161
Views
0
CrossRef citations to date
0
Altmetric
Review

Advances in Adoptive Immunotherapy to Accelerate T-Cellular Immune Reconstitution After Hla-Incompatible Hematopoietic Stem Cell Transplantation

, , , , &
Pages 481-496 | Published online: 16 Jul 2010

Bibliography

  • Cavazzana-Calvo M , LagresleC, Hacein-Bey-AbinaS, FischerA: Gene therapy for severe combined immunodeficiency.Annu. Rev. Med.56 , 585–602 (2005).
  • Gaspar HB , ParsleyKL, HoweSet al.: Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gretroviral vector.Lancet364 , 2181–2187 (2004).
  • Neven B , LeroyS, DecaluweHet al.: Long-term outcome after hematopoietic stem cell transplantation of a single-center cohort of 90 patients with severe combined immunodeficiency.Blood113 , 4114–4124 (2009).
  • Cavazzana-Calvo M , CarlierF, Le Deist F et al.: Long-term T-cell reconstitution after hematopoietic stem-cell transplantation in primary T-cell-immunodeficient patients is associated with myeloid chimerism and possibly the primary disease phenotype. Blood109 , 4575–4581 (2007).
  • Muller SM , KohnT, SchulzAS, DebatinKM, FriedrichW: Similar pattern of thymic-dependent T-cell reconstitution in infants with severe combined immunodeficiency after human leukocyte antigen (HLA)-identical and HLA-nonidentical stem cell transplantation.Blood96 , 4344–4349 (2000).
  • Chen BJ , CuiX, LiuC, ChaoNJ: Prevention of graft-versus-host disease while preserving graft-versus-leukemia effect after selective depletion of host-reactive T cells by photodynamic cell purging process.Blood99 , 3083–3088 (2002).
  • Fehse B , FrerkO, GoldmannM, BuldukM, ZanderAR: Efficient depletion of alloreactive donor T lymphocytes based on expression of two activation-induced antigens (CD25 and CD69).Br. J. Haematol.109 , 644–651 (2000).
  • Hartwig UF , NonnM, KhanS, MeyerRG, HuberC, HerrW: Depletion of alloreactive T cells via CD69: implications on antiviral, antileukemic and immunoregulatory T lymphocytes.Bone Marrow Transplant.37 , 297–305 (2006).
  • Koh MB , PrenticeHG, LowdellMW: Selective removal of alloreactive cells from haematopoietic stem cell grafts: graft engineering for GVHD prophylaxis.Bone Marrow Transplant.23 , 1071–1079 (1999).
  • Samarasinghe S , MancaoC, PuleMet al.: Functional characterization of alloreactive T cells identifies CD25 and CD71 as optimal targets for a clinically applicable allodepletion strategy.Blood115 , 396–407 (2010).
  • Solomon SR , MielkeS, SavaniBNet al.: Selective depletion of alloreactive donor lymphocytes: a novel method to reduce the severity of graft-versus-host disease in older patients undergoing matched sibling donor stem cell transplantation.Blood106 , 1123–1129 (2005).
  • Hartwig UF , RobbersM, WickenhauserC, HuberC: Murine acute graft-versus-host disease can be prevented by depletion of alloreactive T lymphocytes using activation-induced cell death.Blood99 , 3041–3049 (2002).
  • Solomon SR , TranT, CarterCSet al.: Optimized clinical-scale culture conditions for ex vivo selective depletion of host-reactive donor lymphocytes: a strategy for GvHD prophylaxis in allogeneic PBSC transplantation.Cytotherapy4 , 395–406 (2002).
  • Wehler TC , NonnM, BrandtBet al.: Targeting the activation-induced antigen CD137 can selectively deplete alloreactive T cells from antileukemic and antitumor donor T-cell lines.Blood109 , 365–373 (2007).
  • Godfrey WR , KrampfMR, TaylorPA, BlazarBR: ex vivo depletion of alloreactive cells based on CFSE dye dilution, activation antigen selection, and dendritic cell stimulation.Blood103 , 1158–1165 (2004).
  • Cavazzana-Calvo M , FromontC, Le Deist F et al.: Specific elimination of alloreactive T cells by an anti-interleukin-2 receptor B chain-specific immunotoxin. Transplantation50 , 1–7 (1990).
  • Koh MB , PrenticeHG, CorboM, MorganM, CotterFE, LowdellMW: Alloantigen-specific T-cell depletion in a major histocompatibility complex fully mismatched murine model provides effective graft-versus-host disease prophylaxis in the presence of lymphoid engraftment.Br. J. Haematol.118 , 108–116 (2002).
  • Amrolia PJ , Muccioli-CasadeiG, YvonEet al.: Selective depletion of donor alloreactive T cells without loss of antiviral or antileukemic responses.Blood102 , 2292–2299 (2003).
  • Fehse B , GoldmannM, FrerkO, BuldukM, ZanderAR: Depletion of alloreactive donor T cells using immunomagnetic cell selection.Bone Marrow Transplant.25(Suppl. 2) , S39–S42 (2000).
  • Andre-Schmutz I , Le Deist F, Hacein-Bey-Abina S et al.: Immune reconstitution without graft-versus-host disease after haemopoietic stem-cell transplantation: a Phase 1/2 study. Lancet360 , 130–137 (2002).
  • Amrolia PJ , Muccioli-CasadeiG, HulsHet al.: Adoptive immunotherapy with allodepleted donor T-cells improves immune reconstitution after haploidentical stem cell transplantation.Blood108 , 1797–1808 (2006).
  • Edinger M , HoffmannP, ErmannJet al.: CD4+CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation.Nat. Med.9 , 1144–1150 (2003).
  • Taylor PA , LeesCJ, BlazarBR: The infusion of ex vivo activated and expanded CD4(+)CD25(+) immune regulatory cells inhibits graft-versus-host disease lethality.Blood99 , 3493–3499 (2002).
  • Mielke S , RezvaniK, SavaniBNet al.: Reconstitution of FOXP3+ regulatory T cells (Tregs) after CD25-depleted allotransplantation in elderly patients and association with acute graft-versus-host disease.Blood110 , 1689–1697 (2007).
  • Guimond M , BalassyA, BarretteM, BrochuS, PerreaultC, RoyDC: P-glycoprotein targeting: a unique strategy to selectively eliminate immunoreactive T cells.Blood100 , 375–382 (2002).
  • Roy DC , BusqueL, FishDet al.: Phase I clinical study of donor lymphocyte infusion depleted of alloreactive T cells after haplotype mismatched myeloablative stem cell transplantation to limit infections and malignant relapse without causing GvHD.Blood108 , 309 (2006).
  • Schwarer AP , JiangYZ, BrookesPAet al.: Frequency of anti-recipient alloreactive helper T-cell precursors in donor blood and graft-versus-host disease after HLA-identical sibling bone-marrow transplantation.Lancet341 , 203–205 (1993).
  • Mielke S , NunesR, RezvaniKet al.: A clinical-scale selective allodepletion approach for the treatment of HLA-mismatched and matched donor-recipient pairs using expanded T lymphocytes as antigen-presenting cells and a TH9402-based photodepletion technique.Blood111 , 4392–4402 (2008).
  • Perruccio K , TopiniF, TostiAet al.: Photodynamic purging of alloreactive T cells for adoptive immunotherapy after haploidentical stem cell transplantation.Blood Cells Mol. Dis.40 , 76–83 (2008).
  • Perruccio K TF, Tosti A, Carotti A, Aloisi F, Aversa F: Adoptive immunotherapy after haploidentical stem cell transplantation with T-cells allodepleted by photodynamic purging. Bone Marrow Transplant.41 , S24–S25 (2008) (Abstract 172).
  • Andre-Schmutz I , Dal Cortivo L, Fischer A, Cavazzana-Calvo M: Improving immune reconstitution while preventing GvHD in allogeneic stem cell transplantation. Cytotherapy7 , 102–108 (2005).
  • Riddell SR , WatanabeKS, GoodrichJM, LiCR, AghaME, GreenbergPD: Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones.Science257 , 238–241 (1992).
  • Walter EA , GreenbergPD, GilbertMJet al.: Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor.N. Engl. J. Med.333 , 1038–1044 (1995).
  • Heslop HE , NgCY, LiCet al.: Long-term restoration of immunity against Epstein–Barr virus infection by adoptive transfer of gene-modified virus-specific T lymphocytes.Nat. Med.2 , 551–555 (1996).
  • Rooney CM , SmithCA, NgCYet al.: Infusion of cytotoxic T cells for the prevention and treatment of Epstein–Barr virus-induced lymphoma in allogeneic transplant recipients.Blood92 , 1549–1555 (1998).
  • Beck O , ToppMS, KoehlUet al.: Generation of highly purified and functionally active human Th1 cells against Aspergillus fumigatus.Blood107 , 2562–2569 (2006).
  • Tramsen L , KoehlU, TonnTet al.: Clinical-scale generation of human anti-Aspergillus T cells for adoptive immunotherapy.Bone Marrow Transplant.43 , 13–19 (2009).
  • Li Pira G , KappM, MancaF, EinseleH: Pathogen specific T-lymphocytes for the reconstitution of the immunocompromised host.Curr. Opin. Immunol.21 , 549–556 (2009).
  • Hamel Y , BlakeN, GabrielssonSet al.: Adenovirally transduced dendritic cells induce bispecific cytotoxic T lymphocyte responses against adenovirus and cytomegalovirus pp65 or against adenovirus and Epstein–Barr virus EBNA3C protein: a novel approach for immunotherapy.Hum. Gene Ther.13 , 855–866 (2002).
  • Leen AM , MyersGD, SiliUet al.: Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals.Nat. Med.12 , 1160–1166 (2006).
  • Leen AM , ChristinA, MyersGDet al.: Cytotoxic T lymphocyte therapy with donor T cells prevents and treats adenovirus and Epstein–Barr virus infections after haploidentical and matched unrelated stem cell transplantation.Blood114 , 4283–4292 (2009).
  • Fry TJ , MackallCL: Interleukin-7 and immunorestoration in HIV: beyond the thymus.J. Hematother. Stem Cell Res.11 , 803–807 (2002).
  • Fry TJ , MackallCL: Interleukin-7: from bench to clinic.Blood99 , 3892–3904 (2002).
  • Watanabe M , UenoY, YajimaTet al.: Interleukin 7 is produced by human intestinal epithelial cells and regulates the proliferation of intestinal mucosal lymphocytes.J. Clin. Invest.95 , 2945–2953 (1995).
  • Puel A , ZieglerSF, BuckleyRH, LeonardWJ: Defective IL7R expression in T(-)B(+)NK(+) severe combined immunodeficiency.Nat. Genet.20 , 394–397 (1998).
  • Mackall CL , FryTJ, BareC, MorganP, GalbraithA, GressRE: IL-7 increases both thymic-dependent and thymic-independent T-cell regeneration after bone marrow transplantation.Blood97 , 1491–1497 (2001).
  • Parkman R , WeinbergKI: Immunological reconstitution following bone marrow transplantation.Immunol. Rev.157 , 73–78 (1997).
  • Fry TJ , ChristensenBL, KomschliesKL, GressRE, MackallCL: Interleukin-7 restores immunity in athymic T-cell-depleted hosts.Blood97 , 1525–1533 (2001).
  • Alpdogan O , MuriglanSJ, EngJMet al.: IL-7 enhances peripheral T cell reconstitution after allogeneic hematopoietic stem cell transplantation.J. Clin. Invest.112 , 1095–1107 (2003).
  • Broers AE , Posthumus-van Sluijs SJ, Spits H et al.: Interleukin-7 improves T-cell recovery after experimental T-cell-depleted bone marrow transplantation in T-cell-deficient mice by strong expansion of recent thymic emigrants. Blood102 , 1534–1540 (2003).
  • Shultz LD , LyonsBL, BurzenskiLMet al.: Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R g null mice engrafted with mobilized human hemopoietic stem cells.J. Immunol.174 , 6477–6489 (2005).
  • Storek J , GillespyT 3rd, Lu H et al.: Interleukin-7 improves CD4 T-cell reconstitution after autologous CD34 cell transplantation in monkeys. Blood101 , 4209–4218 (2003).
  • Fry TJ , MoniuszkoM, CreekmoreSet al.: IL-7 therapy dramatically alters peripheral T-cell homeostasis in normal and SIV-infected nonhuman primates.Blood101 , 2294–2299 (2003).
  • Beq S , NugeyreMT, Ho Tsong Fang R et al.: IL-7 induces immunological improvement in SIV-infected rhesus macaques under antiviral therapy. J. Immunol.176 , 914–922 (2006).
  • Sportes C , HakimFT, MemonSAet al.: Administration of rhIL-7 in humans increases in vivo TCR repertoire diversity by preferential expansion of naive T cell subsets.J. Exp. Med.205 , 1701–1714 (2008).
  • Sportes C , BabbRR, KrumlaufMCet al.: Phase I study of recombinant human interleukin-7 administration in subjects with refractory malignancy.Clin. Cancer Res.16 , 727–735.
  • Dean RM , FryT, MackallCet al.: Association of serum interleukin-7 levels with the development of acute graft-versus-host disease.J. Clin. Oncol.26 , 5735–5741 (2008).
  • Sinha ML , FryTJ, FowlerDH, MillerG, MackallCL: Interleukin 7 worsens graft-versus-host disease.Blood100 , 2642–2649 (2002).
  • Andre-Schmutz I , BonhommeD, YatesFet al.: IL-7 effect on immunological reconstitution after HSCT depends on MHC incompatibility.Br. J. Haematol.126 , 844–851 (2004).
  • Chen Q , KhouryM, ChenJ: Expression of human cytokines dramatically improves reconstitution of specific human-blood lineage cells in humanized mice.Proc. Natl Acad. Sci. USA106 , 21783–21788 (2009).
  • Huntington ND , LegrandN, AlvesNLet al.: IL-15 trans-presentation promotes human NK cell development and differentiation in vivo.J. Exp. Med.206 , 25–34 (2009).
  • Williams KM , HakimFT, GressRE: T cell immune reconstitution following lymphodepletion.Semin. Immunol.19 , 318–330 (2007).
  • Alpdogan O , van den Brink MR: IL-7 and IL-15: therapeutic cytokines for immunodeficiency. Trends Immunol.26 , 56–64 (2005).
  • Alpdogan O , EngJM, MuriglanSJet al.: Interleukin-15 enhances immune reconstitution after allogeneic bone marrow transplantation.Blood105 , 865–873 (2005).
  • Klebanoff CA , FinkelsteinSE, SurmanDRet al.: IL-15 enhances the in vivo antitumor activity of tumor-reactive CD8+ T cells.Proc. Natl Acad. Sci. USA101 , 1969–1974 (2004).
  • Danilenko DM , MontestruqueS, PhiloJSet al.: Recombinant rat fibroblast growth factor-16: structure and biological activity.Arch. Biochem. Biophys.361 , 34–46 (1999).
  • Farrell CL , BreadyJV, RexKLet al.: Keratinocyte growth factor protects mice from chemotherapy and radiation-induced gastrointestinal injury and mortality.Cancer Res.58 , 933–939 (1998).
  • Min D , Panoskaltsis-MortariA, KuroOM, HollanderGA, BlazarBR, WeinbergKI: Sustained thymopoiesis and improvement in functional immunity induced by exogenous KGF administration in murine models of aging.Blood109 , 2529–2537 (2007).
  • Seggewiss R , LoreK, GuenagaFJet al.: Keratinocyte growth factor augments immune reconstitution after autologous hematopoietic progenitor cell transplantation in rhesus macaques.Blood110 , 441–449 (2007).
  • Jenq RR , KingCG, VolkCet al.: Keratinocyte growth factor enhances DNA plasmid tumor vaccine responses after murine allogeneic bone marrow transplantation.Blood113 , 1574–1580 (2009).
  • Spielberger R , StiffP, BensingerWet al.: Palifermin for oral mucositis after intensive therapy for hematologic cancers.N. Engl. J. Med.351 , 2590–2598 (2004).
  • Stiff PJ , EmmanouilidesC, BensingerWIet al.: Palifermin reduces patient-reported mouth and throat soreness and improves patient functioning in the hematopoietic stem-cell transplantation setting.J. Clin. Oncol.24 , 5186–5193 (2006).
  • Mackall CL , GressRE: Pathways of T-cell regeneration in mice and humans: implications for bone marrow transplantation and immunotherapy.Immunol. Rev.157 , 61–72 (1997).
  • Utsuyama M , HirokawaK: Hypertrophy of the thymus and restoration of immune functions in mice and rats by gonadectomy.Mech. Ageing Dev.47 , 175–185 (1989).
  • Medina KL , StrasserA, KincadePW: Estrogen influences the differentiation, proliferation, and survival of early B-lineage precursors.Blood95 , 2059–2067 (2000).
  • Dudakov JA , GoldbergGL, ReisegerJJ, VlahosK, ChidgeyAP, BoydRL: Sex steroid ablation enhances hematopoietic recovery following cytotoxic antineoplastic therapy in aged mice.J. Immunol.183 , 7084–7094 (2009).
  • Goldberg GL , SutherlandJS, HammetMVet al.: Sex steroid ablation enhances lymphoid recovery following autologous hematopoietic stem cell transplantation.Transplantation80 , 1604–1613 (2005).
  • Goldberg GL , AlpdoganO, MuriglanSJet al.: Enhanced immune reconstitution by sex steroid ablation following allogeneic hemopoietic stem cell transplantation.J. Immunol.178 , 7473–7484 (2007).
  • Goldberg GL , KingCG, NejatRAet al.: Luteinizing hormone-releasing hormone enhances T cell recovery following allogeneic bone marrow transplantation.J. Immunol.182 , 5846–5854 (2009).
  • Kelly RM , HighfillSL, Panoskaltsis-MortariAet al.: Keratinocyte growth factor and androgen blockade work in concert to protect against conditioning regimen-induced thymic epithelial damage and enhance T-cell reconstitution after murine bone marrow transplantation.Blood111 , 5734–5744 (2008).
  • Sutherland JS , GoldbergGL, HammettMVet al.: Activation of thymic regeneration in mice and humans following androgen blockade.J. Immunol.175 , 2741–2753 (2005).
  • Sutherland JS , SpyroglouL, MuirheadJLet al.: Enhanced immune system regeneration in humans following allogeneic or autologous hemopoietic stem cell transplantation by temporary sex steroid blockade.Clin. Cancer Res.14 , 1138–1149 (2008).
  • Clark R : The somatogenic hormones and insulin-like growth factor-1: stimulators of lymphopoiesis and immune function.Endocr. Rev.18 , 157–179 (1997).
  • Montecino-Rodriguez E , ClarkR, DorshkindK: Effects of insulin-like growth factor administration and bone marrow transplantation on thymopoiesis in aged mice.Endocrinology139 , 4120–4126 (1998).
  • Murphy WJ , DurumSK, LongoDL: Human growth hormone promotes engraftment of murine or human T cells in severe combined immunodeficient mice.Proc. Natl Acad. Sci. USA89 , 4481–4485 (1992).
  • Hanley MB , NapolitanoLA, McCuneJM: Growth hormone-induced stimulation of multilineage human hematopoiesis.Stem Cells23 , 1170–1179 (2005).
  • Huang S , TerstappenLW: Lymphoid and myeloid differentiation of single human CD34+, HLA-DR+, CD38- hematopoietic stem cells.Blood83 , 1515–1526 (1994).
  • Chu YW , SchmitzS, ChoudhuryBet al.: Exogenous insulin-like growth factor 1 enhances thymopoiesis predominantly through thymic epithelial cell expansion.Blood112 , 2836–2846 (2008).
  • Alpdogan O , MuriglanSJ, KappelBJet al.: Insulin-like growth factor-I enhances lymphoid and myeloid reconstitution after allogeneic bone marrow transplantation.Transplantation75 , 1977–1983 (2003).
  • Robbins K , McCabeS, ScheinerT, StrasserJ, ClarkR, JardieuP: Immunological effects of insulin-like growth factor-I – enhancement of immunoglobulin synthesis.Clin. Exp. Immunol.95 , 337–342 (1994).
  • Tian ZG , WoodyMA, SunRet al.: Recombinant human growth hormone promotes hematopoietic reconstitution after syngeneic bone marrow transplantation in mice.Stem Cells16 , 193–199 (1998).
  • Napolitano LA , SchmidtD, GotwayMBet al.: Growth hormone enhances thymic function in HIV-1-infected adults.J. Clin. Invest.118 , 1085–1098 (2008).
  • Ma NS , ShahAJ, GeffnerME, KapoorN: IGF-I stimulates in vivo thymopoiesis after stem cell transplantation in a child with Omenn syndrome.J. Clin. Immunol.30 , 114–120.
  • Schmitt TM , Zuniga-PfluckerJC: Induction of T cell development from hematopoietic progenitor cells by Delta-like-1 in vitro.Immunity17 , 749–756 (2002).
  • Ohishi K , Varnum-FinneyB, BernsteinID: δ-1 enhances marrow and thymus repopulating ability of human CD34+ CD38- cord blood cells.J. Clin. Invest.110 , 1165–1174 (2002).
  • Radtke F , WilsonA, ManciniSJ, MacDonaldHR: Notch regulation of lymphocyte development and function.Nat. Immunol.5 , 247–253 (2004).
  • Wolfer A , WilsonA, NemirM, MacDonaldHR, RadtkeF: Inactivation of Notch1 impairs VDJβ rearrangement and allows pre-TCR-independent survival of early α β lineage thymocytes.Immunity16 , 869–879 (2002).
  • Ciofani M , Zuniga-PfluckerJC: Notch promotes survival of pre-T cells at the β-selection checkpoint by regulating cellular metabolism.Nat. Immunol.6 , 881–888 (2005).
  • Schmitt TM , CiofaniM, PetrieHT, Zuniga-PfluckerJC: Maintenance of T cell specification and differentiation requires recurrent notch receptor-ligand interactions.J. Exp. Med.200 , 469–479 (2004).
  • Pui JC , AllmanD, XuLet al.: Notch1 expression in early lymphopoiesis influences B versus T lineage determination.Immunity11 , 299–308 (1999).
  • Jaleco AC , NevesH, HooijbergEet al.: Differential effects of Notch ligands δ-1 and Jagged-1 in human lymphoid differentiation.J. Exp. Med.194 , 991–1002 (2001).
  • De Smedt M , HoebekeI, PlumJ: Human bone marrow CD34+ progenitor cells mature to T cells on OP9-DL1 stromal cell line without thymus microenvironment.Blood Cells Mol. Dis.33 , 227–232 (2004).
  • La Motte-Mohs RN , HererE, Zuniga-PfluckerJC: Induction of T-cell development from human cord blood hematopoietic stem cells by Delta-like 1 in vitro.Blood105 , 1431–1439 (2005).
  • Zuniga-Pflucker JC : T-cell development made simple.Nat. Rev. Immunol.4 , 67–72 (2004).
  • Watanabe Y , MazdaO, AibaYet al.: A murine thymic stromal cell line which may support the differentiation of CD4–8- thymocytes into CD4+8- α β T cell receptor positive T cells.Cell Immunol.142 , 385–397 (1992).
  • Zakrzewski JL , KochmanAA, LuSXet al.: Adoptive transfer of T-cell precursors enhances T-cell reconstitution after allogeneic hematopoietic stem cell transplantation.Nat. Med.12 , 1039–1047 (2006).
  • Zakrzewski JL , SuhD, MarkleyJCet al.: Tumor immunotherapy across MHC barriers using allogeneic T-cell precursors.Nat. Biotechnol.26 , 453–461.
  • Meek B , CloosenS, BorsottiCet al.: In vitro-differentiated T/natural killer-cell progenitors derived from human CD34+ cells mature in the thymus.Blood115 , 261–264 (2008).
  • Lefort N , BenneC, LelievreJDet al.: Short exposure to Notch ligand δ-4 is sufficient to induce T-cell differentiation program and to increase the T cell potential of primary human CD34+ cells.Exp. Hematol.34 , 1720–1729 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.