83
Views
0
CrossRef citations to date
0
Altmetric
Review

Immunotherapeutic Restoration in HIV-Infected Individuals

&
Pages 247-267 | Published online: 15 Feb 2011

Bibliography

  • Palella FJ Jr, Baker RK, Moorman AC et al.: Mortality in the highly active antiretroviral therapy era: changing causes of death and disease in the HIV outpatient study. J. Acquir. Immune Defic. Syndr.43(1) , 27–34 (2006).
  • Pett SL , KelleherAD: Cytokine therapies in HIV-1 infection: present and future.Expert Rev. Anti Infect. Ther.1(1) , 83–96 (2003).
  • Rinaldo CR : Dendritic cell-based human immunodeficiency virus vaccine.J. Intern. Med.265(1) , 138–158 (2009).
  • Bourinbaiar AS , Root-BernsteinRS, Abulafia-LapidR et al.: Therapeutic AIDS vaccines.Curr. Pharm. Des.12(16) , 2017–2030 (2006).
  • Redel L , Le Douce V, Cherrier T et al.: HIV-1 regulation of latency in the monocyte–macrophage lineage and in CD4+ T lymphocytes. J. Leukoc. Biol.87(4) , 575–588 (2010).
  • Sodora DL , SilvestriG: Immune activation and AIDS pathogenesis.AIDS22(4) , 439–446 (2008).
  • Albuquerque AS , FoxallRB, CortesaoCS et al.: Low CD4 T-cell counts despite low levels of circulating HIV: insights from the comparison of HIV-1 infected patients with a discordant response to antiretroviral therapy to patients with untreated advanced HIV-2 disease.Clin. Immunol.125(1) , 67–75 (2007).
  • Marziali M , De Santis W, Carello R et al.: T-cell homeostasis alteration in HIV-1 infected subjects with low CD4 T-cell count despite undetectable virus load during HAART. AIDS20(16) , 2033–2041 (2006).
  • Aiuti F , MezzaromaI: Failure to reconstitute CD4+ T cells despite suppression of HIV replication under HAART.AIDS Rev.8(2) , 88–97 (2006).
  • Smith KA : Interleukin-2: inception, impact and implications.Science240(4856) , 1169–1176 (1988).
  • Lin SJ , RobertsRL, AnkBJ, NguyenQH, ThomasEK, StiehmER: Human immunodeficiency virus (HIV) type-1 gP120-specific cell-mediated cytotoxicity (CMC) and natural killer (NK) activity in HIV-infected (HIV+) subjects: enhancement with interleukin-2 (IL-2), IL-12 and IL-15.Clin. Immunol. Immunopathol.82(2) , 163–173 (1997).
  • Liegler TJ , StitesDP: HIV-1 gp120 and anti-gp120 induce reversible unresponsiveness in peripheral CD4 T lymphocytes.J. Acquir. Immune Defic. Syndr.7(4) , 340–348 (1994).
  • Read SW , LempickiRA, Di Mascio M et al.: CD4 T-cell survival after intermittent interleukin-2 therapy is predictive of an increase in the CD4 T-cell count of HIV-infected patients. J. Infect. Dis.198(6) , 843–850 (2008).
  • Sereti I , SklarP, RamchandaniMS et al.: CD4+ T-cell responses to interleukin-2 administration in HIV-infected patients are directly related to the baseline level of immune activation.J. Infect. Dis.196(5) , 677–683 (2007).
  • Levy Y , DurierC, KrzysiekR et al.: Effects of interleukin-2 therapy combined with highly active antiretroviral therapy on immune restoration in HIV-1 infection: a randomized controlled trial.AIDS17(3) , 343–351 (2003).
  • Arduino RC , NanniniEC, Rodriguez-BarradasM et al.: CD4 cell response to three doses of subcutaneous interleukin-2: meta-analysis of three Vanguard studies.Clin. Infect. Dis.39(1) , 115–122 (2004).
  • Stellbrink HJ , van Lunzen J, Westby M et al.: Effects of interleukin-2 plus highly active antiretroviral therapy on HIV-1 replication and proviral DNA (COSMIC trial). AIDS16(11) , 1479–1487 (2002).
  • Henry K , KatzensteinD, CherngDW et al.: A pilot study evaluating time to CD4 T-cell count less than 350 cells/mm3 after treatment interruption following antiretroviral therapy ± interleukin 2: results of ACTG A5102.J. Acquir. Immune Defic. Syndr.42(2) , 140–148 (2006).
  • Katlama C , CarcelainG, DuvivierC et al.: Interleukin-2 accelerates CD4 cell reconstitution in HIV-infected patients with severe immunosuppression despite highly active antiretroviral therapy: the ILSTIM study-ANRS 082.AIDS16(15) , 2027–2034 (2002).
  • Delaugerre C , GourlainK, TubianaR et al.: Increase of HIV-1 proviral DNA per million peripheral blood mononuclear cells in patients with advanced HIV disease (CD4 <200 cells/mm3) receiving interleukin 2 combined with HAART versus HAART alone (ANRS-082 trial).Antivir. Ther.8(3) , 233–237 (2003).
  • de Boer AW , MarkowitzN, LaneHC et al.: A randomized controlled trial evaluating the efficacy and safety of intermittent 3-, 4-, and 5-day cycles of intravenous recombinant human interleukin-2 combined with antiretroviral therapy (ART) versus ART alone in HIV-seropositive patients with 100–300 CD4+ T cells.Clin. Immunol.106(3) , 188–196 (2003).
  • Levy Y , CapitantC, HouhouS et al.: Comparison of subcutaneous and intravenous interleukin-2 in asymptomatic HIV-1 infection: a randomized controlled trial. ANRS 048 study group.Lancet353(9168) , 1923–1929 (1999).
  • Carr A , EmeryS, LloydA et al.: Outpatient continuous intravenous interleukin-2 or subcutaneous, polyethylene glycol-modified interleukin-2 in human immunodeficiency virus-infected patients: a randomized, controlled, multicenter study. Australian IL-2 Study Group.J. Infect. Dis.178(4) , 992–999 (1998).
  • Arno A , RuizL, JuanM et al.: Efficacy of low-dose subcutaneous interleukin-2 to treat advanced human immunodeficiency virus type 1 in persons with ≤250/µL CD4 T cells and undetectable plasma virus load.J. Infect. Dis.180(1) , 56–60 (1999).
  • Marchetti G , MeroniL, VarchettaS et al.: Low-dose prolonged intermittent interleukin-2 adjuvant therapy: results of a randomized trial among human immunodeficiency virus-positive patients with advanced immune impairment.J. Infect. Dis.186(5) , 606–616 (2002).
  • Tambussi G , GhezziS, NozzaS et al.: Efficacy of low-dose intermittent subcutaneous interleukin (IL)-2 in antiviral drug-experienced human immunodeficiency virus-infected persons with detectable virus load: a controlled study of 3 IL-2 regimens with antiviral drug therapy.J. Infect. Dis.183(10) , 1476–1484 (2001).
  • Ruxrungtham K , SuwanagoolS, TavelJA et al.: A randomized, controlled 24-week study of intermittent subcutaneous interleukin-2 in HIV-1 infected patients in Thailand.AIDS14(16) , 2509–2513 (2000).
  • Losso MH , BellosoWH, EmeryS et al.: A randomized, controlled, Phase II trial comparing escalating doses of subcutaneous IL-2 plus antiretrovirals versus antiretrovirals alone in human immunodeficiency virus-infected patients with CD4+ cell counts ≥350/mm3.J. Infect. Dis.181(5) , 1614–1621 (2000).
  • Abrams DI , BebchukJD, DenningET et al.: Randomized, open-label study of the impact of two doses of subcutaneous recombinant interleukin-2 on viral burden in patients with HIV-1 infection and CD4+ cell counts of ≥300/mm3: CPCRA 059.J. Acquir. Immune Defic. Syndr.29(3) , 221–231 (2002).
  • Miller KD , SpoonerK, HerpinBR et al.: Immunotherapy of HIV-infected patients with intermittent interleukin-2: effects of cycle frequency and cycle duration on degree of CD4(+) T lymphocyte expansion.Clin. Immunol.99(1) , 30–42 (2001).
  • Durier C , CapitantC, LascauxAS et al.: Long-term effects of intermittent interleukin-2 therapy in chronic HIV-infected patients (ANRS 048–079 Trials).Aids21(14) , 1887–1897 (2007).
  • Abrams D , LevyY, LossoMH et al.: Interleukin-2 therapy in patients with HIV infection.N. Engl. J. Med.361(16) , 1548–1559 (2009).
  • Lalezari JP , BealJA, RuanePJ et al.: Low-dose daily subcutaneous interleukin-2 in combination with highly active antiretroviral therapy in HIV+ patients: a randomized controlled trial.HIV Clin. Trials1(3) , 1–15 (2000).
  • Mitsuyasu R , GelmanR, CherngDW et al.: The virologic, immunologic and clinical effects of interleukin 2 with potent antiretroviral therapy in patients with moderately advanced human immunodeficiency virus infection: a randomized controlled clinical trial – AIDS Clinical Trials Group 328.Arch. Intern. Med.167(6) , 597–605 (2007).
  • Davey RT Jr, Murphy RL, Graziano FM et al.: Immunologic and virologic effects of subcutaneous interleukin-2 in combination with antiretroviral therapy: a randomized controlled trial. JAMA284(2) , 183–189 (2000).
  • Davey RT Jr, Chaitt DG, Albert JM et al.: A randomized trial of high- versus low-dose subcutaneous interleukin-2 outpatient therapy for early human immunodeficiency virus type 1 infection. J. Infect. Dis.179(4) , 849–858 (1999).
  • Kovacs JA , VogelS, AlbertJM et al.: Controlled trial of interleukin-2 infusions in patients infected with the human immunodeficiency virus.N. Engl. J. Med.335(18) , 1350–1356 (1996).
  • Kovacs JA , BaselerM, DewarRJ et al.: Increases in CD4 T lymphocytes with intermittent courses of interleukin-2 in patients with human immunodeficiency virus infection. A preliminary study.N. Engl. J. Med.332(9) , 567–575 (1995).
  • Fry TJ , ConnickE, FalloonJ et al.: A potential role for interleukin-7 in T-cell homeostasis.Blood97(10) , 2983–2990 (2001).
  • Fry TJ , MoniuszkoM, CreekmoreS et al.: IL-7 therapy dramatically alters peripheral T-cell homeostasis in normal and SIV-infected nonhuman primates.Blood101(6) , 2294–2299 (2003).
  • Beq S , NugeyreMT, Ho Tsong Fang R et al.: IL-7 induces immunological improvement in SIV-infected rhesus macaques under antiviral therapy. J. Immunol.176(2) , 914–922 (2006).
  • Storek J , GillespyT 3rd, Lu H et al.: Interleukin-7 improves CD4 T-cell reconstitution after autologous CD34 cell transplantation in monkeys. Blood101(10) , 4209–4218 (2003).
  • Fry TJ , MackallCL: Interleukin-7: from bench to clinic.Blood99(11) , 3892–3904 (2002).
  • Rosenberg SA , SportesC, AhmadzadehM et al.: IL-7 administration to humans leads to expansion of CD8+ and CD4+ cells but a relative decrease of CD4+ T-regulatory cells.J. Immunother.29(3) , 313–319 (2006).
  • Sportes C , HakimFT, MemonSA et al.: Administration of rhIL-7 in humans increases in vivo TCR repertoire diversity by preferential expansion of naive T-cell subsets.J. Exp. Med.205(7) , 1701–1714 (2008).
  • Interim data released from INSPIRE study on interleukin-7. AIDS Patient Care STDS23(11) , 987–988 (2009).
  • Levy Y : Effects of r-hIL-7 on T-cell recovery and thymic output in HIV-infected patients receiving c-ART; interim analysis of a Phase I/IIa multicenter study. Presented at: 49th ICAAC, San Francisco, CA, USA 12–15 September 2009.
  • Elsaesser H , SauerK, BrooksDG: IL-21 is required to control chronic viral infection.Science324(5934) , 1569–1572 (2009).
  • Yi JS , DuM, ZajacAJ: A vital role for interleukin-21 in the control of a chronic viral infection.Science324(5934) , 1572–1576 (2009).
  • Frohlich A , KisielowJ, SchmitzI et al.: IL-21R on T cells is critical for sustained functionality and control of chronic viral infection.Science324(5934) , 1576–1580 (2009).
  • Wei L , LaurenceA, EliasKM, O‘SheaJJ: IL-21 is produced by Th17 cells and drives IL-17 production in a STAT3-dependent manner.J. Biol. Chem.282(48) , 34605–34610 (2007).
  • Yang L , AndersonDE, Baecher-AllanC et al.: IL-21 and TGF-β are required for differentiation of human T(h)17 cells.Nature454(7202) , 350–352 (2008).
  • Suto A , KashiwakumaD, KagamiS et al.: Development and characterization of IL-21-producing CD4+ T cells.J. Exp. Med.205(6) , 1369–1379 (2008).
  • Peluso I , FantiniMC, FinaD et al.: IL-21 counteracts the regulatory T-cell mediated suppression of human CD4+ T lymphocytes.J. Immunol.178(2) , 732–739 (2007).
  • Iannello A , TremblayC, RoutyJP, BoulasselMR, TomaE, AhmadA: Decreased levels of circulating IL-21 in HIV-infected AIDS patients: correlation with CD4+ T-cell counts.Viral Immunol.21(3) , 385–388 (2008).
  • Iannello A , BoulasselMR, SamaraniS et al.: Dynamics and consequences of IL-21 production in HIV-infected individuals: a longitudinal and cross-sectional study.J. Immunol.184(1) , 114–126 (2010).
  • Yamamoto N , UshijimaN, KogaY: Immunotherapy of HIV-infected patients with Gc protein-derived macrophage activating factor (GcMAF).J. Med. Virol.81(1) , 16–26 (2009).
  • Yamamoto N : Pathogenic significance of α-N-acetylgalactosaminidase activity found in the envelope glycoprotein gp160 of human immunodeficiency virus type 1.AIDS Res. Hum. Retroviruses22(3) , 262–271 (2006).
  • Yamamoto N , NaraparajuVR, SrinivasulaSM: Structural modification of serum vitamin D3-binding protein and immunosuppression in AIDS patients.AIDS Res. Hum. Retroviruses11(11) , 1373–1378 (1995).
  • Salk J : Prospects for the control of AIDS by immunizing seropositive individuals.Nature327(6122) , 473–476 (1987).
  • Sommerfelt MA , SorensenB: Prospects for HIV-1 therapeutic immunisation and vaccination: the potential contribution of peptide immunogens.Expert Opin. Biol. Ther.8(6) , 745–757 (2008).
  • Douek DC , BrenchleyJM, BettsMR et al.: HIV preferentially infects HIV-specific CD4+ T cells.Nature417(6884) , 95–98 (2002).
  • Barouch DH , SantraS, SchmitzJE et al.: Control of viremia and prevention of clinical AIDS in rhesus monkeys by cytokine-augmented DNA vaccination.Science290(5491) , 486–492 (2000).
  • Barouch DH , FuTM, MontefioriDC, LewisMG, ShiverJW, LetvinNL: Vaccine-elicited immune responses prevent clinical AIDS in SHIV(89.6P)-infected rhesus monkeys.Immunol. Lett.79(1–2) , 57–61 (2001).
  • Boyer JD , RobinsonTM, KutzlerMA et al.: Protection against simian/human immunodeficiency virus (SHIV)89.6P in macaques after coimmunization with SHIV antigen and IL-15 plasmid.Proc. Natl Acad. Sci. USA104(47) , 18648–18653 (2007).
  • Nacsa J , Edghill-SmithY, TsaiWP et al.: Contrasting effects of low-dose IL-2 on vaccine-boosted simian immunodeficiency virus (SIV)-specific CD4+ and CD8+ T cells in macaques chronically infected with SIVmac251.J. Immunol.174(4) , 1913–1921 (2005).
  • Chong SY , EganMA, KutzlerMA et al.: Comparative ability of plasmid IL-12 and IL-15 to enhance cellular and humoral immune responses elicited by a SIVgag plasmid DNA vaccine and alter disease progression following SHIV(89.6P) challenge in rhesus macaques.Vaccine25(26) , 4967–4982 (2007).
  • Ahuja SS , ReddickRL, SatoN et al.: Dendritic cell (DC)-based anti-infective strategies: DCs engineered to secrete IL-12 are a potent vaccine in a murine model of an intracellular infection.J. Immunol.163(7) , 3890–3897 (1999).
  • Ozawa H , DingW, ToriiH et al.: Granulocyte–macrophage colony-stimulating factor gene transfer to dendritic cells or epidermal cells augments their antigen-presenting function including induction of anti-tumor immunity.J. Invest. Dermatol.113(6) , 999–1005 (1999).
  • Takayama T , TaharaH, ThomsonAW: Transduction of dendritic cell progenitors with a retroviral vector encoding viral interleukin-10 and enhanced green fluorescent protein allows purification of potentially tolerogenic antigen-presenting cells.Transplantation68(12) , 1903–1909 (1999).
  • Melero I , DuarteM, RuizJ et al.: Intratumoral injection of bone-marrow derived dendritic cells engineered to produce interleukin-12 induces complete regression of established murine transplantable colon adenocarcinomas.Gene Ther.6(10) , 1779–1784 (1999).
  • Lu W , ArraesLC, FerreiraWT, AndrieuJM: Therapeutic dendritic-cell vaccine for chronic HIV-1 infection.Nat. Med.10(12) , 1359–1365 (2004).
  • Lu W , WuX, LuY, GuoW, AndrieuJM: Therapeutic dendritic-cell vaccine for simian AIDS.Nat. Med.9(1) , 27–32 (2003).
  • Romani N , GrunerS, BrangD et al.: Proliferating dendritic cell progenitors in human blood.J. Exp. Med.180(1) , 83–93 (1994).
  • Nicolette CA , HealeyD, TcherepanovaI et al.: Dendritic cells for active immunotherapy: optimizing design and manufacture in order to develop commercially and clinically viable products.Vaccine25(Suppl. 2) , B47–B60 (2007).
  • Connolly NC , WhitesideTL, WilsonC, KondraguntaV, RinaldoCR, RiddlerSA: Therapeutic immunization with human immunodeficiency virus type 1 (HIV-1) peptide-loaded dendritic cells is safe and induces immunogenicity in HIV-1-infected individuals.Clin. Vaccine Immunol.15(2) , 284–292 (2008).
  • Kundu SK , EnglemanE, BenikeC et al.: A pilot clinical trial of HIV antigen-pulsed allogeneic and autologous dendritic cell therapy in HIV-infected patients.AIDS Res. Hum. Retroviruses14(7) , 551–560 (1998).
  • Shapero MH , KunduSK, EnglemanE, LausR, van Schooten WC, Merigan TC: In vivo persistence of donor cells following adoptive transfer of allogeneic dendritic cells in HIV-infected patients. Cell Transplant.9(3) , 307–317 (2000).
  • Garcia F , LejeuneM, ClimentN et al.: Therapeutic immunization with dendritic cells loaded with heat-inactivated autologous HIV-1 in patients with chronic HIV-1 infection.J. Infect. Dis.191(10) , 1680–1685 (2005).
  • Ide F , NakamuraT, TomizawaM et al.: Peptide-loaded dendritic-cell vaccination followed by treatment interruption for chronic HIV-1 infection: a Phase I trial.J. Med. Virol.78(6) , 711–718 (2006).
  • Dezube BJ , ProperJ, ZhangJ et al.: A passive immunotherapy, (PE)HRG214, in patients infected with human immunodeficiency virus: a Phase I study.J. Infect. Dis.187(3) , 500–503 (2003).
  • Pett SL , WilliamsLA, DayRO et al.: A Phase I study of the pharmacokinetics and safety of passive immunotherapy with caprine anti-HIV antibodies, (PE)HRG214, in HIV-1-infected individuals.HIV Clin. Trials5(2) , 91–98 (2004).
  • Verity EE , WilliamsLA, HaddadDN et al.: Broad neutralization and complement-mediated lysis of HIV-1 by PEHRG214, a novel caprine anti-HIV-1 polyclonal antibody.AIDS20(4) , 505–515 (2006).
  • Goldstein G , ChiccaJJ 2nd: A universal anti-HIV-1 Tat epitope vaccine that is fully synthetic and self-adjuvanting. Vaccine28(4) , 1008–1014 (2010).
  • Song R , FrancoD, KaoCY, YuF, HuangY, HoDD: Epitope mapping of ibalizumab, a humanized anti-CD4 monoclonal antibody with anti-HIV-1 activity in infected patients.J. Virol.84(14) , 6935–6942 (2010).
  • Reimann KA , KhunkhunR, LinW, GordonW, FungM: A humanized, nondepleting anti-CD4 antibody that blocks virus entry inhibits virus replication in rhesus monkeys chronically infected with simian immunodeficiency virus.AIDS Res. Hum. Retroviruses18(11) , 747–755 (2002).
  • Merkenschlager M , BuckD, BeverleyPC, SattentauQJ: Functional epitope analysis of the human CD4 molecule. The MHC class II-dependent activation of resting T cells is inhibited by monoclonal antibodies to CD4 regardless whether or not they recognize epitopes involved in the binding of MHC class II or HIV gp120.J. Immunol.145(9) , 2839–2845 (1990).
  • Jacobson JM , KuritzkesDR, GodofskyE et al.: Safety, pharmacokinetics, and antiretroviral activity of multiple doses of ibalizumab (formerly TNX-355), an anti-CD4 monoclonal antibody, in human immunodeficiency virus type 1-infected adults.Antimicrob. Agents Chemother.53(2) , 450–457 (2009).
  • Kuritzkes DR , JacobsonJ, PowderlyWG et al.: Antiretroviral activity of the anti-CD4 monoclonal antibody TNX-355 in patients infected with HIV type 1.J. Infect. Dis.189(2) , 286–291 (2004).
  • Zhang XQ , SorensenM, FungM, SchooleyRT: Synergistic in vitro antiretroviral activity of a humanized monoclonal anti-CD4 antibody (TNX-355) and enfuvirtide (T-20).Antimicrob. Agents Chemother.50(6) , 2231–2233 (2006).
  • Norris D MJ, Gathe J et al.: Phase II efficacy and safety of the novel entry inhibitor, TNX-355, in combination with optimized background regimen (OBR). Presented at: Sixteenth International AIDS Conference, Toronto, ON, Canada 13–18 August 2006.
  • Boon L , HollandB, GordonW et al.: Development of anti-CD4 MAb hu5A8 for treatment of HIV-1 infection: preclinical assessment in nonhuman primates.Toxicology172(3) , 191–203 (2002).
  • Eda Y , TakizawaM, MurakamiT et al.: Sequential immunization with V3 peptides from primary human immunodeficiency virus type 1 produces cross-neutralizing antibodies against primary isolates with a matching narrow-neutralization sequence motif.J. Virol.80(11) , 5552–5562 (2006).
  • Gorny MK , WilliamsC, VolskyB et al.: Human monoclonal antibodies specific for conformation-sensitive epitopes of V3 neutralize human immunodeficiency virus type 1 primary isolates from various clades.J. Virol.76(18) , 9035–9045 (2002).
  • Gorny MK , ReveszK, WilliamsC et al.: The V3 loop is accessible on the surface of most human immunodeficiency virus type 1 primary isolates and serves as a neutralization epitope.J. Virol.78(5) , 2394–2404 (2004).
  • Matsushita S , TakahamaS, ShibataJ et al.: Ex vivo neutralization of HIV-1 quasi-species by a broadly reactive humanized monoclonal antibody KD-247.Hum. Antibodies14(3–4) , 81–88 (2005).
  • Murakami T , EdaY, NakasoneT et al.: Postinfection passive transfer of KD-247 protects against simian/human immunodeficiency virus-induced CD4+ T-cell loss in macaque lymphoid tissue.AIDS23(12) , 1485–1494 (2009).
  • Shibata J , YoshimuraK, HondaA, KoitoA, MurakamiT, MatsushitaS: Impact of V2 mutations on escape from a potent neutralizing anti-V3 monoclonal antibody during in vitro selection of a primary human immunodeficiency virus type 1 isolate.J. Virol.81(8) , 3757–3768 (2007).
  • Eda Y , MurakamiT, AmiY et al.: Anti-V3 humanized antibody KD-247 effectively suppresses ex vivo generation of human immunodeficiency virus type 1 and affords sterile protection of monkeys against a heterologous simian/human immunodeficiency virus infection.J. Virol.80(11) , 5563–5570 (2006).
  • Hatada M , YoshimuraK, HaradaS, KawanamiY, ShibataJ, MatsushitaS: Human immunodeficiency virus type 1 evasion of a neutralizing anti-V3 antibody involves acquisition of a potential glycosylation site in V2.J. Gen. Virol.91(Pt 5) , 1335–1345 (2010).
  • Yoshimura K , ShibataJ, KimuraT et al.: Resistance profile of a neutralizing anti-HIV monoclonal antibody, KD-247, that shows favourable synergism with anti-CCR5 inhibitors.AIDS20(16) , 2065–2073 (2006).
  • Steinberger P , SuttonJK, RaderC, EliaM, BarbasCF 3rd: Generation and characterization of a recombinant human CCR5-specific antibody. A phage display approach for rabbit antibody humanization. J. Biol. Chem.275(46) , 36073–36078 (2000).
  • Blanpain C , VanderwindenJM, CihakJ et al.: Multiple active states and oligomerization of CCR5 revealed by functional properties of monoclonal antibodies.Mol. Biol. Cell.13(2) , 723–737 (2002).
  • Ji C , BrandtM, DioszegiM et al.: Novel CCR5 monoclonal antibodies with potent and broad-spectrum anti-HIV activities.Antiviral Res.74(2) , 125–137 (2007).
  • Whitcomb JM , HuangW, FransenS et al.: Development and characterization of a novel single-cycle recombinant-virus assay to determine human immunodeficiency virus type 1 coreceptor tropism.Antimicrob. Agents Chemother.51(2) , 566–575 (2007).
  • Binley JM , WrinT, KorberB et al.: Comprehensive cross-clade neutralization analysis of a panel of anti-human immunodeficiency virus type 1 monoclonal antibodies.J. Virol.78(23) , 13232–13252 (2004).
  • Richman DD , WrinT, LittleSJ, PetropoulosCJ: Rapid evolution of the neutralizing antibody response to HIV type 1 infection.Proc. Natl Acad. Sci. USA100(7) , 4144–4149 (2003).
  • Rusert P , KusterH, JoosB et al.: Virus isolates during acute and chronic human immunodeficiency virus type 1 infection show distinct patterns of sensitivity to entry inhibitors.J. Virol.79(13) , 8454–8469 (2005).
  • Trkola A , KetasTJ, NagashimaKA et al.: Potent, broad-spectrum inhibition of human immunodeficiency virus type 1 by the CCR5 monoclonal antibody PRO 140.J. Virol.75(2) , 579–588 (2001).
  • Cilliers T , NhlapoJ, CoetzerM et al.: The CCR5 and CXCR4 coreceptors are both used by human immunodeficiency virus type 1 primary isolates from subtype C.J. Virol.77(7) , 4449–4456 (2003).
  • Shearer WT , DeVilleJG, SamsonPM et al.: Susceptibility of pediatric HIV-1 isolates to recombinant CD4-IgG2 (PRO 542) and humanized mAb to the chemokine receptor CCR5 (PRO 140).J. Allergy Clin. Immunol.118(2) , 518–521 (2006).
  • Lalezari J , YadavalliGK, ParaM et al.: Safety, pharmacokinetics, and antiviral activity of HGS004, a novel fully human IgG4 monoclonal antibody against CCR5, in HIV-1-infected patients.J. Infect. Dis.197(5) , 721–727 (2008).
  • Jacobson JM , SaagMS, ThompsonMA et al.: Antiviral activity of single-dose PRO 140, a CCR5 monoclonal antibody, in HIV-infected adults.J. Infect. Dis.198(9) , 1345–1352 (2008).
  • Murga JD , FrantiM, PevearDC, MaddonPJ, OlsonWC: Potent antiviral synergy between monoclonal antibody and small-molecule CCR5 inhibitors of human immunodeficiency virus type 1.Antimicrob. Agents Chemother.50(10) , 3289–3296 (2006).
  • Jacobson JM , ThompsonMA, LalezariJP et al.: Anti-HIV-1 activity of weekly or biweekly treatment with subcutaneous PRO 140, a CCR5 monoclonal antibody.J. Infect. Dis.201(10) , 1481–1487 (2010).
  • Jacobson JM , LalezariJP, ThompsonMA et al.: Phase IIa study of the CCR5 monoclonal antibody PRO 140 administered intravenously to HIV-infected adults.Antimicrob. Agents Chemother.54(10) , 4137–4142(2010).
  • Roschke V CS, Branco L et al.: Characterization of a panel of novel human monoclonal antibodies that specially antagonize CCR5 and block HIV entry. Presented at: 44th Interscience Conference on Antimicrobial Agents and Chemotherapy, Washington, DC, USA 30 October–2 November 2004, (Abstract H-213).
  • Marozsan AJ , KuhmannSE, MorganT et al.: Generation and properties of a human immunodeficiency virus type 1 isolate resistant to the small molecule CCR5 inhibitor, SCH-417690 (SCH-D).Virology338(1) , 182–199 (2005).
  • Tsibris AM , SagarM, GulickRM et al.: In vivo emergence of vicriviroc resistance in a human immunodeficiency virus type 1 subtype C-infected subject.J. Virol.82(16) , 8210–8214 (2008).
  • Pugach P , KetasTJ, MichaelE, MooreJP: Neutralizing antibody and antiretroviral drug sensitivities of HIV-1 isolates resistant to small molecule CCR5 inhibitors.Virology377(2) , 401–407 (2008).
  • Ji C , ZhangJ, DioszegiM et al.: CCR5 small-molecule antagonists and monoclonal antibodies exert potent synergistic antiviral effects by cobinding to the receptor.Mol. Pharmacol.72(1) , 18–28 (2007).
  • Brown BK , KarasavvasN, BeckZ et al.: Monoclonal antibodies to phosphatidylinositol phosphate neutralize human immunodeficiency virus type 1: role of phosphate-binding subsites.J. Virol.81(4) , 2087–2091 (2007).
  • Moody MA , LiaoHX, AlamSM et al.: Antiphospholipid human monoclonal antibodies inhibit CCR5-tropic HIV-1 and induce β-chemokines.J. Exp. Med.207(4) , 763–776 (2010).
  • Burton DR , StanfieldRL, WilsonIA: Antibody vs HIV in a clash of evolutionary titans.Proc. Natl Acad. Sci. USA102(42) , 14943–14948 (2005).
  • Cavacini LA , SamoreMH, GambertoglioJ et al.: Phase I study of a human monoclonal antibody directed against the CD4-binding site of HIV type 1 glycoprotein 120.AIDS Res. Hum. Retroviruses14(7) , 545–550 (1998).
  • Song E , ZhuP, LeeSK et al.: Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors.Nat. Biotechnol.23(6) , 709–717 (2005).
  • Clayton R , OhagenA, GoethalsO et al.: Binding kinetics, uptake and intracellular accumulation of F105, an anti-gp120 human IgG1κ monoclonal antibody, in HIV-1 infected cells.J. Virol. Methods139(1) , 17–23 (2007).
  • Coutinho A : Beyond clonal selection and network.Immunol. Rev.110 , 63–87 (1989).
  • Haynes BF , FlemingJ, St Clair EW et al.: Cardiolipin polyspecific autoreactivity in two broadly neutralizing HIV-1 antibodies. Science308(5730) , 1906–1908 (2005).
  • Preece AF , StrahanKM, DevittJ, YamamotoF, GustafssonK: Expression of ABO or related antigenic carbohydrates on viral envelopes leads to neutralization in the presence of serum containing specific natural antibodies and complement.Blood99(7) , 2477–2482 (2002).
  • Metlas R , SrdicT, VeljkovicV: Anti-IgG antibodies from sera of healthy individuals neutralize HIV-1 primary isolates.Curr. HIV Res.5(2) , 261–265 (2007).
  • Scheid JF , MouquetH, FeldhahnN et al.: Broad diversity of neutralizing antibodies isolated from memory B cells in HIV-infected individuals.Nature458(7238) , 636–640 (2009).
  • Metlas RM , SrdicTV, JenabianMA et al.: Immunoglobulin G-reactive antibodies from sera of healthy individuals enriched in IgG2-therapeutic potential in HIV-1 infection.Curr. HIV Res.7(4) , 378–383 (2009).
  • McCune JM : The dynamics of CD4+ T-cell depletion in HIV disease.Nature.410(6831) , 974–979 (2001).
  • Brenchley JM , PriceDA, SchackerTW et al.: Microbial translocation is a cause of systemic immune activation in chronic HIV infection.Nat. Med.12(12) , 1365–1371 (2006).
  • Lori F , FoliA, GroffA et al.: Optimal suppression of HIV replication by low-dose hydroxyurea through the combination of antiviral and cytostatic (‘virostatic‘) mechanisms.AIDS19(11) , 1173–1181 (2005).
  • Lori F , MalykhA, CaraA et al.: Hydroxyurea as an inhibitor of human immunodeficiency virus-type 1 replication.Science266(5186) , 801–805 (1994).
  • Lisziewicz J , FoliA, WainbergM, LoriF: Hydroxyurea in the treatment of HIV infection: clinical efficacy and safety concerns.Drug Saf.26(9) , 605–624 (2003).
  • Lori F , FoliA, MaseratiR et al.: Control of HIV during a structured treatment interruption in chronically infected individuals with vigorous T-cell responses.HIV Clin. Trials3(2) , 115–124 (2002).
  • Lova L , GroffA, RavotE et al.: Hydroxyurea exerts a cytostatic but not immunosuppressive effect on T lymphocytes.AIDS19(2) , 137–144 (2005).
  • Lopez M , BenitoJM, LozanoS et al.: Enhanced HIV-specific immune responses in chronically HIV-infected patients receiving didanosine plus hydroxyurea.AIDS18(9) , 1251–1261 (2004).
  • Havlir DV , GilbertPB, BennettK et al.: Effects of treatment intensification with hydroxyurea in HIV-infected patients with virologic suppression.AIDS15(11) , 1379–1388 (2001).
  • Chapuis AG , Paolo Rizzardi G, D‘Agostino C et al.: Effects of mycophenolic acid on human immunodeficiency virus infection in vitro and in vivo. Nat. Med.6(7) , 762–768 (2000).
  • Hossain MM , CoullJJ, DrusanoGL, MargolisDM: Dose proportional inhibition of HIV-1 replication by mycophenolic acid and synergistic inhibition in combination with abacavir, didanosine and tenofovir.Antiviral Res.55(1) , 41–52 (2002).
  • Coull JJ , TurnerD, MelbyT, BettsMR, LanierR, MargolisDM: A pilot study of the use of mycophenolate mofetil as a component of therapy for multidrug-resistant HIV-1 infection.J. Acquir. Immune Defic. Syndr.26(5) , 423–434 (2001).
  • Margolis DM , KewnS, CoullJJ et al.: The addition of mycophenolate mofetil to antiretroviral therapy including abacavir is associated with depletion of intracellular deoxyguanosine triphosphate and a decrease in plasma HIV-1 RNA.J. Acquir. Immune Defic. Syndr.31(1) , 45–49 (2002).
  • Rizzardi GP , HarariA, CapiluppiB et al.: Treatment of primary HIV-1 infection with cyclosporin A coupled with highly active antiretroviral therapy.J. Clin. Invest.109(5) , 681–688 (2002).
  • Zink MC , SuryanarayanaK, MankowskiJL et al.: High viral load in the cerebrospinal fluid and brain correlates with severity of simian immunodeficiency virus encephalitis.J. Virol.73(12) , 10480–10488 (1999).
  • Szeto GL , BriceAK, YangHC, BarberSA, SilicianoRF, ClementsJE: Minocycline attenuates HIV infection and reactivation by suppressing cellular activation in human CD4+ T cells.J. Infect. Dis.201(8) , 1132–1140 (2010).
  • Jenwitheesuk E , SamudralaR: Identification of potential HIV-1 targets of minocycline.Bioinformatics23(20) , 2797–2799 (2007).
  • Zink MC , UhrlaubJ, DeWittJ et al.: Neuroprotective and anti-human immunodeficiency virus activity of minocycline.JAMA293(16) , 2003–2011 (2005).
  • Golden-Mason L , PalmerB, KlarquistJ, MengsholJA, CastelblancoN, RosenHR: Upregulation of PD-1 expression on circulating and intrahepatic hepatitis C virus-specific CD8+ T cells associated with reversible immune dysfunction.J. Virol.81(17) , 9249–9258 (2007).
  • Sester U , PresserD, DirksJ, GartnerBC, KohlerH, SesterM: PD-1 expression and IL-2 loss of cytomegalovirus- specific T cells correlates with viremia and reversible functional anergy.Am. J. Transplant.8(7) , 1486–1497 (2008).
  • Peng G , LiS, WuW, TanX, ChenY, ChenZ: PD-1 upregulation is associated with HBV-specific T-cell dysfunction in chronic hepatitis B patients.Mol. Immunol.45(4) , 963–970 (2008).
  • Day CL , KaufmannDE, KiepielaP et al.: PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression.Nature443(7109) , 350–354 (2006).
  • Trautmann L , JanbazianL, ChomontN et al.: Upregulation of PD-1 expression on HIV-specific CD8+ T cells leads to reversible immune dysfunction.Nat. Med.12(10) , 1198–1202 (2006).
  • Velu V , TitanjiK, ZhuB et al.: Enhancing SIV-specific immunity in vivo by PD-1 blockade.Nature458(7235) , 206–210 (2009).
  • Berger R , Rotem-YehudarR, SlamaG et al.: Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies.Clin. Cancer Res.14(10) , 3044–3051 (2008).
  • Franceschini D , ParoliM, FrancavillaV et al.: PD-L1 negatively regulates CD4+CD25+Foxp3+ Tregs by limiting STAT-5 phosphorylation in patients chronically infected with HCV.J. Clin. Invest.119(3) , 551–564 (2009).
  • Blackburn SD , ShinH, HainingWN et al.: Coregulation of CD8+ T-cell exhaustion by multiple inhibitory receptors during chronic viral infection.Nat. Immunol.10(1) , 29–37 (2009).
  • Tacken PJ , de Vries IJ, Torensma R, Figdor CG: Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nat. Rev. Immunol.7(10) , 790–802 (2007).
  • Reddy ST , RehorA, SchmoekelHG, HubbellJA, SwartzMA: In vivo targeting of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles.J. Control Release112(1) , 26–34 (2006).
  • Elamanchili P , DiwanM, CaoM, SamuelJ: Characterization of poly(D,L-lactic-coglycolic acid) based nanoparticulate system for enhanced delivery of antigens to dendritic cells.Vaccine.22(19) , 2406–2412 (2004).
  • Aline F , BrandD, PierreJ et al.: Dendritic cells loaded with HIV-1 p24 proteins adsorbed on surfactant-free anionic PLA nanoparticles induce enhanced cellular immune responses against HIV-1 after vaccination.Vaccine27(38) , 5284–5291 (2009).
  • Lisziewicz J , CalarotaSA, LoriF: The potential of topical DNA vaccines adjuvanted by cytokines.Expert Opin. Biol. Ther.7(10) , 1563–1574 (2007).
  • Lisziewicz J , KellyL, LoriF: Topical DermaVir vaccine targeting dendritic cells.Curr. Drug Deliv.3(1) , 83–88 (2006).
  • Lori F , TrocioJ, BakareN, KellyLM, LisziewiczJ: DermaVir, a novel HIV immunisation technology.Vaccine23(17–18) , 2030–2034 (2005).
  • Calarota SA , DaiA, TrocioJN, WeinerDB, LoriF, LisziewiczJ: IL-15 as memory T-cell adjuvant for topical HIV-1 DermaVir vaccine.Vaccine26(40) , 5188–5195 (2008).
  • Cristillo AD , LisziewiczJ, HeL et al.: HIV-1 prophylactic vaccine comprised of topical DermaVir prime and protein boost elicits cellular immune responses and controls pathogenic R5 SHIV162P3.Virology366(1) , 197–211 (2007).
  • Dadachova E , CasadevallA: Radioimmunotherapy of infectious diseases.Semin. Nucl. Med.39(2) , 146–153 (2009).
  • Mason RD , AlcantaraS, PeutV et al.: Inactivated simian immunodeficiency virus-pulsed autologous fresh blood cells as an immunotherapy strategy.J. Virol.83(3) , 1501–1510 (2009).
  • Pugach P , KuhmannSE, TaylorJ et al.: The prolonged culture of human immunodeficiency virus type 1 in primary lymphocytes increases its sensitivity to neutralization by soluble CD4.Virology321(1) , 8–22 (2004).
  • Touzet O , PhilipsA: Resveratrol protects against protease inhibitor-induced reactive oxygen species production, reticulum stress and lipid raft perturbation.AIDS24(10) , 1437–1447 (2010).
  • Zhang HS , ZhouY, WuMR, ZhouHS, XuF: Resveratrol inhibited Tat-induced HIV-1 LTR transactivation via NAD+-dependent SIRT1 activity.Life Sci.85(13–14) , 484–489 (2009).
  • Read SW , DeGreziaM, CicconeEJ et al.: The effect of leflunomide on cycling and activation of T cells in HIV-1-infected participants.PLoS One5(8) , E11937 (2010).

▪ Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.