacother.7(17) , 2369–2383 (2006).
  • Tullius SG , TilneyNL: Both alloantigen-dependent and -independent factors influence chronic allograft rejection.Transplantation59(3) , 313–318 (1995).
  • Torre-Amione G , WallaceCK, YoungJBet al.: The effect of etanercept on cardiac transplant recipients: a study of TNFa antagonism and cardiac allograft hypertrophy.Transplantation84(4) , 480–483 (2007).
  • Weber KT , SunY, TyagiSC, CleutjensJP: Collagen network of the myocardium: function, structural remodeling and regulatory mechanisms.J. Mol. Cell. Cardiol.26(3) , 279–292 (1994).
  • Phan SH : Biology of fibroblasts and myofibroblasts.Proc. Am. Thorac. Soc.5(3) , 334–337 (2008).
  • Kovacs EJ , DiPietroLA: Fibrogenic cytokines and connective tissue production.FASEB J.8(11) , 854–861 (1994).
  • Wu GD , TuanTL, BowdishMEet al.: Evidence for recipient derived fibroblast recruitment and activation during the development of chronic cardiac allograft rejection.Transplantation76(3) , 609–614 (2003).
  • Wu GD , BowdishME, JinYSet al.: Contribution of mesenchymal progenitor cells to tissue repair in rat cardiac allografts undergoing chronic rejection.J. Heart Lung Transplant.24(12) , 2160–2169 (2005).
  • Wu GD , NoltaJA, JinYSet al.: Migration of mesenchymal stem cells to heart allografts during chronic rejection.Transplantation75(5) , 679–685 (2003).
  • Sartore S , ChiavegatoA, FagginEet al.: Contribution of adventitial fibroblasts to neointima formation and vascular remodeling: from innocent bystander to active participant.Circ. Res.89(12) , 1111–1121 (2001).
  • Zeisberg EM , TarnavskiO, ZeisbergMet al.: Endothelial-to-mesenchymal transition contributes to cardiac fibrosis.Nat. Med.13(8) , 952–961 (2007).
  • Goumans MJ , van Zonneveld AJ, ten Dijke P: Transforming growth factor β-induced endothelial-to-mesenchymal transition: a switch to cardiac fibrosis? Trends Cardiovasc. Med.18(8) , 293–298 (2008).
  • Mazzucchelli L : Protein S100A4: too long overlooked by pathologists?Am. J. Pathol.160(1) , 7–13 (2002).
  • Cook HT : The origin of renal fibroblasts and progression of kidney disease.Am. J. Pathol.176(1) , 22–24 (2010).
  • Humphreys BD , LinSL, KobayashiAet al.: Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis.Am. J. Pathol.176(1) , 85–97).
  • Suzuki J , IsobeM, AikawaMet al.: Nonmuscle and smooth muscle myosin heavy chain expression in rejected cardiac allografts. A study in rat and monkey models.Circulation94(5) , 1118–1124 (1996).
  • Ramirez AM , ShenZ, RitzenthalerJD, RomanJ: Myofibroblast transdifferentiation in obliterative bronchiolitis: TGF-β signaling through Smad3-dependent and -independent pathways.Am. J. Transplant.6(9) , 2080–2088 (2006).
  • Eyden B : The myofibroblast: phenotypic characterization as a prerequisite to understanding its functions in translational medicine.J. Cell. Mol. Med.12(1) , 22–37 (2008).
  • Subramanian SV , KelmRJ, PolikandriotisJA, OroszCG, StrauchAR: Reprogramming of vascular smooth muscle α-actin gene expression as an early indicator of dysfunctional remodeling following heart transplant.Cardiovasc. Res.54(3) , 539–548 (2002).
  • Subramanian SV , OroszCG, StrauchAR: Vascular smooth muscle α-actin expression as an indicator of parenchymal cell reprogramming in cardiac allografts.Transplantation65(12) , 1652–1656 (1998).
  • Serini G , Bochaton-PiallatML, RoprazPet al.: The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-β1.J. Cell Biol.142(3) , 873–881 (1998).
  • Muro AF , MorettiFA, MooreBBet al.: An essential role for fibronectin extra type III domain A in pulmonary fibrosis.Am. J. Respir. Crit. Care Med.177(6) , 638–645 (2008).
  • Madani S , De Girolamo S, Munoz DM, Li RK, Sweeney G: Direct effects of leptin on size and extracellular matrix components of human pediatric ventricular myocytes. Cardiovasc. Res.69(3) , 716–725 (2006).
  • Parkes JG , LiuY, SirnaJB, TempletonDM: Changes in gene expression with iron loading and chelation in cardiac myocytes and non-myocytic fibroblasts.J. Mol. Cell. Cardiol.32(2) , 233–246 (2000).
  • Brown RD , AmblerSK, MitchellMD, LongCS: The cardiac fibroblast: therapeutic target in myocardial remodeling and failure.Annu. Rev. Pharmacol. Toxicol.45 , 657–687 (2005).
  • Camelliti P , BorgTK, KohlP: Structural and functional characterisation of cardiac fibroblasts.Cardiovasc. Res.65(1) , 40–51 (2005).
  • Eghbali M : Cardiac fibroblasts: function, regulation of gene expression, and phenotypic modulation.Basic Res. Cardiol.87(Suppl. 2) , 183–189 (1992).
  • Camelliti P , GreenCR, KohlP: Structural and functional coupling of cardiac myocytes and fibroblasts.Adv. Cardiol.42 , 132–149 (2006).
  • Weber KT , JanickiJS, ShroffSG, PickR, ChenRM, BasheyRI: Collagen remodeling of the pressure-overloaded, hypertrophied nonhuman primate myocardium.Circ. Res.62(4) , 757–765 (1988).
  • Weber KT , JalilJE, JanickiJS, PickR: Myocardial collagen remodeling in pressure overload hypertrophy. A case for interstitial heart disease.Am. J. Hypertens.2(12 Pt 1) , 931–940 (1989).
  • Weber KT , BrillaCG: Factors associated with reactive and reparative fibrosis of the myocardium.Basic Res. Cardiol.87(Suppl. 1) , 291–301 (1992).
  • Silver MA , PickR, BrillaCG, JalilJE, JanickiJS, WeberKT: Reactive and reparative fibrillar collagen remodelling in the hypertrophied rat left ventricle: two experimental models of myocardial fibrosis.Cardiovasc. Res.24(9) , 741–747 (1990).
  • Weber KT , BrillaCG, JanickiJS: Myocardial fibrosis: functional significance and regulatory factors.Cardiovasc. Res.27(3) , 341–348 (1993).
  • Nicoletti A , MichelJB: Cardiac fibrosis and inflammation: interaction with hemodynamic and hormonal factors.Cardiovasc. Res.41(3) , 532–543 (1999).
  • Diaz JA , BoothAJ, LuG, WoodSC, PinskyDJ, BishopDK: Critical role for IL-6 in hypertrophy and fibrosis in chronic cardiac allograft rejection.Am. J. Transplant.9(8) , 1773–1783 (2009).
  • Torre-Amione G : Cardiac allograft hypertrophy: a new target for therapy, a surrogate marker for surviva?.Am. J. Transplant.9(1) , 7–8 (2009).
  • Matsui Y , SadoshimaJ: Rapid upregulation of CTGF in cardiac myocytes by hypertrophic stimuli: implication for cardiac fibrosis and hypertrophy.J. Mol. Cell. Cardiol.37(2) , 477–481 (2004).
  • Takahashi N , CalderoneA, IzzoNJ Jr, Maki TM, Marsh JD, Colucci WS: Hypertrophic stimuli induce transforming growth factor-β 1 expression in rat ventricular myocytes. J. Clin. Invest.94(4) , 1470–1476 (1994).
  • Booth AJ , Csencsits-SmithK, WoodSC, LuG, LipsonKE, BishopDK: Connective tissue growth factor promotes fibrosis downstream of TGF-β and IL-6 in chronic cardiac allograft rejection.Am. J. Transplant.10(2) , 220–230 (2010).
  • Csencsits K , WoodSC, LuGet al.: Transforming growth factor β-induced connective tissue growth factor and chronic allograft rejection.Am. J. Transplant.6(5 Pt 1) , 959–966 (2006).
  • Raichlin E , VillarragaHR, ChandrasekaranKet al.: Cardiac allograft remodeling after heart transplantation is associated with increased graft vasculopathy and mortality.Am. J. Transplant.9(1) , 132–139 (2009).
  • Libby P , PoberJS: Chronic rejection.Immunity14(4) , 387–397 (2001).
  • Izutani H , MiyagawaS, ShirakuraRet al.: Evidence that graft coronary arteriosclerosis begins in the early phase after transplantation and progresses without chronic immunoreaction. Histopathological analysis using a retransplantation model.Transplantation60(10) , 1073–1079 (1995).
  • Jain S , FurnessPN, NicholsonML: The role of transforming growth factor β in chronic renal allograft nephropathy.Transplantation69(9) , 1759–1766 (2000).
  • Li MO , WanYY, SanjabiS, RobertsonAK, FlavellRA: Transforming growth factor-β regulation of immune responses.Annu. Rev. Immunol.24 , 99–146 (2006).
  • Border WA , NobleNA: Transforming growth factor b in tissue fibrosis.N. Engl. J. Med.331(19) , 1286–1292 (1994).
  • Cucoranu I , ClempusR, DikalovaAet al.: NAD(P)H oxidase 4 mediates transforming growth factor-β1-induced differentiation of cardiac fibroblasts into myofibroblasts.Circ. Res.97(9) , 900–907 (2005).
  • Noronha IL , NiemirZ, SteinH, WaldherrR: Cytokines and growth factors in renal disease.Nephrol. Dial. Transplant.10(6) , 775–786 (1995).
  • Zhang HY , PhanSH: Inhibition of myofibroblast apoptosis by transforming growth factor β(1).Am. J. Respir. Cell. Mol. Biol.21(6) , 658–665 (1999).
  • Brattain MG , MarkowitzSD, WillsonJK: The type II transforming growth factor-β receptor as a tumor-suppressor gene.Curr. Opin. Oncol.8(1) , 49–53 (1996).
  • Massague J , BlainSW, LoRS: TGF-β signaling in growth control, cancer, and heritable disorders.Cell103(2) , 295–309 (2000).
  • Faust SM , LuG, MariniBLet al.: Role of T cell TGF-β signaling and IL-17 in allograft acceptance and fibrosis associated with chronic rejection.J. Immunol.183(11) , 7297–7306 (2009).
  • Wood KJ , SakaguchiS: Regulatory T cells in transplantation tolerance.Nat. Rev. Immunol.3(3) , 199–210 (2003).
  • Yong Z , ChangL, MeiYX, YiL: Role and mechanisms of CD4+CD25+ regulatory T cells in the induction and maintenance of transplantation tolerance.Transpl. Immunol.17(2) , 120–129 (2007).
  • Walsh PT , TaylorDK, TurkaLA: Tregs and transplantation tolerance.J. Clin. Invest.114(10) , 1398–1403 (2004).
  • Yamaguchi Y , MannDM, RuoslahtiE: Negative regulation of transforming growth factor-β by the proteoglycan decorin.Nature346(6281) , 281–284 (1990).
  • Border WA , NobleNA, YamamotoTet al.: Natural inhibitor of transforming growth factor-β protects against scarring in experimental kidney disease.Nature360(6402) , 361–364 (1992).
  • Zhang Z , GarronTM, LiXJet al.: Recombinant human decorin inhibits TGF-β1-induced contraction of collagen lattice by hypertrophic scar fibroblasts.Burns35(4) , 527–537 (2009).
  • Pedagogos E , HewitsonTD, WalkerRG, NicholisKM, BeckerGJ: Myofibroblast involvement in chronic transplant rejection.Transplantation64(8) , 1192–1197 (1997).
  • Isaka Y , BreesDK, IkegayaKet al.: Gene therapy by skeletal muscle expression of decorin prevents fibrotic disease in rat kidney.Nat. Med.2(4) , 418–423 (1996).
  • Kolb M , MargettsPJ, SimePJ, GauldieJ: Proteoglycans decorin and biglycan differentially modulate TGF-β-mediated fibrotic responses in the lung.Am. J. Physiol. Lung Cell. Mol. Physiol.280(6) , L1327–1334 (2001).
  • Faust SM , LuG, WoodSC, BishopDK: TGF-β neutralization within cardiac allografts by decorin gene transfer attenuates chronic rejection.J. Immunol.183(11) , 7307–7313 (2009).
  • Leask A , AbrahamDJ: The role of connective tissue growth factor, a multifunctional matricellular protein, in fibroblast biology.Biochem. Cell. Biol.81(6) , 355–363 (2003).
  • Chen MM , LamA, AbrahamJA, SchreinerGF, JolyAH: CTGF expression is induced by TGF-β in cardiac fibroblasts and cardiac myocytes: a potential role in heart fibrosis.J. Mol. Cell. Cardiol.32(10) , 1805–1819 (2000).
  • Daniels A , van Bilsen M, Goldschmeding R, van der Vusse GJ, van Nieuwenhoven FA: Connective tissue growth factor and cardiac fibrosis. Acta Physiol. (Oxf.)195(3) , 321–338 (2009).
  • Kundi R , HollenbeckST, YamanouchiDet al.: Arterial gene transfer of the TGF-β signalling protein Smad3 induces adaptive remodelling following angioplasty: a role for CTGF.Cardiovasc. Res.84(2) , 326–335 (2009).
  • Hayata N , FujioY, YamamotoYet al.: Connective tissue growth factor induces cardiac hypertrophy through Akt signaling.Biochem. Biophys. Res. Commun.370(2) , 274–278 (2008).
  • de Winter P , LeoniP, AbrahamD: Connective tissue growth factor: structure-function relationships of a mosaic, multifunctional protein.Growth Factors26(2) , 80–91 (2008).
  • Bonniaud P , MartinG, MargettsPJet al.: Connective tissue growth factor is crucial to inducing a profibrotic environment in “fibrosis-resistant” BALB/c mouse lungs.Am. J. Respir. Cell. Mol. Biol.31(5) , 510–516 (2004).
  • Cheng O , ThuillierR, SampsonEet al.: Connective tissue growth factor is a biomarker and mediator of kidney allograft fibrosis.Am. J. Transplant.6(10) , 2292–2306 (2006).
  • Yuan YC , XiaZK, MuJJ, ZhangQC, YinBL: Increased connective tissue growth factor expression in a rat model of chronic heart allograft rejection.J. Formos. Med. Assoc.108(3) , 240–246 (2009).
  • Csencsits K , WoodSC, LuG, BishopDK: Transforming growth factor-β1 gene transfer is associated with the development of regulatory cells.Am. J. Transplant.5(10) , 2378–2384 (2005).
  • Guo X , WangXF: Signaling cross-talk between TGF-β/BMP and other pathways.Cell Res.19(1) , 71–88 (2009).
  • Bettelli E , CarrierY, GaoWet al.: Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells.Nature441(7090) , 235–238 (2006).
  • Chen RH , ChangMC, SuYH, TsaiYT, KuoML: Interleukin-6 inhibits transforming growth factor-β-induced apoptosis through the phosphatidylinositol 3-kinase/Akt and signal transducers and activators of transcription 3 pathways.J. Biol. Chem.274(33) , 23013–23019 (1999).
  • Zhang XL , TopleyN, ItoT, PhillipsA: Interleukin-6 regulation of transforming growth factor (TGF)-β receptor compartmentalization and turnover enhances TGF-β1 signaling.J. Biol. Chem.280(13) , 12239–12245 (2005).
  • Coles B , FieldingCA, Rose-JohnS, SchellerJ, JonesSA, O‘DonnellVB: Classic interleukin-6 receptor signaling and interleukin-6 trans-signaling differentially control angiotensin II-dependent hypertension, cardiac signal transducer and activator of transcription-3 activation, and vascular hypertrophy in vivo.Am. J. Pathol.171(1) , 315–325 (2007).
  • Jones SA : Directing transition from innate to acquired immunity: defining a role for IL-6.J. Immunol.175(6) , 3463–3468 (2005).
  • Naugler WE , KarinM: The wolf in sheep‘s clothing: the role of interleukin-6 in immunity, inflammation and cancer.Trends Mol. Med.14(3) , 109–119 (2008).
  • Van Snick J : Interleukin-6: an overview.Annu. Rev. Immunol.8 , 253–278 (1990).
  • Takatsuki F , OkanoA, SuzukiCet al.: Human recombinant IL-6/B cell stimulatory factor 2 augments murine antigen-specific antibody responses in vitro and in vivo.J. Immunol.141(9) , 3072–3077 (1988).
  • Hurst SM , WilkinsonTS, McLoughlinRMet al.: IL-6 and its soluble receptor orchestrate a temporal switch in the pattern of leukocyte recruitment seen during acute inflammation.Immunity14(6) , 705–714 (2001).
  • Lin ZQ , KondoT, IshidaY, TakayasuT, MukaidaN: Essential involvement of IL-6 in the skin wound-healing process as evidenced by delayed wound healing in IL-6-deficient mice.J. Leukoc. Biol.73(6) , 713–721 (2003).
  • Youker K , SmithCW, AndersonDCet al.: Neutrophil adherence to isolated adult cardiac myocytes. Induction by cardiac lymph collected during ischemia and reperfusion.J. Clin. Invest.89(2) , 602–609 (1992).
  • Sporri B , MullerKM, WiesmannU, BickelM: Soluble IL-6 receptor induces calcium flux and selectively modulates chemokine expression in human dermal fibroblasts.Int. Immunol.11(7) , 1053–1058 (1999).
  • Weissenbach M , ClahsenT, WeberCet al.: Interleukin-6 is a direct mediator of T cell migration.Eur. J. Immunol.34(10) , 2895–2906 (2004).
  • Fielding CA , McLoughlinRM, McLeodLet al.: IL-6 regulates neutrophil trafficking during acute inflammation via STAT3.J. Immunol.181(3) , 2189–2195 (2008).
  • McLoughlin RM , JenkinsBJ, GrailDet al.: IL-6 trans-signaling via STAT3 directs T cell infiltration in acute inflammation.Proc. Natl Acad. Sci. USA102(27) , 9589–9594 (2005).
  • Teague TK , MarrackP, KapplerJW, VellaAT: IL-6 rescues resting mouse T cells from apoptosis.J. Immunol.158(12) , 5791–5796 (1997).
  • Yang XO , NurievaR, MartinezGJet al.: Molecular antagonism and plasticity of regulatory and inflammatory T cell programs.Immunity29(1) , 44–56 (2008).
  • Wan S , XiaC, MorelL: IL-6 produced by dendritic cells from lupus-prone mice inhibits CD4+CD25+ T cell regulatory functions.J. Immunol.178(1) , 271–279 (2007).
  • Pasare C , MedzhitovR: Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells.Science299(5609) , 1033–1036 (2003).
  • Zhao XM , FristWH, YeohTK, MillerGG: Expression of cytokine genes in human cardiac allografts: correlation of IL-6 and transforming growth factor-β (TGF-β) with histological rejection.Clin. Exp. Immunol.93(3) , 448–451 (1993).
  • Liang Y , ChristopherK, FinnPW, ColsonYL, PerkinsDL: Graft produced interleukin-6 functions as a danger signal and promotes rejection after transplantation.Transplantation84(6) , 771–777 (2007).
  • Chen L , AhmedE, WangTet al.: TLR signals promote IL-6/IL-17-dependent transplant rejection.J. Immunol.182(10) , 6217–6225 (2009).
  • Erten Y , TulmacM, DericiUet al.: An association between inflammatory state and left ventricular hypertrophy in hemodialysis patients.Ren. Fail.27(5) , 581–589 (2005).
  • Fredj S , BescondJ, LouaultC, PotreauD: Interactions between cardiac cells enhance cardiomyocyte hypertrophy and increase fibroblast proliferation.J. Cell. Physiol.202(3) , 891–899 (2005).
  • Kurdi M , RandonJ, CeruttiC, BriccaG: Increased expression of IL-6 and LIF in the hypertrophied left ventricle of TGR(mRen2)27 and SHR rats.Mol. Cell. Biochem.269(1–2) , 95–101 (2005).
  • Sano M , FukudaK, KodamaHet al.: Interleukin-6 family of cytokines mediate angiotensin II-induced cardiac hypertrophy in rodent cardiomyocytes.J. Biol. Chem.275(38) , 29717–29723 (2000).
  • Briest W , RasslerB, DetenAet al.: Norepinephrine-induced interleukin-6 increase in rat hearts: differential signal transduction in myocytes and non-myocytes.Pflugers Arch.446(4) , 437–446 (2003).
  • Birks EJ , BurtonPB, OwenVet al.: Elevated tumor necrosis factor-α and interleukin-6 in myocardium and serum of malfunctioning donor hearts.Circulation102(19 Suppl. 3) , III352–III358 (2000).
  • Hirota H , IzumiM, HamaguchiTet al.: Circulating interleukin-6 family cytokines and their receptors in patients with congestive heart failure.Heart Vessels19(5) , 237–241 (2004).
  • Torre-Amione G , KapadiaS, BenedictC, OralH, YoungJB, MannDL: Proinflammatory cytokine levels in patients with depressed left ventricular ejection fraction: a report from the Studies of Left Ventricular Dysfunction (SOLVD).J. Am. Coll. Cardiol.27(5) , 1201–1206 (1996).
  • Tsutamoto T , HisanagaT, WadaAet al.: Interleukin-6 spillover in the peripheral circulation increases with the severity of heart failure, and the high plasma level of interleukin-6 is an important prognostic predictor in patients with congestive heart failure.J. Am. Coll. Cardiol.31(2) , 391–398 (1998).
  • Vasan RS , SullivanLM, RoubenoffRet al.: Inflammatory markers and risk of heart failure in elderly subjects without prior myocardial infarction: the Framingham Heart Study.Circulation107(11) , 1486–1491 (2003).
  • Sarkar S , VellaichamyE, YoungD, SenS: Influence of cytokines and growth factors in ANG II-mediated collagen upregulation by fibroblasts in rats: role of myocytes.Am. J. Physiol. Heart Circ. Physiol.287(1) , H107–117 (2004).
  • Fredj S , BescondJ, LouaultC, DelwailA, LecronJC, PotreauD: Role of interleukin-6 in cardiomyocyte/cardiac fibroblast interactions during myocyte hypertrophy and fibroblast proliferation.J. Cell. Physiol.204(2) , 428–436 (2005).
  • Liu X , DasAM, SeidemanJet al.: The CC chemokine ligand 2 (CCL2) mediates fibroblast survival through IL-6.Am. J. Respir. Cell. Mol. Biol.37(1) , 121–128 (2007).
  • Burlingham WJ , LoveRB, Jankowska-GanEet al.: IL-17-dependent cellular immunity to collagen type V predisposes to obliterative bronchiolitis in human lung transplants.J. Clin. Invest.117(11) , 3498–3506 (2007).
  • Fukami N , RamachandranS, SainiDet al.: Antibodies to MHC class I induce autoimmunity: role in the pathogenesis of chronic rejection.J. Immunol.182(1) , 309–318 (2009).
  • Simonian PL , RoarkCL, WehrmannFet al.: Th17-polarized immune response in a murine model of hypersensitivity pneumonitis and lung fibrosis.J. Immunol.182(1) , 657–665 (2009).
  • Yuan X , Paez-CortezJ, Schmitt-KnosallaIet al.: A novel role of CD4 Th17 cells in mediating cardiac allograft rejection and vasculopathy.J. Exp. Med.205(13) , 3133–3144 (2008).
  • Venkatachalam K , MummidiS, CortezDM, PrabhuSD, ValenteAJ, ChandrasekarB: Resveratrol inhibits high glucose-induced PI3K/Akt/ERK-dependent interleukin-17 expression in primary mouse cardiac fibroblasts.Am. J. Physiol. Heart Circ. Physiol.294(5) , H2078–H2087 (2008).
  • Feng W , LiW, LiuW, WangF, LiY, YanW: IL-17 induces myocardial fibrosis and enhances RANKL/OPG and MMP/TIMP signaling in isoproterenol-induced heart failure.Exp. Mol. Pathol.87(3) , 212–218 (2009).
  • Cortez DM , FeldmanMD, MummidiSet al.: IL-17 stimulates MMP-1 expression in primary human cardiac fibroblasts via p38 MAPK- and ERK1/2-dependent C/EBP-β, NF-κB, and AP-1 activation.Am. J. Physiol. Heart Circ. Physiol.293(6) , H3356–H3365 (2007).
  • Chabaud M , FossiezF, TaupinJL, MiossecP: Enhancing effect of IL-17 on IL-1-induced IL-6 and leukemia inhibitory factor production by rheumatoid arthritis synoviocytes and its regulation by Th2 cytokines.J. Immunol.161(1) , 409–414 (1998).
  • Wang L , YiT, KortylewskiM, PardollDM, ZengD, YuH: IL-17 can promote tumor growth through an IL-6-Stat3 signaling pathway.J. Exp. Med.206(7) , 1457–1464 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.