165
Views
0
CrossRef citations to date
0
Altmetric
Review

Drug-Mediated and Cellular Immunotherapy in Multiple Myeloma

, , &
Pages 243-255 | Published online: 05 Mar 2010

Bibliography

  • Jagannath S , BarlogieB: Autologous bone marrow transplantation for multiple myeloma.Hematol. Oncol. Clin. North Am.6 , 437–449 (1992).
  • Attal M , HarousseauJL, StoppaAMet al.: Intensive therapy for high grade multiple myeloma(MM).N. Engl. J. Med.335 , 91–97 (1996).
  • Richardson PG , SonneveldP, SchusterMWet al.: Bortezomib or high-dose dexamethasone for relapsed multiple myeloma.N. Engl. J. Med.352 , 2487–2498 (2005).
  • Kumar SK , RajkumarSV, DispenzieriAet al.: Improved survival in multiple myeloma and the impact of novel therapies.Blood111(5) , 2516–2520 (2008).
  • Rajkumar SV : Treatment of myeloma: cure vs control.Mayo Clin. Proc.83(10) , 1142–1145 (2008).
  • Zou W : Immunosuppressive networks in the tumour environment and their therapeutic relevance.Nat. Rev. Cancer5(4) , 263–274 (2005).
  • Brown RD , PopeB, MurrayAet al.: Dendritic cells from patients with myeloma are numerically normal but functionally defective as they fail to up-regulate CD80(B7–1) expression after huCD40LT stimulation because of inhibition by transforming growth factor-β1 and interleukin-10.Blood15 , 98(10) , 2992–2998 (2001).
  • Ratta M , FagnoniF, CurtiAet al.: Dendritic cells are functionally defective in multiple myeloma: the role of interleukin-6.Blood100(1) , 230–237 (2002).
  • Hegde S , PahneJ, Smola-HessS: Novel immunosuppressive properties of interleukin-6 in dendritic cells: inhibition of NF-κB binding activity and CCR7 expression.FASEB J.18(12) , 1439–1441 (2004).
  • Takahashi A , KonoK, IchiharaF, SugaiH, FujiiH, MatsumotoY: Vascular endothelial growth factor inhibits maturation of dendritic cells induced by lipopolysaccharide, but not by proinflammatory cytokines.Cancer Immunol. Immunother.53(6) , 543–550 (2004).
  • Cook G , CampbellJD, CarrCE, BoydKS, FranklinIM: Transforming growth factor b from multiple myeloma cells inhibits proliferation and IL-2 responsiveness in T lymphocytes.J. Leukoc. Biol.66(6) , 981–988 (1999).
  • Brimnes MK , SvaneIM, JohnsenHE: Impaired functionality and phenotypic profile of dendritic cells from patients with multiple myeloma.Clin. Exp. Immunol.144(1) , 76–84 (2006).
  • Jarahian M , WatzlC, IssaY, AltevogtP, MomburgF: Blockade of natural killer cell-mediated lysis by NCAM140 expressed on tumor cells.Int. J. Cancer120(12) , 2625–2634 (2007).
  • Smyth MJ , GodfreyDI, TrapaniJA: A fresh look at tumor immunosurveillance and immunotherapy.Nat. Immunol.2(4) , 293–299 (2001).
  • Pratt G , GoodyearO, MossP: Immunodeficiency and immunotherapy in multiple myeloma.Br. J. Haematol.138(5) , 563–579 (2007).
  • Munshi NC : Immunoregulatory mechanisms in multiple myeloma.Hematol. Oncol. Clin. North Am.11(1) , 51–69 (1997).
  • Rawstron AC , DaviesFE, OwenRGet al.: B-lymphocyte suppression in multiple myeloma is a reversible phenomenon specific to normal B-cell progenitors and plasma cell precursors.Br. J. Haematol.100(1) , 176–183 (1998).
  • Mills KH , CawleyJC: Abnormal monoclonal antibody-defined helper/suppressor T-cell subpopulations in multiple myeloma: relationship to treatment and clinical stage.Br. J. Haematol.53(2) , 271–275 (1983).
  • Ogawara H , HandaH, YamazakiTet al.: High Th1/Th2 ratio in patients with multiple myeloma.Leuk. Res.29(2) , 135–140 (2005).
  • Frassanito MA , CusmaiA, DammaccoF: Deregulated cytokine network and defective Th1 immune response in multiple myeloma.Clin. Exp. Immunol.125(2) , 190–197 (2001).
  • Quach H , RitchieD, NeesonPet al.: Lymphoid subsets and regulatory T cell profiles in patients with relapsed multiple myeloma in a subset of patients enrolled in the REVLITE trial(abstract). Presented at: Haematology Society of Australia and New Zealand Annual Scientific Meeting. Perth, Australia, October (2008).
  • Maecker B , AndersonKS, von Bergwelt-Baildon MS et al.: Viral antigen-specific CD8+ T-cell responses are impaired in multiple myeloma. Br. J. Haematol.121(6) , 842–848 (2003).
  • Dhodapkar MV , GellerMD, ChangDHet al.: A reversible defect in natural killer T cell function characterizes the progression of premalignant to malignant multiple myeloma.J. Exp. Med.197(12) , 1667–1676 (2003).
  • Subklewe M , Sebelin-WulfK, BeierCet al.: Dendritic cell maturation stage determines susceptibility to the proteasome inhibitor bortezomib.Hum. Immunol.68 , 147–155 (2007).
  • Curiel TJ : Tregs and rethinking cancer immunotherapy.J. Clin. Invest.117(5) , 1167–1174 (2007).
  • Chen ML , PittetMJ, GorelikLet al.: Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-β signals in vivo.Proc. Natl Acad. Sci. USA102(2) , 419–424 (2005).
  • Nishikawa H , JagerE, RitterG, OldLJ, GnjaticS: CD4+ CD25+ regulatory T cells control the induction of antigen-specific CD4+ helper T cell responses in cancer patients.Blood106(3) , 1008–1011 (2005).
  • Yang ZZ , NovakAJ, ZiesmerSC, WitzigTE, AnsellSM: Attenuation of CD8+ T-cell function by CD4+CD25+ regulatory T cells in B-cell non-Hodgkin‘s lymphoma.Cancer Res.66(20) , 10145–10152 (2006).
  • Trzonkowski P , SzmitE, MysliwskaJ, DobyszukA, MysliwskiA: CD4+ CD25+ T regulatory cells inhibit cytotoxic activity of T CD8+ and NK lymphocytes in the direct cell-to-cell interaction.Clin. Immunol.112(3) , 258–267 (2004).
  • Wolf AM , WolfD, SteurerM, GastlG, GunsiliusE, Grubeck-LoebensteinB: Increase of regulatory T cells in the peripheral blood of cancer patients.Clin. Cancer Res.9(2) , 606–612 (2003).
  • Beyer M , SchultzeJL: Regulatory T cells in cancer.Blood108(3) , 804–811 (2006).
  • Ichihara F , KonoK, TakahashiA, KawaidaH, SugaiH, FujiiH: Increased populations of regulatory T cells in peripheral blood and tumor-infiltrating lymphocytes in patients with gastric and esophageal cancers.Clin. Cancer Res.9(12) , 4404–4408 (2003).
  • Curiel TJ , CoukosG, ZouLet al.: Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival.Nat. Med.10(9) , 942–949 (2004).
  • Joshua DE , BrownRD, HoPJ, GibsonJ: Regulatory T cells and multiple myeloma.Clin Lymphoma Myeloma8(5) , 283–286 (2008).
  • Prabhala RH , NeriP, BaeJEet al.: Dysfunctional T regulatory cells in multiple myeloma.Blood107(1) , 301–304 (2006).
  • Quach H , RitchieD, NeesonPet al.: Regulatory T cells(Treg) are depressed in patients with relapsed/refractory multiple myeloma(MM) and increases towards normal range in responding patients treated with lenalidomide.Blood112 , 1696A (2008).
  • Beyer M , KochanekM, GieseTet al.: In vivo peripheral expansion of naive CD4+CD25high FoxP3+ regulatory T cells in patients with multiple myeloma.Blood107(10) , 3940–3949 (2006).
  • Feyler S , von Lilienfeld-Toal M, Jarmin S et al.: CD4+CD25+FoxP3+ regulatory T cells are increased whilst CD3+CD4-CD8- αβTCR(+) double negative T cells are decreased in the peripheral blood of patients with multiple myeloma which correlates with disease burden. Br. J. Haematol.144(5) , 686–695 (2009).
  • Dhodapkar KM , BarbutoS, MatthewsPet al.: Dendritic cells mediate the induction of polyfunctional human IL17-producing cells(Th17-1 cells) enriched in the bone marrow of patients with myeloma.Blood112(7) , 2878–2885 (2008).
  • Radhakrishnan S , CabreraR, SchenkELet al.: Reprogrammed FoxP3+ T regulatory cells become IL-17+ antigen-specific autoimmune effectors in vitro and in vivo.J. Immunol.181(5) , 3137–3147 (2008)
  • Idler I , GiannopoulosK, ZenzTet al.: Lenalidomide treatment of chronic lymphocytic leukaemia patients reduces regulatory T cells and induces Th17 T helper cells.Br. J. Haematol. DOI: 10.1111/j.1365-2141.2009.08014.x (2009)(Epub ahead of print).
  • Kryczek I , WeiS, SzeligaW, VatanL, ZouW: Endogenous IL-17 contributes to reduced tumor growth and metastasis.Blood114(2) , 357–359 (2009).
  • Wang L , YiT, KortylewskiM, PardollDM, ZengD, YuH: IL-17 can promote tumor growth through an IL-6-Stat3 signaling pathway.J. Exp. Med.206(7) , 1457–1464 (2009).
  • Murugaiyan G , SahaB: Protumor vs antitumor functions of IL-17.J. Immunol.183(7) , 4169–4175 (2009).
  • Sato K , SuematsuA, OkamotoKet al.: Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction.J. Exp. Med.203(12) , 2673–2682. (2006).
  • Daynes RA , AraneoBA: Contrasting effects of glucocorticoids on the capacity of T cells to produce the growth factors interleukin 2 and interleukin 4.Eur. J. Immunol.19(12) , 2319–2325 (1989).
  • Porrata LF , InwardsDJ, AnsellSMet al.: Early lymphocyte recovery predicts superior survival after autologous stem cell transplantation in non-Hodgkin lymphoma: a prospective study.Biol. Blood Marrow Transplant.14(7) , 807–816 (2008).
  • Zinser E , RössnerS, LittmannLet al.: Inhibition of the proteasome influences murine and human dendritic cell development in vitro and in vivo.Immunobiology214(9–10) , 843–851 (2009).
  • Arpinati M , ChirumboloG, NicoliniB, AgostinelliC, RondelliD: Selective apoptosis of monocytes and monocyte-derived DCs induced by bortezomib(Velcade).Bone Marrow Transplant.43(3) , 253–259 (2009).
  • Basler M , LauerC, BeckU, GroettrupM: The proteasome inhibitor bortezomib enhances the susceptibility to viral infection.J. Immunol.183(10) , 6145–6150.(2009)
  • Quach H , HsuA, RitchieDet al.: In vivo antagonistic effects of dexamethasone on lenalidomide-induced NK cell activation.Blood114 (2009)(Abstract 1639).
  • Rajkumar SV , JacobusS, CallanderNSet al.: Lenalidomide plus high-dose dexamethasone versus lenalidomide plus low-dose dexamethasone as initial therapy for newly diagnosed multiple myeloma: an open-label randomised controlled trial.Lancet Oncol. doi:10.1016/S1470-2045(09)70284-0 (2009) (Epub ahead of print).
  • Augustson BM , BegumG, DunnJAet al.: Early mortality after diagnosis of multiple myeloma: analysis of patients entered onto the United Kingdom Medical Reseach Council trials between 1980 and 2002 – Medical Research Council Adult Leukaemia Working Party.J. Clin. Oncol.23 , 9219–9226 (2005).
  • Goodyear O , PiperK, KhanNet al.: CD8+ T cells specific for cancer germline gene antigens are found in many patients with multiple myeloma, and their frequency correlates with disease burden.Blood106(13) , 4217–4224 (2005).
  • Moshitsky S , KukulanskyT, HaimovichJet al.: Growth inhibition of myeloma cells by anti-idiotype antibodies in the absence of membrane-bound immunoglobulin.Immunol. Cell Biol.86(3) , 261–267 (2008).
  • Cohen S , HaimovichJ, HollanderN: B-cell lymphoma and myeloma protection induced by idiotype vaccination with dendritic cells is mediated entirely by T cells in mice.J. Immunother.28(5) , 461–466 (2005).
  • Bergenbrant S , YiQ, OsterbergAet al.: Modulation of anti-idiotypic immune response by immunization with autologous M-component protein in multiple myeloma patients.Br. J. Harmatol.92(4) , 840–846 (1996).
  • Osterberg A , YiQ, HenrikssonLet al.: Idiotype immunization combined with granulocyte-macrophage colony-stimulating factor in myeloma patients induced type I, major histocompatibility complex-restricted, CD8- and CD4-specific T-cell responses.Blood91(7) , 2459–2466 (1998).
  • Rasmussen T , HanssonL, OsterbergAet al.: Idiotype vaccination in multiple myeloma induced a reduction of circulating clonal tumor B cells.Blood101(11) , 4607–4610 (2003).
  • Hansson L , AbdallaAO, MoshfeghAet al.: Long-term idiotype vaccination combined with interleukin-12(IL-12), or IL-12 and granulocyte macrophage colony-stimulating factor, in early-stage multiple myeloma patients.Clin. Cancer Res.13(5) , 1503–1510 (2007).
  • Dhodapkar MV , OsmanK, Teruya-FeldsteinJet al.: Expression of cancer/testis(CT) antigens MAGE-A1, MAGE-A3, MAGE-A4, CT-7, and NY-ESO-1 in malignant gammopathies is heterogeneous and correlates with site, stage and risk status of disease.Cancer Immun.23(3) , 9 (2003).
  • Qian J , XieJ, HongSet al.: Dickkopf-1(DKK1) is a widely expressed and potent tumor-associated antigen in multiple myeloma.Blood110(5) , 1587–1594 (2007).
  • Wang W , NishiokaY, OxakiSet al.: HM1.24(CD317) is a novel target against lung cancer for immunotherapy using anti-HM1.24 -antibody.Cancer Immunol. Immunother.58(6) , 967–976 (2009).
  • Kawano T , AhmadR, NogiHet al.: MUC1 oncoprotein promotes growth and survival of human multiple myeloma cells.Int. J. Oncol.33(1) , 153–159 (2008)
  • Goodyear OC , PrattG, McLarnon et al.: Differential pattern of CD4+ and CD8+ T-cell immunity to MAGE-A1/A2/A3 in patients with monoclonal gammopathy of undertermined significance (MGUS) and multiple myeloma. Blood112(8) , 3362–3372 (2008).
  • Curioni-Fontecedro A , KnightsAJ, TinguelyMet al.: MAGE-C1/CT7 is the dominant cancer-testis antigen targeted by humoral immune responses in patients with multiple myeloma.Leukemia22(8) , 1646–1648 (2008).
  • Tinguely M , JenniB, KnightsAet al.: MAGE-C1/CT-7 expression in plasma cell myeloma: sub-cellular localization impacts on clinical outcome.Cancer Sci.99(4) , 720–725 (2008).
  • Szmania S , GnjaticS, TricotGet al.: Immunization with a recombinant MAGE-A3 protein after high-dose therapy for myeloma.J. Immunother.30(8) , 847–854 (2007).
  • Dabadghao S , BergenbrantS, AntonDet al.: Anti-idiotypic T-cell activation in multiple myeloma induced by M-component fragments presented by dendritic cells.Br. J. Haematol.100(4) , 647–654 (1998).
  • Liso A , Stockerl-GoldsteinKE, Aufferman-GretzingerSet al.: Idiotype vaccination using dendritic cells after autologous peripheral blood progenitor cell transplantation for multiple myeloma.Biol. Blood Marrow Transplant.6(6) , 621–627 (2000).
  • Reichardt VL , MilazzoC, BruggerWet al.: Idiotype vaccination of multiple myeloma patients using monocyte-derived dendritic cells.Haematalogica88(10) , 1139–1149 (2003).
  • Lacy MQ , MandrekarS, DispenzieriAet al.: Idiotype-pulsed antigen-presenting cells following autologous transplantation for multiple myeloma may be associated with prolonged survival.Am. J. Hematol.84(12) , 799–802 (2009).
  • Banerjee DK , DhodapkarMV, MatayevaEet al.: Expansion of FOXP3high regulatory T cell by human dendritic cells(DCs) in vitro and after injection of cytokine-matured DCs in myeloma patients.Blood108(8) , 2655–2661 (2006).
  • Anderson KC : Targeted therapy of multiple myeloma based upon tumor-microenvironmental interactions.Exp. Hematol.35(4 Suppl. 1) , 155–162 (2007).
  • Hayashi T , HideshimaT, AkiyamaMet al.: Ex vivo induction of multiple myeloma-specific cytotoxic T lymphocytes.Blood102(4) , 1435–1442 (2003).
  • Lee JJ , ChoiBH, KangHKet al.: Induction of multiple myeloma-specific cytotoxic T lymphocyte stimulation by dendritic cell pulsing with purified and optimized myeloma cell lysates.Leuk. Lymphoma48(10) , 2022–2031 (2007)
  • Rapoport AP , StadmauerEA, AquiNet al.: Restoration of immunity in lymphopenic individuals with cancer by vaccination and adoptive T-cell transfer.Nat. Med.11(11) , 1230–1237. (2005).
  • Gahrton G , TuraS, LjungmanPet al.: Prognostic factors in allogeneic bone marrow transplantation for multiple myeloma.J. Clin. Oncol.13 , 1312–1322 (1995).
  • Gahrton G , TunaS, LjungmanPet al.: Allogeneic bone marrow transplantation in multiple myeloma.N. Engl. J. Med.325 , 1267–1273 (1991).
  • Crawley C , IacobelliS, BjörkstrandBet al.: Reduced-intensity conditioning for myeloma: lower nonrelapse mortality but higher relapse rates compared with myeloablative conditioning.Blood109 , 3588–3594 (2007).
  • Bensinger WI , BucknerCD, AnasettiCet al.: Allogeneic marrow transplantation for multiple myeloma: an analysis of risk factors on outcome.Blood88 , 2787–2793 (1996).
  • Tricot G , VesoleDH, JagannathSet al.: Graft-versus-myeloma effect: proof of principle.Blood87(3) , 1196–1198 (1996).
  • Zeiser R , BertzH, SpyridonidisAet al.: Donor lymphocyte infusions for multiple myeloma: clinical results and novel perspectives.Bone Marrow Transplant.34(11) , 923–928 (2004).
  • Verdonck LF , LokhorstHM, DekkerAWet al.: Graft-versus-myeloma effect in two cases.Lancet347(9004) , 800–801 (1996).
  • Lokhorst HM , SchattenbergA, CornelissenJJet al.: Donor lymphocyte infusions for relapsed multiple myeloma after allogeneic stem-cell transplantation: predictive factors for response and long-term outcome.J. Clin. Oncol.18(16) , 3031–3037 (2000).
  • Björkstrand BB , LjungmanP, SvenssonHet al.: Allogeneic bone marrow transplantation versus autologous stem cell transplantation in multiple myeloma: a retrospective case-matched study from the European Group for Blood Marrow Transplantation.Blood88(12) , 4711–4718 (1996).
  • Bruno B , RottaM, PatriarcaFet al.: Nonmyeloablative allografting for newly diagnosed multiple myeloma: the experience of the Gruppo Italiano Trapianti di Midollo.Blood113(14) , 3375–3382 (2009).
  • Bruno B , RottaM, PatriarcaFet al.: A comparison of allografting with autografting for newly diagnosed myeloma.N. Engl. J. Med.356(11) , 1110–1120 (2007).
  • Kapp M , StevanovićS, FickKet al.: CD8+ T-cell responses to tumor-associated antigens correlate with superior relapse-free survival after allo-SCT.Bone Marrow Transplant.43(5) , 399–410 (2009).
  • Yi Q , OsterborgA, BergenbrantSet al.: Idiotype-reactive T-cell subsets and tumour load in monoclonal gammopathies.Blood86(8) , 3043–3049 (1995).
  • van Rhee F , SzmaniaSM, ZhanFet al.: NY-ESO-I is highly expressed in poor-prognosis multiple myeloma and induces spontaneous humoral and cellular immune responses.Blood105(10) , 3939–3944 (2005).
  • Bernal M , GarridoP, JiménezPet al.: Changes in activatory and inhibitory natural killer (NK) receptors may induce progression to multiple myeloma: implications for tumor evasion of T and NK cells.Hum. Immunol.70(10) , 854–857 (2009).
  • Zheng C , OstadM, AnderssonMet al.: Natural cytotoxicity to autologous antigen-pulsed dendritic cells in multiple myeloma.Br. J. Haematol.118(3) 778–785 (2002).
  • Frohn C , HoppnerM, SchlenkePet al.: Anti-myeloma activity of natural killer lymphocytes.Br. J. Haematol.119(3) , 660–666 (2002).
  • Alici E , KonstantinidisKV, SutluTet al.: Anti-myeloma activity of endogenous and adoptively transferred activated natural killer cells in experimental multiple myeloma model.Exp. Hematol.35(12) , 1839–1846 (2007).
  • Alici E , SutluT, BjorkstrandBet al.: Autologous antitumor activity by NK cells expanded from myeloma patients using GMP-compliant components.Blood111(6) , 3155–3162 (2008).
  • Gattinoni L , PowellDJ Jr, Rosenberg SA et al.: Adoptive immunotherapy for cancer: building on success. Nat. Rev. Immunol.6(5) , 383–393 (2006).
  • Noonan K , MatsuiW, SerafiniPet al.: Activated marrow-infiltrating lymphocytes effectively target plasma cells and their clonogenic precursors.Cancer Res.65(5) , 2026–2034 (2005).
  • Rosenberg SA , YannelliJR, YangJCet al.: Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2.J. Natl Cancer Inst.86(15) , 1159–1166 (1994).
  • Rosenberg SA , DudleyME: Adoptive cell therapy for the treatment of patients with metastatic melanoma.Curr. Opin. Immunol.21(2) , 233–240 (2009).
  • Westwood JA , SmythMJ, TengMWet al.: Adoptive transfer of T cells modified with a humanized chimeric receptor gene inhibits growth of Lewis-Y-expressing tumors in mice.Proc. Natl Acad. Sci. USA102(52) , 19051–19056 (2005).
  • Scott AM , TebbuttN, LeeFTet al.: A Phase I biodistribution and pharmacokinetic trial of humanized monoclonal antibody Hu3s193 in patients with advanced epithelial cancers that express the Lewis-Y antigen.Clin. Cancer Res.13(11) , 3286–3292 (2007).
  • Hideshima T , BergsagelPL, KuehlWMet al.: Advances in biology of multiple myeloma: clinical applications.Blood104(3) , 607–618 (2004).
  • Quach H , RitchieD, StewartAKet al.: Mechanism of action of immunomodulatory drugs(IMiDS) in multiple myeloma.Leukemia DOI: 10.1038/leu.2009.236 (2009) (Epub ahead of print).
  • Corral LG , HaslettPA, MullerGWet al.: Differential cytokine modulation and T cell activation by two distinct classes of thalidomide analogues that are potent inhibitors of TNF-α.J. Immunol.163(1) , 380–386 (1999).
  • LeBlanc R , HideshimaT, CatleyLPet al.: Immunomodulatory drug costimulates T cells via the B7-CD28 pathway.Blood103(5) , 1787–1790 (2004).
  • Haslett PA , CorralLG, AlbertM, KaplanG: Thalidomide costimulates primary human T lymphocytes, preferentially inducing proliferation, cytokine production, and cytotoxic responses in the CD8+ subset.J. Exp. Med.187(11) , 1885–1892 (1998).
  • Schafer PH , GandhiAK, LovelandMAet al.: Enhancement of cytokine production and AP-1 transcriptional activity in T cells by thalidomide-related immunomodulatory drugs.J. Pharmacol. Exp. Ther.305(3) , 1222–1232 (2003).
  • Galustian C , MeyerB, LabartheMCet al.: The anti-cancer agents lenalidomide and pomalidomide inhibit the proliferation and function of T regulatory cells.Cancer Immunol. Immunother.58(7) , 1033–1045 (2009).
  • Dredge K , MarriottJB, TodrykSMet al.: Protective antitumor immunity induced by a costimulatory thalidomide analog in conjunction with whole tumor cell vaccination is mediated by increased Th1-type immunity.J. Immunol.168(10) , 4914–4919 (2002).
  • Kronenberg M : Toward an understanding of NKT cell biology: progress and paradoxes.Annu. Rev. Immunol.23 , 877–900 (2005).
  • Davies FE , RajeN, HideshimaTet al.: Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma.Blood98(1) , 210–216 (2001).
  • Galustian C , KlaschkaD, LabartheMC, BartlettJB, DalgleishAG: The immunomodulatory drug (IMID®) CC-4047 enhances the proliferation and anti-tumour fuction of γ δ T cells.J. Immunother.27 , S50 (2004).
  • Hayashi T , HideshimaT, AkiyamaMet al.: Molecular mechanisms whereby immunomodulatory drugs activate natural killer cells: clinical application.Br. J. Haematol.128(2) , 192–203 (2005).
  • Chang DH , LiuN, KlimekVet al.: Enhancement of ligand-dependent activation of human natural killer T cells by lenalidomide: therapeutic implications.Blood108(2) , 618–621 (2006).
  • Fujii S , ShimizuK, SteinmanRM, DhodapkarMV: Detection and activation of human Vα24+ natural killer T cells using a-galactosyl ceramide-pulsed dendritic cells.J. Immunol. Methods272(1–2) , 147–159 (2003).
  • Carnaud C , LeeD, DonnarsOet al.: Cutting edge: cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells.J. Immunol.163(9) , 4647–4650 (1999).
  • Smyth MJ , CroweNY, PellicciDGet al.: Sequential production of interferon-γ by NK1.1+ T cells and natural killer cells is essential for the antimetastatic effect of α-galactosylceramide.Blood99(4) , 1259–1266 (2002).
  • Eberl G , MacDonaldHR: Selective induction of NK cell proliferation and cytotoxicity by activated NKT cells.Eur. J. Immunol.30(4) , 985–992 (2000).
  • Eberl G , BrawandP, MacDonaldHR: Selective bystander proliferation of memory CD4+ and CD8+ T cells upon NK T or T cell activation.J. Immunol.165(8) , 4305–4311 (2000).
  • Wu L , AdamsM, CarterTet al.: lenalidomide enhances natural killer cell and monocyte-mediated antibody-dependent cellular cytotoxicity of rituximab-treated CD20+ tumor cells.Clin. Cancer Res.14(14) , 4650–4657 (2008).
  • Dallegri F , PatroneF, FrumentoG, SacchettiC: Antibody-dependent killing of tumor cells by polymorphonuclear leukocytes. Involvement of oxidative and nonoxidative mechanisms.J. Natl Cancer Inst.73(2) , 331–339 (1984).
  • Tai YT , LiXF, CatleyLet al.: Immunomodulatory drug lenalidomide(CC-5013, IMiD3) augments anti-CD40 SGN-40-induced cytotoxicity in human multiple myeloma: clinical implications.Cancer Res.65(24) , 11712–11720 (2005).
  • Hernandez-Ilizaliturri FJ , ReddyN, HolkovaB, OttmanE, CzuczmanMS: Immunomodulatory drug CC-5013 or CC-4047 and rituximab enhance antitumor activity in a severe combined immunodeficient mouse lymphoma model.Clin. Cancer Res.11(16) , 5984–5992 (2005).
  • Lapalombella R , YuB, TriantafillouGet al.: Lenalidomide down-regulates the CD20 antigen and antagonizes direct and antibody-dependent cellular cytotoxicity of rituximab on primary chronic lymphocytic leukemia cells.Blood112(13) , 5180–5189 (2008).
  • Roda JM , PariharR, MagroC, NuovoGJ, TridandapaniS, CarsonWE 3rd: Natural killer cells produce T cell-recruiting chemokines in response to antibody-coated tumor cells. Cancer Res.66(1) , 517–526 (2006).
  • Green DR , FergusonT, ZitvogelL, KroemerG: Immunogenic and tolerogenic cell death.Nat. Rev. Immunol.9(5) , 353–363 (2009).
  • Panaretakis T , JozaN, ModjtahediNet al.: The co-translocation of ERp57 and calreticulin determines the immunogenicity of cell death.Cell Death Differ.15(9) , 1499–1509 (2008).
  • Zitvogel L , ApetohL, GhiringhelliF, KroemerG: Immunological aspects of cancer chemotherapy.Nat. Rev. Immunol.8(1) , 59–73 (2008).
  • Karin M , YamamotoY, WangQM: The IKK NF-κ B system: a treasure trove for drug development.Nat. Rev. Drug Discov.3(1) , 17–26 (2004).
  • Li ZW , ChenH, CampbellRA, BonavidaB, BerensonJR: NF-κB in the pathogenesis and treatment of multiple myeloma.Curr. Opin. Hematol.15(4) , 391–399 (2008).
  • Spisek R , CharalambousA, MazumderA, VesoleDH, JagannathS, DhodapkarMV: Bortezomib enhances dendritic cell(DC)-mediated induction of immunity to human myeloma via exposure of cell surface heat shock protein 90 on dying tumor cells: therapeutic implications.Blood109(11) , 4839–4845 (2007).
  • Chatterjee M , ChakrabortyT, TassoneP: Multiple myeloma: monoclonal antibodies-based immunotherapeutic strategies and targeted radiotherapy.Eur. J. Cancer42(11) , 1640–1652 (2006).
  • Klein B , ZhangXG, JourdanMet al.: Paracrine rather than autocrine regulation of myeloma-cell growth and differentiation by interleukin-l.Blood73 , 517–526 (1989).
  • Vink A , CoulieP, WarnierGet al.: Mouse plasmacytoma growth in vivo: enhancement by interleukin 6(IL-6) and inhibition by antibodies directed against IL-6 or its receptor.J. Exp. Med.172(3) , 997–1000 (1990).
  • van Zaanen HC , LokhorstHM, AardenLAet al.: Chimaeric anti-interleukin 6 monoclonal antibodies in the treatment of advanced multiple myeloma: a Phase I dose-escalating study.Br. J. Haematol.102(3) , 783–790 (1998).
  • Podar K , RichardsonPG, ChauhanD, AndersonKC: Targeting the vascular endothelial growth factor pathway in the treatment of multiple myeloma.Expert Rev. Anticancer Ther.7(4) , 551–566 (2007).
  • Kastritis E , CharidimouA, VarkarisA, DimopoulosMA: Targeted therapies in multiple myeloma.Target Oncol.4(1) , 23–36 (2009).
  • Prince HM , HönemannD, SpencerAet al.: Vascular endothelial growth factor inhibition is not an effective therapeutic strategy for relapsed or refractory multiple myeloma: a Phase 2 study of pazopanib (GW786034).Blood113(19) , 4819–4820 (2009).
  • Tai YT , LiXF, CatleyLet al.: Immunomodulatory drug lenalidomide (CC-5013, IMiD3) augments anti-CD40 SGN-40-induced cytotoxicity in human multiple myeloma: clinical implications.Cancer Res.65(24) , 11712–11720 (2005).
  • Uno T , TakedaK, KojimaYet al.: Eradication of established tumors in mice by a combination antibody-based therapy.Nat. Med.12(6) , 693–698 (2006).
  • Hilchey SP , HyrienO, MosmannTRet al.: Rituximab immunotherapy results in the induction of a lymphoma idiotype-specific T-cell response in patients with follicular lymphoma: support for a ‘vaccinal effect‘ of rituximab.Blood113 , 3809–3812 (2009).
  • Ayuk F , ZanderA, KrögerN: Antitumor effects of polyclonal antithymocyte globulins: focus on B-cell malignancies and multiple myeloma.Ann. Hematol.88(5) , 401–404 (2009).
  • Coscia M , MarianiS, BattaglioSet al. Long-term follow-up of idiotype vaccination in human myeloma as a maintenance therapy after high-dose chemotherapy. Leukaemia 18 , 139–145 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.