190
Views
0
CrossRef citations to date
0
Altmetric
Review

Enhancement of Dendritic Cells as Vaccines for Cancer

&
Pages 847-862 | Published online: 22 Nov 2010

Bibliography

  • Forster R , SchubelA, BreitfeldD et al.: CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs.Cell99(1) , 23–33 (1999).
  • Sanchez-Sanchez N , Riol-BlancoL, Rodriguez-FernandezJL: The multiple personalities of the chemokine receptor CCR7 in dendritic cells.J. Immunol.176(9) , 5153–5159 (2006).
  • Steinman RM : Some interfaces of dendritic cell biology.APMIS111(7–8) , 675–697 (2003).
  • Banchereau J , SteinmanRM: Dendritic cells and the control of immunity.Nature392(6673) , 245–252 (1998).
  • Luo J , SoliminiNL, ElledgeSJ: Principles of cancer therapy: oncogene and non-oncogene addiction.Cell136(5) , 823–837 (2009).
  • Bronte V , MocellinS: Suppressive influences in the immune response to cancer.J. Immunother.32(1) , 1–11 (2009).
  • Hsu FJ , BenikeC, FagnoniF et al.: Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells.Nat. Med.2(1) , 52–58 (1996).
  • Nestle FO , AlijagicS, GillietM et al..: Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat. Med.4(3) , 328–332 (1998).
  • Di Nicola M , Carlo-StellaC, MortariniR et al.: Boosting T cell-mediated immunity to tyrosinase by vaccinia virus-transduced, CD34+-derived dendritic cell vaccination: a Phase I trial in metastatic melanoma.Clin. Cancer Res.10(16) , 5381–5390 (2004).
  • Fay JW , PaluckaAK, PaczesnyS et al.: Long-term outcomes in patients with metastatic melanoma vaccinated with melanoma peptide-pulsed CD34+ progenitor-derived dendritic cells.Cancer Immunol. Immunother.55(10) , 1209–1218 (2006).
  • Reichardt VL , BrossartP, KanzL: Dendritic cells in vaccination therapies of human malignant disease.Blood Rev.18(4) , 235–243 (2004).
  • Anguille S , SmitsEL, CoolsN, GoossensH, BernemanZN, Van Tendeloo V: Short-term cultured, interleukin-15 differentiated dendritic cells have potent immunostimulatory properties. J. Transl. Med.7 , 109 (2009).
  • Trakatelli M , ToungouzM, BlockletD et al.: A new dendritic cell vaccine generated with interleukin-3 and interferon-β induces CD8+ T cell responses against NA17-A2 tumor peptide in melanoma patients.Cancer Immunol. Immunother.55(4) , 469–474 (2006).
  • Jonuleit H , KuhnU, MullerG et al.: Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions.Eur. J. Immunol.27(12) , 3135–3142 (1997).
  • Ridgway D : The first 1000 dendritic cell vaccinees.Cancer Invest.21(6) , 873–886 (2003).
  • Palucka AK , UenoH, FayJ, BanchereauJ: Harnessing dendritic cells to generate cancer vaccines.Ann. NY Acad. Sci.1174 , 88–98 (2009).
  • Grover A , KimGJ, LizeeG et al.: Intralymphatic dendritic cell vaccination induces tumor antigen-specific, skin-homing T lymphocytes.Clin. Cancer Res.12(19) , 5801–5808 (2006).
  • Lesimple T , NeidhardEM, VignardV et al.: Immunologic and clinical effects of injecting mature peptide-loaded dendritic cells by intralymphatic and intranodal routes in metastatic melanoma patients.Clin. Cancer Res.12(24) , 7380–7388 (2006).
  • Maier T , Tun-KyiA, TassisA et al.: Vaccination of patients with cutaneous T-cell lymphoma using intranodal injection of autologous tumor-lysate-pulsed dendritic cells.Blood102(7) , 2338–2344 (2003).
  • Dannull J , SuZ, RizzieriD et al.: Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells.J. Clin. Invest.115(12) , 3623–3633 (2005).
  • Gilboa E , ViewegJ: Cancer immunotherapy with mRNA-transfected dendritic cells.Immunol. Rev.199 , 251–263 (2004).
  • Pecher G , HaringA, KaiserL, ThielE: Mucin gene (MUC1) transfected dendritic cells as vaccine: results of a Phase I/II clinical trial.Cancer Immunol. Immunother.51(11–12) , 669–673 (2002).
  • Butterfield LH , Comin-AnduixB, VujanovicL et al.: Adenovirus MART-1-engineered autologous dendritic cell vaccine for metastatic melanoma.J. Immunother.31(3) , 294–309 (2008).
  • Morse MA , ClayTM, HobeikaAC et al.: Phase I study of immunization with dendritic cells modified with fowlpox encoding carcinoembryonic antigen and costimulatory molecules.Clin. Cancer Res.11(8) , 3017–3024 (2005).
  • Paczesny S , BanchereauJ, WittkowskiKM, SaracinoG, FayJ, PaluckaAK: Expansion of melanoma-specific cytolytic CD8+ T cell precursors in patients with metastatic melanoma vaccinated with CD34+ progenitor-derived dendritic cells.J. Exp. Med.199(11) , 1503–1511 (2004).
  • Wierecky J , MullerMR, WirthsS et al.: Immunologic and clinical responses after vaccinations with peptide-pulsed dendritic cells in metastatic renal cancer patients.Cancer Res.66(11) , 5910–5918 (2006).
  • Kern F , FaulhaberN, FrommelC et al.: Analysis of CD8 T cell reactivity to cytomegalovirus using protein-spanning pools of overlapping pentadecapeptides.Eur. J. Immunol.30(6) , 1676–1682 (2000).
  • Timmerman JM , CzerwinskiDK, DavisTA et al.: Idiotype-pulsed dendritic cell vaccination for B-cell lymphoma: clinical and immune responses in 35 patients.Blood99(5) , 1517–1526 (2002).
  • Curti A , TosiP, ComoliP et al.: Phase I/II clinical trial of sequential subcutaneous and intravenous delivery of dendritic cell vaccination for refractory multiple myeloma using patient-specific tumour idiotype protein or idiotype (VDJ)-derived class I-restricted peptides.Br. J. Haematol.139(3) , 415–424 (2007).
  • Heiser A , ColemanD, DannullJ et al.: Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors.J. Clin. Invest.109(3) , 409–417 (2002).
  • Palucka AK , UenoH, ConnollyJ et al.: Dendritic cells loaded with killed allogeneic melanoma cells can induce objective clinical responses and MART-1 specific CD8+ T-cell immunity.J. Immunother.29(5) , 545–557 (2006).
  • Di Nicola M ., Zappasodi R, Carlo-Stella C et al.: Vaccination with autologous tumor-loaded dendritic cells induces clinical and immunologic responses in indolent B-cell lymphoma patients with relapsed and measurable disease: a pilot study. Blood113(1) , 18–27 (2009).
  • Von Euw EM , BarrioMM, FurmanD et al.: A Phase I clinical study of vaccination of melanoma patients with dendritic cells loaded with allogeneic apoptotic/necrotic melanoma cells. Analysis of toxicity and immune response to the vaccine and of IL-10 -1082 promoter genotype as predictor of disease progression.J. Transl. Med.6 , 6 (2008).
  • Su Z , DannullJ, HeiserA et al.: Immunological and clinical responses in metastatic renal cancer patients vaccinated with tumor RNA-transfected dendritic cells.Cancer Res.63(9) , 2127–2133 (2003).
  • Avigan DE , VasirB, GeorgeDJ et al.: Phase I/II study of vaccination with electrofused allogeneic dendritic cells/autologous tumor-derived cells in patients with stage IV renal cell carcinoma.J. Immunother.30(7) , 749–761 (2007).
  • Zehn D , CohenCJ, ReiterY, WaldenP: Extended presentation of specific MHC-peptide complexes by mature dendritic cells compared to other types of antigen-presenting cells.Eur. J. Immunol.34(6) , 1551–1560 (2004).
  • Yang L , YangH, RideoutK et al.: Engineered lentivector targeting of dendritic cells for in vivo immunization.Nat. Biotechnol.26(3) , 326–334 (2008).
  • Breckpot K , AertsJL, ThielemansK: Lentiviral vectors for cancer immunotherapy: transforming infectious particles into therapeutics.Gene Ther.14(11) , 847–862 (2007).
  • Tsang KY , PalenaC, YokokawaJ et al.: Analyses of recombinant vaccinia and fowlpox vaccine vectors expressing transgenes for two human tumor antigens and three human costimulatory molecules.Clin. Cancer Res.11(4) , 1597–1607 (2005).
  • Knippertz I , HesseA, SchunderT et al.: Generation of human dendritic cells that simultaneously secrete IL-12 and have migratory capacity by adenoviral gene transfer of hCD40L in combination with IFN-γ.J. Immunother.32(5) , 524–538 (2009).
  • Fattori E , AurisicchioL, ZampaglioneI et al.: ErbB2 genetic cancer vaccine in nonhuman primates: relevance of single nucleotide polymorphisms.Hum. Gene Ther.20(3) , 253–265 (2009).
  • Akira S , UematsuS, TakeuchiO: Pathogen recognition and innate immunity.Cell124(4) , 783–801 (2006).
  • Trinchieri G : Interleukin-12 and the regulation of innate resistance and adaptive immunity.Nat. Rev. Immunol.3(2) , 133–146 (2003).
  • Shortman K , NaikSH: Steady-state and inflammatory dendritic-cell development.Nat. Rev. Immunol.7(1) , 19–30 (2007).
  • Dhodapkar MV , SteinmanRM, KrasovskyJ, MunzC, BhardwajN: Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells.J. Exp. Med.193(2) , 233–238 (2001).
  • Sozzani S : Dendritic cell trafficking: more than just chemokines.Cytokine Growth Factor Rev.16(6) , 581–592 (2005).
  • Randolph GJ , Sanchez-SchmitzG, AngeliV: Factors and signals that govern the migration of dendritic cells via lymphatics: recent advances.Springer Semin. Immunopathol.26(3) , 273–287 (2005).
  • Ohl L , MohauptM, CzelothN et al.: CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions.Immunity21(2) , 279–288 (2004).
  • deVries I , KrooshoopDJ, ScharenborgNM et al.: Effective migration of antigen-pulsed dendritic cells to lymph nodes in melanoma patients is determined by their maturation state.Cancer Res.63(1) , 12–17 (2003).
  • Verdijk P , AarntzenEH, LesterhuisWJ et al.: Limited amounts of dendritic cells migrate into the T-cell area of lymph nodes but have high immune activating potential in melanoma patients.Clin. Cancer Res.15(7) , 2531–2540 (2009).
  • Martin-Fontecha A , SebastianiS, HopkenUE et al.: Regulation of dendritic cell migration to the draining lymph node: impact on T lymphocyte traffic and priming.J. Exp. Med.198(4) , 615–621 (2003).
  • Elliott B , ScolyerRA, SuciuS et al.: Long-term protective effect of mature DC-LAMP+ dendritic cell accumulation in sentinel lymph nodes containing micrometastatic melanoma.Clin. Cancer Res.13(13) , 3825–3830 (2007).
  • Mule JJ : Dendritic cell-based vaccines for pancreatic cancer and melanoma.Ann. NY Acad. Sci.1174 , 33–40 (2009).
  • Berntsen A , TrepiakasR, WenandyL et al.: Therapeutic dendritic cell vaccination of patients with metastatic renal cell carcinoma: a clinical Phase 1/2 trial.J. Immunother.31(8) , 771–780 (2008).
  • Kaka AS , FosterAE, WeissHL, RooneyCM, LeenAM: Using dendritic cell maturation and IL-12 producing capacity as markers of function: a cautionary tale.J. Immunother.31(4) , 359–369 (2008).
  • Song XT , Evel-KablerK, ShenL, RollinsL, HuangXF, ChenSY: A20 is an antigen presentation attenuator, and its inhibition overcomes regulatory T cell-mediated suppression.Nat. Med.14(3) , 258–265 (2008).
  • Bonehill A , Van Nuffel AM, Corthals J et al.: Single-step antigen loading and activation of dendritic cells by mRNA electroporation for the purpose of therapeutic vaccination in melanoma patients. Clin. Cancer Res.15(10) , 3366–3375 (2009).
  • Lapteva N , SeethammagariMR, HanksBA et al.: Enhanced activation of human dendritic cells by inducible CD40 and Toll-like receptor-4 ligation.Cancer Res.67(21) , 10528–10537 (2007).
  • Boczkowski D , LeeJ, PruittS, NairS: Dendritic cells engineered to secrete anti-GITR antibodies are effective adjuvants to dendritic cell-based immunotherapy.Cancer Gene Ther.16(12) , 900–911 (2009).
  • Keller AM , SchildknechtA, XiaoY, van den Broek M, Borst J: Expression of costimulatory ligand CD70 on steady-state dendritic cells breaks CD8+ T cell tolerance and permits effective immunity. Immunity29(6) , 934–946 (2008).
  • Keller AM , XiaoY, PeperzakV, NaikSH, BorstJ: Costimulatory ligand CD70 allows induction of CD8+ T-cell immunity by immature dendritic cells in a vaccination setting.Blood113(21) , 5167–5175 (2009).
  • Krause P , BrucknerM, UermosiC, SingerE, GroettrupM, LeglerDF: Prostaglandin E(2) enhances T-cell proliferation by inducing the costimulatory molecules OX40L, CD70, and 4–1BBL on dendritic cells.Blood113(11) , 2451–2460 (2009).
  • Bonehill A , TuyaertsS, Van Nuffel AM et al.: Enhancing the T-cell stimulatory capacity of human dendritic cells by co-electroporation with CD40L, CD70 and constitutively active TLR4 encoding mRNA. Mol. Ther.16(6) , 1170–1180 (2008).
  • Salem ML , KadimaAN, ZhouY et al.: Paracrine release of IL-12 stimulates IFN-γ production and dramatically enhances the antigen-specific T cell response after vaccination with a novel peptide-based cancer vaccine.J. Immunol.172(9) , 5159–5167 (2004).
  • Okada N , IiyamaS, OkadaY et al.: Immunological properties and vaccine efficacy of murine dendritic cells simultaneously expressing melanoma-associated antigen and interleukin-12.Cancer Gene Ther.12(1) , 72–83 (2005).
  • Tatsumi T , HuangJ, GoodingWE et al.: Intratumoral delivery of dendritic cells engineered to secrete both interleukin (IL)-12 and IL-18 effectively treats local and distant disease in association with broadly reactive Tc1-type immunity.Cancer Res.63(19) , 6378–6386 (2003).
  • Saika T , SatohT, KusakaN et al.: Route of administration influences the antitumor effects of bone marrow-derived dendritic cells engineered to produce interleukin-12 in a metastatic mouse prostate cancer model.Cancer Gene Ther.11(5) , 317–324 (2004).
  • Nukiwa M , AndariniS, ZainiJ et al.: Dendritic cells modified to express fractalkine/CX3CL1 in the treatment of preexisting tumors.Eur. J. Immunol.36(4) , 1019–1027 (2006).
  • Yang SC , BatraRK, HillingerS et al.: Intrapulmonary administration of CCL21 gene-modified dendritic cells reduces tumor burden in spontaneous murine bronchoalveolar cell carcinoma.Cancer Res.66(6) , 3205–3213 (2006).
  • Wiethe C , DittmarK, DoanT, LindenmaierW, TindleR: Enhanced effector and memory CTL responses generated by incorporation of receptor activator of NF-κB (RANK)/RANK ligand costimulatory molecules into dendritic cell immunogens expressing a human tumor-specific antigen.J. Immunol.171(8) , 4121–4130 (2003).
  • Steel JC , RamloganCA, YuP et al.: Interleukin-15 signaling augments dendritic cell vaccination against HER2/Neu by inducing Her2/Neu antibodies.Cancer Res.70(3) , 1072–1081 (2010).
  • Park D , LaptevaN, SeethammagariM, SlawinKM, SpencerDM: An essential role for Akt1 in dendritic cell function and tumor immunotherapy.Nat. Biotechnol.24(12) , 1581–1590 (2006).
  • Chen M , HuangL, ShabierZ, WangJ: Regulation of the lifespan in dendritic cell subsets.Mol. Immunol.44(10) , 2558–2565 (2007).
  • Hou WS , Van Parijs L: A Bcl-2-dependent molecular timer regulates the lifespan and immunogenicity of dendritic cells. Nat. Immunol.5(6) , 583–589 (2004).
  • Kang TH , LeeJH, NohKH et al.: Enhancing dendritic cell vaccine potency by combining a BAK/BAX siRNA-mediated antiapoptotic strategy to prolong dendritic cell life with an intracellular strategy to target antigen to lysosomal compartments.Int. J. Cancer120(8) , 1696–1703 (2007).
  • Kim JH , KangTH, NohKH et al.: Enhancement of dendritic cell-based vaccine potency by anti-apoptotic siRNAs targeting key pro-apoptotic proteins in cytotoxic CD8+ T cell-mediated cell death.Immunol. Lett.122(1) , 58–67 (2009).
  • Evel-Kabler K , SongXT, AldrichM, HuangXF, ChenSY: SOCS1 restricts dendritic cells‘ ability to break self tolerance and induce antitumor immunity by regulating IL-12 production and signaling.J. Clin. Invest.116(1) , 90–100 (2006).
  • Shen L , Evel-KablerK, StrubeR, ChenSY: Silencing of SOCS1 enhances antigen presentation by dendritic cells and antigen-specific anti-tumor immunity.Nat. Biotechnol.22(12) , 1546–1553 (2004).
  • Hong B , RenW, SongXT, Evel-KablerK, ChenSY, HuangXF: Human suppressor of cytokine signaling 1 controls immunostimulatory activity of monocyte-derived dendritic cells.Cancer Res.69(20) , 8076–8084 (2009).
  • Breckpot K , Aerts-ToegaertC, HeirmanC et al.: Attenuated expression of A20 markedly increases the efficacy of double-stranded RNA-activated dendritic cells as an anti-cancer vaccine.J. Immunol.182(2) , 860–870 (2009).
  • Kobayashi K , HernandezLD, GalanJE, JanewayCA Jr, Medzhitov R, Flavell RA: IRAK-M is a negative regulator of Toll-like receptor signaling. Cell110(2) , 191–202 (2002).
  • Li H , CuartasE, CuiW et al.: IL-1 receptor-associated kinase M is a central regulator of osteoclast differentiation and activation.J. Exp. Med.201(7) , 1169–1177 (2005).
  • Deng JC , ChengG, NewsteadMW et al.: Sepsis-induced suppression of lung innate immunity is mediated by IRAK-M.J. Clin. Invest.116(9) , 2532–2542 (2006).
  • Tazi KA , QuiocJJ, SaadaV, BezeaudA, LebrecD, MoreauR: Upregulation of TNF-α production signaling pathways in monocytes from patients with advanced cirrhosis: possible role of Akt and IRAK-M.J. Hepatol.45(2) , 280–289 (2006).
  • Wiersinga WJ , van‘t Veer C, van den Pangaart PS et al.: Immunosuppression associated with interleukin-1R-associated-kinase-M upregulation predicts mortality in Gram-negative sepsis (melioidosis). Crit. Care Med.37(2) , 569–576 (2009).
  • Turnis ME , SongXT, BearA et al.: IRAK-M removal counteracts dendritic cell vaccine deficits in migration and longevity.J. Immunol.185 , 4223–4232 (2010).
  • Arredouani MS , FrancoF, ImrichA et al.: Scavenger Receptors SR-AI/II and MARCO limit pulmonary dendritic cell migration and allergic airway inflammation.J. Immunol.178(9) , 5912–5920 (2007).
  • Colonna M : TREMs in the immune system and beyond.Nat. Rev. Immunol.3(6) , 445–453 (2003).
  • Graham LM , BrownGD: The Dectin-2 family of C-type lectins in immunity and homeostasis.Cytokine48(1–2) , 148–155 (2009).
  • Meyer-Wentrup F , Benitez-RibasD, TackenPJ et al.: Targeting DCIR on human plasmacytoid dendritic cells results in antigen presentation and inhibits IFN-α production.Blood111(8) , 4245–4253 (2008).
  • Cao W , ZhangL, RosenDB et al.: BDCA2/Fc ε RI γ complex signals through a novel BCR-like pathway in human plasmacytoid dendritic cells.PLoS Biol.5(10) , E248 (2007).
  • Matsushita N , KomineH, Grolleau-JuliusA, Pilon-ThomasS, MuleJJ: Targeting MARCO can lead to enhanced dendritic cell motility and anti-melanoma activity.Cancer Immunol. Immunother.59(6) , 875–884. (2010).
  • Bonifaz L , BonnyayD, MahnkeK, RiveraM, NussenzweigMC, SteinmanRM: Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance.J. Exp. Med.196(12) , 1627–1638 (2002).
  • Charalambous A , OksM, NchindaG, YamazakiS, SteinmanRM: Dendritic cell targeting of survivin protein in a xenogeneic form elicits strong CD4+ T cell immunity to mouse survivin.J. Immunol.177(12) , 8410–8421 (2006).
  • Steinman RM : Dendritic cells in vivo: a key target for a new vaccine science.Immunity29(3) , 319–324 (2008).
  • Caminschi I , ProiettoAI, AhmetF et al.: The dendritic cell subtype-restricted C-type lectin Clec9A is a target for vaccine enhancement.Blood112(8) , 3264–3273 (2008).
  • Sancho D , Mourao-SaD, JoffreOP et al.: Tumor therapy in mice via antigen targeting to a novel, DC-restricted C-type lectin.J. Clin. Invest.118(6) , 2098–2110 (2008).
  • Pilon-Thomas S , MackayA, VohraN, MuleJJ: Blockade of programmed death ligand 1 enhances the therapeutic efficacy of combination immunotherapy against melanoma.J. Immunol.184(7) , 3442–3449 (2010).
  • Koike N , Pilon-ThomasS, MuleJJ: Nonmyeloablative chemotherapy followed by T-cell adoptive transfer and dendritic cell-based vaccination results in rejection of established melanoma.J. Immunother.31(4) , 402–412 (2008).
  • Schwaab T , SchwarzerA, WolfB et al.: Clinical and immunologic effects of intranodal autologous tumor lysate-dendritic cell vaccine with Aldesleukin (interleukin 2) and IFN-α2a therapy in metastatic renal cell carcinoma patients.Clin. Cancer Res.15(15) , 4986–4992 (2009).
  • Haas AR , SunJ, VachaniA et al.: Cycloxygenase-2 inhibition augments the efficacy of a cancer vaccine.Clin. Cancer Res.12(1) , 214–222 (2006).
  • Sharma MD , HouDY, LiuY et al.: Indoleamine 2,3-dioxygenase controls conversion of Foxp3+ Tregs to TH17-like cells in tumor-draining lymph nodes.Blood113(24) , 6102–6111 (2009).
  • Sharma S , StolinaM, YangSC et al.: Tumor cyclooxygenase 2-dependent suppression of dendritic cell function.Clin. Cancer Res.9(3) , 961–968 (2003).
  • Morse MA , HobeikaAC, OsadaT et al.: Depletion of human regulatory T cells specifically enhances antigen-specific immune responses to cancer vaccines.Blood112(3) , 610–618 (2008).
  • Brenk M , SchelerM, KochS et al.: Tryptophan deprivation induces inhibitory receptors ILT3 and ILT4 on dendritic cells favoring the induction of human CD4+CD25+ Foxp3+ T regulatory cells.J. Immunol.183(1) , 145–154 (2009).
  • Ward RC , KaufmanHL: Targeting costimulatory pathways for tumor immunotherapy.Int. Rev. Immunol.26(3–4) , 161–196 (2007).
  • Attia P , PhanGQ, MakerAV et al.: Autoimmunity correlates with tumor regression in patients with metastatic melanoma treated with anti-cytotoxic T-lymphocyte antigen-4.J. Clin. Oncol.23(25) , 6043–6053 (2005).
  • Downey SG , KlapperJA, SmithFO et al.: Prognostic factors related to clinical response in patients with metastatic melanoma treated by CTL-associated antigen-4 blockade.Clin. Cancer Res.13(22 Pt 1) , 6681–6688 (2007).
  • Chakraborty M , SchlomJ, HodgeJW: The combined activation of positive costimulatory signals with modulation of a negative costimulatory signal for the enhancement of vaccine-mediated T-cell responses.Cancer Immunol. Immunother.56(9) , 1471–1484 (2007).
  • Curran MA , AllisonJP: Tumor vaccines expressing FLT3 ligand synergize with CTLA-4 blockade to reject preimplanted tumors.Cancer Res.69(19) , 7747–7755 (2009).
  • Iinuma T , HommaS, NodaT, KufeD, OhnoT, TodaG: Prevention of gastrointestinal tumors based on adenomatous polyposis coli gene mutation by dendritic cell vaccine.J. Clin. Invest.113(9) , 1307–1317 (2004).
  • Mukherjee P , BasuGD, TinderTL et al.: Progression of pancreatic adenocarcinoma is significantly impeded with a combination of vaccine and COX-2 inhibition.J. Immunol.182(1) , 216–224 (2009).
  • Rapoport AP , StadtmauerEA, AquiN et al.: Restoration of immunity in lymphopenic individuals with cancer by vaccination and adoptive T-cell transfer.Nat. Med.11(11) , 1230–1237 (2005).
  • Wheeler CJ , BlackKL, LiuG et al.: Vaccination elicits correlated immune and clinical responses in glioblastoma multiforme patients.Cancer Res.68(14) , 5955–5964 (2008).
  • Leen AM , RooneyCM, FosterAE: Improving T cell therapy for cancer.Annu. Rev. Immunol.25 , 243–265 (2007).
  • Loveland BE , ZhaoA, WhiteS et al.: Mannan-MUC1-pulsed dendritic cell immunotherapy: a Phase I trial in patients with adenocarcinoma.Clin. Cancer Res.12(3 Pt 1) , 869–877 (2006).
  • Maraskovsky E , SjolanderS, DraneDP et al.: NY-ESO-1 protein formulated in ISCOMATRIX adjuvant is a potent anticancer vaccine inducing both humoral and CD8+ T-cell-mediated immunity and protection against NY-ESO-1+ tumors.Clin. Cancer Res.10(8) , 2879–2890 (2004).
  • Morse MA , HobeikaA, OsadaT et al.: Long term disease-free survival and T cell and antibody responses in women with high-risk Her2+ breast cancer following vaccination against Her2.J. Transl. Med.5 , 42 (2007).
  • Shi L , LuoK, XiaD et al.: DIgR2, dendritic cell-derived immunoglobulin receptor 2, is one representative of a family of IgSF inhibitory receptors and mediates negative regulation of dendritic cell-initiated antigen-specific T-cell responses.Blood108(8) , 2678–2686 (2006).
  • Chang CC , CiubotariuR, ManavalanJS et al.: Tolerization of dendritic cells by T(S) cells: the crucial role of inhibitory receptors ILT3 and ILT4.Nat. Immunol.3(3) , 237–243 (2002).
  • Chang CC , LiuZ, VladG et al.: Ig-like transcript 3 regulates expression of proinflammatory cytokines and migration of activated T cells.J. Immunol.182(9) , 5208–5216 (2009).
  • Endo S , SakamotoY, KobayashiE, NakamuraA, TakaiT: Regulation of cytotoxic T lymphocyte triggering by PIR-B on dendritic cells.Proc. Natl Acad. Sci. USA105(38) , 14515–14520 (2008).
  • Zhang H , MengF, ChuCL, TakaiT, LowellCA: The Src family kinases Hck and Fgr negatively regulate neutrophil and dendritic cell chemokine signaling via PIR-B.Immunity22(2) , 235–246 (2005).
  • Benedict CA , LoewendorfA, GarciaZ, BlazarBR, JanssenEM: Dendritic cell programming by cytomegalovirus stunts naive T cell responses via the PD-L1/PD-1 pathway.J. Immunol.180(7) , 4836–4847 (2008).
  • Butte MJ , KeirME, PhamduyTB, SharpeAH, FreemanGJ: Programmed death-1 ligand 1 interacts specifically with the B7–1 costimulatory molecule to inhibit T cell responses.Immunity27(1) , 111–122 (2007).
  • Curiel TJ , WeiS, DongH et al.: Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity.Nat. Med.9(5) , 562–567 (2003).
  • Kim HK , GuanH, ZuG et al.: High-level expression of B7-H1 molecules by dendritic cells suppresses the function of activated T cells and desensitizes allergen-primed animals.J. Leukoc. Biol.79(4) , 686–695 (2006).
  • Fukunaga A , NagaiH, NoguchiT et al.: Src homology 2 domain-containing protein tyrosine phosphatase substrate 1 regulates the migration of Langerhans cells from the epidermis to draining lymph nodes.J. Immunol.172(7) , 4091–4099 (2004).
  • Latour S , TanakaH, DemeureC et al.: Bidirectional negative regulation of human T and dendritic cells by CD47 and its cognate receptor signal-regulator protein-α: down-regulation of IL-12 responsiveness and inhibition of dendritic cell activation.J. Immunol.167(5) , 2547–2554 (2001).
  • Fujikado N , SaijoS, YonezawaT et al.: Dcir deficiency causes development of autoimmune diseases in mice due to excess expansion of dendritic cells.Nat. Med.14(2) , 176–180 (2008).
  • Chen CH , FloydH, OlsonNE et al.: Dendritic-cell-associated C-type lectin 2 (DCAL-2) alters dendritic-cell maturation and cytokine production.Blood107(4) , 1459–1467 (2006).
  • Pyz E , HuysamenC, MarshallAS, GordonS, TaylorPR, BrownGD: Characterisation of murine MICL (CLEC12A) and evidence for an endogenous ligand.Eur. J. Immunol.38(4) , 1157–1163 (2008).
  • Behrens EM , SriramU, ShiversDK et al.: Complement receptor 3 ligation of dendritic cells suppresses their stimulatory capacity.J. Immunol.178(10) , 6268–6279 (2007).
  • Skoberne M , SomersanS, AlmodovarW et al.: The apoptotic-cell receptor CR3, but not avb5, is a regulator of human dendritic-cell immunostimulatory function.Blood108(3) , 947–955 (2006).

▪ Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.