3,290
Views
2
CrossRef citations to date
0
Altmetric
Review

Small-Molecule Protein Kinase Inhibitors and Their Effects on the Immune System: Implications for Cancer Treatment

&
Pages 213-227 | Published online: 15 Feb 2011

Bibliography

  • Dunn GP , BruceAT, IkedaH, OldLJ, SchreiberRD: Cancer immunoediting: from immunosurveillance to tumor escape.Nat. Immunol.3(11) , 991–998 (2002).
  • Zou W : Immunosuppressive networks in the tumour environment and their therapeutic relevance.Nat. Rev. Cancer5(4) , 263–274 (2005).
  • Lurquin C , LetheB, De Plaen E et al.: Contrasting frequencies of antitumor and anti-vaccine T cells in metastases of a melanoma patient vaccinated with a mage tumor antigen. J. Exp. Med.201(2) , 249–257 (2005).
  • Peterson AC , HarlinH, GajewskiTF: Immunization with Melan-A peptide-pulsed peripheral blood mononuclear cells plus recombinant human interleukin-12 induces clinical activity and T-cell responses in advanced melanoma.J. Clin. Oncol.21(12) , 2342–2348 (2003).
  • Rosenberg SA , SherryRM, MortonKE et al.: Tumor progression can occur despite the induction of very high levels of self/tumor antigen-specific CD8+ T cells in patients with melanoma.J. Immunol.175(9) , 6169–6176 (2005).
  • Yuan J , GnjaticS, LiH et al.: CTLA-4 blockade enhances polyfunctional NY-ESO-1 specific T-cell responses in metastatic melanoma patients with clinical benefit.Proc. Natl Acad. Sci. USA105(51) , 20410–20415 (2008).
  • Atkins MB , LotzeMT, DutcherJP et al.: High-dose recombinant IL-2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993.J. Clin. Oncol.17(7) , 2105–2116 (1999).
  • Hodi FS , O‘DaySJ, McDermottDF et al.: Improved survival with ipilimumab in patients with metastatic melanoma.N. Engl. J. Med.363(8) , 711–723 (2010).
  • De Souza AP , BonorinoC: Tumor immunosuppressive environment: effects on tumor-specific and nontumor antigen immune responses.Expert Rev. Anticancer Ther.9(9) , 1317–1332 (2009).
  • Flavell RA , SanjabiS, WrzesinskiSH, Licona-LimonP: The polarization of immune cells in the tumour environment by TGFb.Nat. Rev. Immunol.10 , 554–567 (2010).
  • Burdelya L , KujawskiM, NiuG et al.: STAT3 activity in melanoma cells affects migration of immune effector cells and nitric oxide-mediated antitumor effects.J. Immunol.174(7) , 3925–3931 (2005).
  • Nefedova Y , ChengP, GilkesD et al.: Activation of dendritic cells via inhibition of JAK2/STAT3 signaling.J. Immunol.175(7) , 4338–4346 (2005).
  • Nefedova Y , HuangM, KusmartsevS et al.: Hyperactivation of STAT3 is involved in abnormal differentiation of dendritic cells in cancer.J. Immunol.172(1) , 464–474 (2004).
  • Sumimoto H , ImabayashiF, IwataT, KawakamiY: The BRAF–MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells.J. Exp. Med.203(7) , 1651–1656 (2006).
  • Alvarez RH , ValeroV, HortobagyiGN: Emerging targeted therapies for breast cancer.J. Clin. Oncol.28(20) , 3366–3379 (2010).
  • Fecher LA , AmaravadiRK, SchuchterLM, FlahertyKT: Drug targeting of oncogenic pathways in melanoma.Hematol. Oncol. Clin. North Am.23(3) , 599–618 (2009).
  • Calne RY , CollierDS, LimS et al.: Rapamycin for immunosuppression in organ allografting.Lancet2(8656) , 227 (1989).
  • Neuhaus P , KluppJ, LangrehrJM: mTOR inhibitors: an overview.Liver Transpl.7(6) , 473–484 (2001).
  • Powell JD , LernerCG, SchwartzRH: Inhibition of cell cycle progression by rapamycin induces T cell clonal anergy even in the presence of costimulation.J. Immunol.162(5) , 2775–2784 (1999).
  • Vanasek TL , KhorutsA, ZellT, MuellerDL: Antagonistic roles for CTLA-4 and the mammalian target of rapamycin in the regulation of clonal anergy: enhanced cell cycle progression promotes recall antigen responsiveness.J. Immunol.167(10) , 5636–5644 (2001).
  • Zheng Y , CollinsSL, LutzMA et al.: A role for mammalian target of rapamycin in regulating T-cell activation versus anergy.J. Immunol.178(4) , 2163–2170 (2007).
  • Delgoffe GM , KoleTP, ZhengY et al.: The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment.Immunity30(6) , 832–844 (2009).
  • Kang J , HuddlestonSJ, FraserJM, KhorutsA: De novo induction of antigen-specific CD4+CD25+foxp3+ regulatory T cells in vivo following systemic antigen administration accompanied by blockade of mTOR.J. Leukoc. Biol.83(5) , 1230–1239 (2008).
  • Battaglia M , StabiliniA, RoncaroloMG: Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells.Blood105(12) , 4743–4748 (2005).
  • Strauss L , WhitesideTL, KnightsA, BergmannC, KnuthA, ZippeliusA: Selective survival of naturally occurring human CD4+CD25+FoxP3+ regulatory T cells cultured with rapamycin.J. Immunol.178(1) , 320–329 (2007).
  • Thomson AW , TurnquistHR, RaimondiG: Immunoregulatory functions of mTOR inhibition.Nat. Rev. Immunol.9(5) , 324–337 (2009).
  • Turnquist HR , RaimondiG, ZahorchakAF, FischerRT, WangZ, ThomsonAW: Rapamycin-conditioned dendritic cells are poor stimulators of allogeneic CD4+ T cells, but enrich for antigen-specific FoxP3+ T regulatory cells and promote organ transplant tolerance.J. Immunol.178(11) , 7018–7031 (2007).
  • Hackstein H , TanerT, LogarAJ, ThomsonAW: Rapamycin inhibits macropinocytosis and mannose receptor-mediated endocytosis by bone marrow-derived dendritic cells.Blood100(3) , 1084–1087 (2002).
  • Hackstein H , TanerT, ZahorchakAF et al.: Rapamycin inhibits IL-4 induced dendritic cell maturation in vitro and dendritic cell mobilization and function in vivo.Blood101(11) , 4457–4463 (2003).
  • Monti P , MercalliA, LeoneBE, ValerioDC, AllavenaP, PiemontiL: Rapamycin impairs antigen uptake of human dendritic cells.Transplantation75(1) , 137–145 (2003).
  • Gulen MF , KangZ, BulekK et al.: The receptor SIGIRR suppresses Th17 cell proliferation via inhibition of the interleukin-1 receptor pathway and mTOR kinase activation.Immunity32(1) , 54–66 (2010).
  • Donahue AC , FrumanDA: Distinct signaling mechanisms activate the target of rapamycin in response to different B-cell stimuli.Eur. J. Immunol.37(10) , 2923–2936 (2007).
  • Heidt S , RoelenDL, EijsinkC, Van Kooten C, Claas FH, Mulder A: Effects of immunosuppressive drugs on purified human B cells: evidence supporting the use of MMF and rapamycin. Transplantation86(9) , 1292–1300 (2008).
  • Wai LE , FujikiM, TakedaS, MartinezOM, KramsSM: Rapamycin, but not cyclosporine or fk506, alters natural killer cell function.Transplantation85(1) , 145–149 (2008).
  • De Paulis A , CirilloR, CiccarelliA, De Crescenzo G, Oriente A, Marone G: Characterization of the anti-inflammatory effect of FK-506 on human mast cells. J. Immunol.147(12) , 4278–4285 (1991).
  • Ohtani M , NagaiS, KondoS et al.: Mammalian target of rapamycin and glycogen synthase kinase 3 differentially regulate lipopolysaccharide-induced IL-12 production in dendritic cells.Blood112(3) , 635–643 (2008).
  • Weichhart T , CostantinoG, PoglitschM et al.: The TSC–mTOR signaling pathway regulates the innate inflammatory response.Immunity29(4) , 565–577 (2008).
  • Rao RR , LiQ, OdunsiK, ShrikantPA: The mTOR kinase determines effector versus memory CD8+ T-cell fate by regulating the expression of transcription factors T-bet and eomesodermin.Immunity32(1) , 67–78 (2010).
  • Guiducci C , GhirelliC, Marloie-ProvostMA et al.: PI3K is critical for the nuclear translocation of IRF-7 and type I IFN production by human plasmacytoid predendritic cells in response to TLR activation.J. Exp. Med.205(2) , 315–322 (2008).
  • Aksoy E , Vanden Berghe W, Detienne S et al.: Inhibition of phosphoinositide 3-kinase enhances TRIF-dependent NF-κB activation and IFN-β synthesis downstream of Toll-like receptor 3 and 4. Eur. J. Immunol.35(7) , 2200–2209 (2005).
  • Fukao T , TanabeM, TerauchiY et al.: PI3K-mediated negative feedback regulation of IL-12 production in DCs.Nat. Immunol.3(9) , 875–881 (2002).
  • Guha M , MackmanN: The phosphatidylinositol 3-kinase–AKT pathway limits lipopolysaccharide activation of signaling pathways and expression of inflammatory mediators in human monocytic cells.J. Biol. Chem.277(35) , 32124–32132 (2002).
  • Williams DL , LiC, HaT et al.: Modulation of the phosphoinositide 3-kinase pathway alters innate resistance to polymicrobial sepsis.J. Immunol.172(1) , 449–456 (2004).
  • Polumuri SK , ToshchakovVY, VogelSN: Role of phosphatidylinositol-3 kinase in transcriptional regulation of TLR-induced IL-12 and IL-10 by Fc γ receptor ligation in murine macrophages.J. Immunol.179(1) , 236–246 (2007).
  • Arrighi JF , RebsamenM, RoussetF, KindlerV, HauserC: A critical role for p38 mitogen-activated protein kinase in the maturation of human blood-derived dendritic cells induced by lipopolysaccharide, TNF-α, and contact sensitizers.J. Immunol.166(6) , 3837–3845 (2001).
  • Lu HT , YangDD, WyskM et al.: Defective IL-12 production in mitogen-activated protein (MAP) kinase kinase 3 (MKK3)-deficient mice.EMBO J.18(7) , 1845–1857 (1999).
  • Yoshimura S , BondesonJ, FoxwellBM, BrennanFM, FeldmannM: Effective antigen presentation by dendritic cells is NF-κB dependent: coordinate regulation of MHC, costimulatory molecules and cytokines.Int. Immunol.13(5) , 675–683 (2001).
  • Puig-Kroger A , RellosoM, Fernandez-CapetilloO et al.: Extracellular signal-regulated protein kinase signaling pathway negatively regulates the phenotypic and functional maturation of monocyte-derived human dendritic cells.Blood98(7) , 2175–2182 (2001).
  • Agrawal A , DillonS, DenningTL, PulendranB: Erk1-/- mice exhibit Th1 cell polarization and increased susceptibility to experimental autoimmune encephalomyelitis.J. Immunol.176(10) , 5788–5796 (2006).
  • Sato K , NagayamaH, TadokoroK, JujiT, TakahashiTA: Extracellular signal-regulated kinase, stress-activated protein kinase/c-Jun N-terminal kinase, and p38MAPK are involved in IL-10-mediated selective repression of TNF-α-induced activation and maturation of human peripheral blood monocyte-derived dendritic cells.J. Immunol.162(7) , 3865–3872 (1999).
  • Ardeshna KM , PizzeyAR, DevereuxS, KhwajaA: The PI3 kinase, p38 sap kinase, and NF-κB signal transduction pathways are involved in the survival and maturation of lipopolysaccharide-stimulated human monocyte-derived dendritic cells.Blood96(3) , 1039–1046 (2000).
  • Escors D , LopesL, LinR et al.: Targeting dendritic cell signaling to regulate the response to immunization.Blood111(6) , 3050–3061 (2008).
  • Dong C , Davis Rj, Flavell RA: MAP kinases in the immune response. Annu. Rev. Immunol.20 , 55–72 (2002).
  • Alberola-Ila J , ForbushKA, SegerR, KrebsEG, PerlmutterRM: Selective requirement for MAP kinase activation in thymocyte differentiation.Nature373(6515) , 620–623 (1995).
  • Stefanova I , HemmerB, VergelliM, MartinR, BiddisonWE, GermainRN: TCR ligand discrimination is enforced by competing ERK positive and SHP-1 negative feedback pathways.Nat. Immunol.4(3) , 248–254 (2003).
  • Tan AH , LamKP: Pharmacologic inhibition of MEK–ERK signaling enhances Th17 differentiation.J. Immunol.184(4) , 1849–1857 (2010).
  • Hicklin DJ , EllisLM: Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis.J. Clin. Oncol.23(5) , 1011–1027 (2005).
  • Forsythe JA , JiangBH, IyerNV et al.: Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1.Mol. Cell Biol.16(9) , 4604–4613 (1996).
  • Shchors K , EvanG: Tumor angiogenesis: cause or consequence of cancer?Cancer Res.67(15) , 7059–7061 (2007).
  • Tang N , WangL, EskoJ et al.: Loss of HIF-1α in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis.Cancer Cell6(5) , 485–495 (2004).
  • Ellis LM , FidlerIJ: Angiogenesis and metastasis.Eur. J. Cancer32A(14) , 2451–2460 (1996).
  • Gabrilovich D , IshidaT, OyamaT et al.: Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo.Blood92(11) , 4150–4166 (1998).
  • Gabrilovich DI , ChenHL, GirgisKR et al.: Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells.Nat. Med.2(10) , 1096–1103 (1996).
  • Gabrilovich DI , NagarajS: Myeloid-derived suppressor cells as regulators of the immune system.Nat. Rev. Immunol.9(3) , 162–174 (2009).
  • Gabrilovich DI , IshidaT, NadafS, OhmJE, CarboneDP: Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function.Clin. Cancer Res.5(10) , 2963–2970 (1999).
  • Varney ML , JohanssonSL, SinghRK: Tumour-associated macrophage infiltration, neovascularization and aggressiveness in malignant melanoma: role of monocyte chemotactic protein-1 and vascular endothelial growth factor-α.Melanoma Res.15(5) , 417–425 (2005).
  • Ueno T , ToiM, SajiH et al.: Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer.Clin. Cancer Res.6(8) , 3282–3289 (2000).
  • Solinas G , GermanoG, MantovaniA, AllavenaP: Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation.J. Leukoc. Biol.86(5) , 1065–1073 (2009).
  • Paik S , ShakS, TangG et al.: A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer.N. Engl. J. Med.351(27) , 2817–2826 (2004).
  • Ohm JE , GabrilovichDI, SempowskiGD et al.: VEGF inhibits T-cell development and may contribute to tumor-induced immune suppression.Blood101(12) , 4878–4886 (2003).
  • Li B , LalaniAS, HardingTC et al.: Vascular endothelial growth factor blockade reduces intratumoral regulatory T cells and enhances the efficacy of a GM-CSF-secreting cancer immunotherapy.Clin. Cancer Res.12(22) , 6808–6816 (2006).
  • Huang Y , ChenX, Dikov Mm et al.: Distinct roles of VEGFR-1 and VEGFR-2 in the aberrant hematopoiesis associated with elevated levels of VEGF. Blood110(2) , 624–631 (2007).
  • Fricke I , MirzaN, DupontJ et al.: Vascular endothelial growth factor-TRAP overcomes defects in dendritic cell differentiation but does not improve antigen-specific immune responses.Clin. Cancer Res.13(16) , 4840–4848 (2007).
  • Escudier B , EisenT, StadlerWM et al.: Sorafenib in advanced clear-cell renal-cell carcinoma.N. Engl. J. Med.356(2) , 125–134 (2007).
  • Llovet JM , RicciS, MazzaferroV et al.: Sorafenib in advanced hepatocellular carcinoma.N. Engl. J. Med.359(4) , 378–390 (2008).
  • Motzer RJ , HutsonTE, TomczakP et al.: Sunitinib versus interferon-α in metastatic renal-cell carcinoma.N. Engl. J. Med.356(2) , 115–124 (2007).
  • Maemondo M , InoueA, KobayashiK et al.: Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR.N. Engl. J. Med.362(25) , 2380–2388 (2010).
  • Hodi FS , FriedlanderP, CorlessCL et al.: Major response to imatinib mesylate in KIT-mutated melanoma.J. Clin. Oncol.26(12) , 2046–2051 (2008).
  • Lutzky J , BauerJ, BastianBC: Dose-dependent, complete response to imatinib of a metastatic mucosal melanoma with a K642E KIT mutation.Pigment Cell Melanoma Res.21(4) , 492–493 (2008).
  • Boissel N , RousselotP, RaffouxE et al.: Imatinib mesylate minimally affects BCR–ABL+ and normal monocyte-derived dendritic cells but strongly inhibits T-cell expansion despite reciprocal dendritic cell–T cell activation.J. Leukoc. Biol.79(4) , 747–756 (2006).
  • Dietz AB , SouanL, KnutsonGJ, BulurPA, LitzowMR, Vuk-PavlovicS: Imatinib mesylate inhibits T-cell proliferation in vitro and delayed-type hypersensitivity in vivo.Blood104(4) , 1094–1099 (2004).
  • Cwynarski K , LaylorR, MacchiaruloE et al.: Imatinib inhibits the activation and proliferation of normal T lymphocytes in vitro.Leukemia18(8) , 1332–1339 (2004).
  • Seggewiss R , LoreK, GreinerE et al.: Imatinib inhibits T-cell receptor-mediated T-cell proliferation and activation in a dose-dependent manner.Blood105(6) , 2473–2479 (2005).
  • Mumprecht S , MatterM, PavelicV, OchsenbeinAF: Imatinib mesylate selectively impairs expansion of memory cytotoxic T cells without affecting the control of primary viral infections.Blood108(10) , 3406–3413 (2006).
  • Mattiuzzi GN , CortesJE, TalpazM et al.: Development of varicella-zoster virus infection in patients with chronic myelogenous leukemia treated with imatinib mesylate.Clin. Cancer Res.9(3) , 976–980 (2003).
  • Gao H , LeeBN, TalpazM et al.: Imatinib mesylate suppresses cytokine synthesis by activated CD4 T cells of patients with chronic myelogenous leukemia.Leukemia19(11) , 1905–1911 (2005).
  • Zipfel PA , ZhangW, QuirozM, PendergastAM: Requirement for ABL kinases in T cell receptor signaling.Curr. Biol.14(14) , 1222–1231 (2004).
  • Larmonier N , JanikashviliN, LacasseCJ et al.: Imatinib mesylate inhibits CD4+ CD25+ regulatory T-cell activity and enhances active immunotherapy against BCR–ABL-tumors.J. Immunol.181(10) , 6955–6963 (2008).
  • Agosti V , CorbaciogluS, EhlersI et al.: Critical role for KIT-mediated Src kinase but not PI 3-kinase signaling in pro T- and pro B-cell development.J. Exp. Med.199(6) , 867–878 (2004).
  • Chen CI , MaeckerHT, LeePP: Development and dynamics of robust T-cell responses to CML under imatinib treatment.Blood111(11) , 5342–5349 (2008).
  • Appel S , BoehmlerAM, GrunebachF et al.: Imatinib mesylate affects the development and function of dendritic cells generated from CD34+ peripheral blood progenitor cells.Blood103(2) , 538–544 (2004).
  • Appel S , RupfA, Weck Mm et al.: Effects of imatinib on monocyte-derived dendritic cells are mediated by inhibition of nuclear factor-κB and Akt signaling pathways. Clin. Cancer Res.11(5) , 1928–1940 (2005).
  • Mohty M , JourdanE, MamiNB et al.: Imatinib and plasmacytoid dendritic cell function in patients with chronic myeloid leukemia.Blood103(12) , 4666–4668 (2004).
  • Taieb J , MaruyamaK, BorgC, TermeM, ZitvogelL: Imatinib mesylate impairs Flt3L-mediated dendritic cell expansion and antitumor effects in vivo.Blood103(5) , 1966–1967; author reply 1967 (2004).
  • Wang H , ChengF, CuencaA et al.: Imatinib mesylate (STI-571) enhances antigen-presenting cell function and overcomes tumor-induced CD4+ T-cell tolerance.Blood105(3) , 1135–1143 (2005).
  • Wehner R , WendischM, SchakelK et al.: Imatinib mesylate does not impair the immunogenicity of human myeloid blood dendritic cells.Leukemia20(9) , 1629–1632 (2006).
  • Borg C , TermeM, TaiebJ et al.: Novel mode of action of c-KIT tyrosine kinase inhibitors leading to NK cell-dependent antitumor effects.J. Clin. Invest.114(3) , 379–388 (2004).
  • Mignot G , UllrichE, BonmortM et al.: The critical role of IL-15 in the antitumor effects mediated by the combination therapy imatinib and IL-2.J. Immunol.180(10) , 6477–6483 (2008).
  • Smyth MJ : Imatinib mesylate – uncovering a fast track to adaptive immunity.N. Engl. J. Med.354(21) , 2282–2284 (2006).
  • Van Dongen M , SavageND, JordanovaES et al.: Anti-inflammatory M2 type macrophages characterize metastasized and tyrosine kinase inhibitor-treated gastrointestinal stromal tumors.Int. J. Cancer127(4) , 899–909 (2010).
  • Rini B i: Temsirolimus, an inhibitor of mammalian target of rapamycin. Clin. Cancer Res.14(5) , 1286–1290 (2008).
  • Carlomagno F , AnagantiS, GuidaT et al.: Bay 43–9006 inhibition of oncogenic RET mutants.J. Natl Cancer Inst.98(5) , 326–334 (2006).
  • Wilhelm SM , CarterC, TangL et al.: Bay 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis.Cancer Res.64(19) , 7099–7109 (2004).
  • Hipp MM , HilfN, WalterS et al.: Sorafenib, but not sunitinib, affects function of dendritic cells and induction of primary immune responses.Blood111(12) , 5610–5620 (2008).
  • Alfaro C , SuarezN, GonzalezA et al.: Influence of bevacizumab, sunitinib and sorafenib as single agents or in combination on the inhibitory effects of VEGF on human dendritic cell differentiation from monocytes.Br. J. Cancer100(7) , 1111–1119 (2009).
  • Molhoek KR , McskimmingCC, OlsonWC, BrautiganDL, SlingluffCL Jr: Apoptosis of CD4+CD25high T cells in response to sirolimus requires activation of T cell receptor and is modulated by IL-2. Cancer Immunol. Immunother.58(6) , 867–876 (2009).
  • Zhao W , GuYH, SongR, QuBQ, XuQ: Sorafenib inhibits activation of human peripheral blood T cells by targeting LCK phosphorylation.Leukemia22(6) , 1226–1233 (2008).
  • Houben R , VoigtH, NoelkeC, HofmeisterV, BeckerJC, SchramaD: MAPK-independent impairment of T-cell responses by the multikinase inhibitor sorafenib.Mol. Cancer Ther.8(2) , 433–440 (2009).
  • Motzer RJ , RiniBI, BukowskiRM et al.: Sunitinib in patients with metastatic renal cell carcinoma.JAMA295(21) , 2516–2524 (2006).
  • Finke JH , RiniB, IrelandJ et al.: Sunitinib reverses type-1 immune suppression and decreases T-regulatory cells in renal cell carcinoma patients.Clin. Cancer Res.14(20) , 6674–6682 (2008).
  • Ko JS , ZeaAH, RiniBI et al.: Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients.Clin. Cancer Res.15(6) , 2148–2157 (2009).
  • Ko JS , RaymanP, IrelandJ et al.: Direct and differential suppression of myeloid-derived suppressor cell subsets by sunitinib is compartmentally constrained.Cancer Res.70(9) , 3526–3536 (2010).
  • Van Cruijsen H , Van Der Veldt AA, Vroling L et al.: Sunitinib-induced myeloid lineage redistribution in renal cell cancer patients: CD1c+ dendritic cell frequency predicts progression-free survival. Clin. Cancer Res.14(18) , 5884–5892 (2008).
  • Ozao-Choy J , MaG, KaoJ et al.: The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies.Cancer Res.69(6) , 2514–2522 (2009).
  • Xin H , ZhangC, HerrmannA, DuY, FiglinR, YuH: Sunitinib inhibition of STAT3 induces renal cell carcinoma tumor cell apoptosis and reduces immunosuppressive cells.Cancer Res.69(6) , 2506–2513 (2009).
  • Sinai P , BergRE, HaynieJM, EgorinMJ, IlariaRL Jr, Forman J: Imatinib mesylate inhibits antigen-specific memory CD8 T-cell responses in vivo. J. Immunol.178(4) , 2028–2037 (2007).
  • Chapman P Pi, Sosman J et al.: Early efficacy signal demonstrated in advanced melanoma in a Phase I trial of the oncogenic BRAF-selective inhibitor PLX4032. Eur. J. Cancer7(3) , 5 (2009).
  • Flaherty K , PuzanovI, SosmanJ et al.: Phase I study of PLX4032: proof of concept for V600E BRAF mutation as a therapeutic target in human cancer.J. Clin. Oncol.27(Suppl. 15), Abstract 9000 (2009).
  • Seliger B , MassaC, RiniB, KoJ, FinkeJ: Antitumour and immune-adjuvant activities of protein-tyrosine kinase inhibitors.Trends Mol. Med.16(4) , 184–192 (2010).
  • Boni A , CogdillAP, DangP et al.: Selective BRAFV600E inhibition enhances T-cell recognition of melanoma without affecting lymphocyte function.Cancer Res.70(13) , 5213–5219 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.