241
Views
0
CrossRef citations to date
0
Altmetric
Review

Potential Targets for Pancreatic Cancer Immunotherapeutics

, &
Pages 517-537 | Published online: 04 Apr 2011

Bibliography

  • Jemal A , SiegelR, XuJ, WardE: Cancer statistics.CA Cancer J. Clin.60(5) , 277–300 (2010).
  • Cress RD , YinD, ClarkeL, BoldR, HollyEA: Survival among patients with adenocarcinoma of the pancreas: a population-based study (United States).Cancer Causes Control17(4) , 403–409 (2006).
  • Winter JM , CameronJL, CampbellKA et al.: 1423 pancreaticoduodenectomies for pancreatic cancer: a single-institution experience.J. Gastrointest. Surg.10(9) , 1199–1210 (2006).
  • Garcea G , DennisonAR, PattendenCJ, NealCP, SuttonCD, BerryDP: Survival following curative resection for pancreatic ductal adenocarcinoma. A systematic review of the literature.J. Oncol. Pract.9(2) , 99–132 (2008).
  • Roy R , MaraveyasA: Chemoradiation in pancreatic adenocarcinoma: a literature review.Oncologist15(3) , 259–269 (2010).
  • Mackenzie RP , McCollumAD: Novel agents for the treatment of adenocarcinoma of the pancreas.Expert Rev. Anticancer Ther.9(10) , 1473–1485 (2009).
  • Goldman B , DeFrancescoL: The cancer vaccine roller coaster.Nat. Biotechnol.27(2) , 129–139 (2009).
  • Yokokawa J , PalenaC, ArlenP et al.: Identification of novel human CTL epitopes and their agonist epitopes of mesothelin.Clin. Cancer Res.11(17) , 6342–6351 (2005).
  • Andersen MH , PedersenLO, BeckerJC, StratenPT: Identification of a cytotoxic T lymphocyte response to the apoptosis inhibitor protein survivin in cancer patients.Cancer Res.161(3) , 869–872 (2001).
  • Johnston FM , TanMC, TanBR Jr et al.: Circulating mesothelin protein and cellular antimesothelin immunity in patients with pancreatic cancer. Clin. Cancer Res.15(21) , 6511–6518 (2009).
  • Kotera Y , FontenotJD, PecherG, MetzgarRS, FinnOJ: Humoral immunity against a tandem repeat epitope of human mucin MUC-1 in sera from breast, pancreatic, and colon cancer patients.Cancer Res.54(11) , 2856–2860 (1994).
  • Kubuschok B , NeumannF, BreitR et al.: Naturally occurring T-cell response against mutated p21 ras oncoprotein in pancreatic cancer.Clin. Cancer Res.12(4) , 1365–1372 (2006).
  • Wenandy L , SorensenRB, SengelovL, SvaneIM, ThorSP, AndersenMH: The immunogenicity of the hTERT540–548 peptide in cancer.Clin. Cancer Res.14(1) , 4–7 (2008).
  • Yanagimoto H , MineT, YamamotoK et al.: Immunological evaluation of personalized peptide vaccination with gemcitabine for pancreatic cancer.Cancer Sci.98(4) , 605–611 (2007).
  • Dunn GP , KoebelCM, SchreiberRD: Interferons, immunity and cancer immunoediting.Nat. Rev. Immunol.6(11) , 836–848 (2006).
  • Swann JB , SmythMJ: Immune surveillance of tumors.J. Clin. Invest.117(5) , 1137–1146 (2007).
  • Hamanaka Y , SuehiroY, FukuiM, ShikichiK, ImaiK, HinodaY: Circulating anti-MUC1 IgG antibodies as a favorable prognostic factor for pancreatic cancer.Int. J. Cancer103(1) , 97–100 (2003).
  • Pages F , GalonJ, Dieu-NosjeanMC, TartourE, Sautes-FridmanC, FridmanWH: Immune infiltration in human tumors: a prognostic factor that should not be ignored.Oncogene29(8) , 1093–1102 (2010).
  • Clark CE , BeattyGL, VonderheideRH: Immunosurveillance of pancreatic adenocarcinoma: insights from genetically engineered mouse models of cancer.Cancer Lett.279(1) , 1–7 (2009).
  • Fong L , SmallEJ: Anti-cytotoxic T-lymphocyte antigen-4 antibody: the first in an emerging class of immunomodulatory antibodies for cancer treatment.J. Clin. Oncol.26(32) , 5275–5283 (2008).
  • Paulos CM , JuneCH: Putting the brakes on BTLA in T cell-mediated cancer immunotherapy.J. Clin. Invest.120(1) , 76–80 (2010).
  • Pardoll D : Does the immune system see tumors as foreign or self?Annu. Rev. Immunol.21 , 807–839 (2003).
  • Ikemoto T , YamaguchiT, MorineY et al.: Clinical roles of increased populations of Foxp3+CD4+ T cells in peripheral blood from advanced pancreatic cancer patients.Pancreas33(4) , 386–390 (2006).
  • Hiraoka N , OnozatoK, KosugeT, HirohashiS: Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions.Clin. Cancer Res.12(18) , 5423–5434 (2006).
  • Nomi T , ShoM, AkahoriT et al.: Clinical significance and therapeutic potential of the programmed death-1 ligand/programmed death-1 pathway in human pancreatic cancer.Clin. Cancer Res.13(7) , 2151–2157 (2007).
  • Hori S , NomuraT, SakaguchiS: Control of regulatory T cell development by the transcription factor Foxp3.Science299(5609) , 1057–1061 (2003).
  • Sakaguchi S , SakaguchiN, AsanoM, ItohM, TodaM: Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases.J. Immunol.155(3) , 1151–1164 (1995).
  • Fontenot JD , GavinMA, RudenskyAY: Foxp3 programs the development and function of CD4+CD25+ regulatory T cells.Nat. Immunol.4(4) , 330–336 (2003).
  • Khattri R , CoxT, YasaykoSA, RamsdellF: An essential role for Scurfin in CD4+CD25+ T regulatory cells.Nat. Immunol.4(4) , 337–342 (2003).
  • Linehan DC , GoedegebuurePS: CD25+ CD4+ regulatory T-cells in cancer.Immunol. Res.32(1–3) , 155–168 (2005).
  • van der Bruggen P , TraversariC, ChomezP et al.: A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma.Science254(5038) , 1643–1647 (1991).
  • Peoples GE : HER2 vaccination in high-risk breast cancer.Clin. Adv. Hematol. Oncol.7(11) , 715–717 (2009).
  • Weden S , KlempM, GladhaugIP et al.: Long term follow-up of resected pancreatic cancer patients following vaccination against mutant K-RAS.Int. J. Cancer12 (2010).
  • Hensler T , HeckerH, HeegK et al.: Distinct mechanisms of immunosuppression as a consequence of major surgery.Infect. Immun.65(6) , 2283–2291 (1997).
  • Shakhar G , Ben-EliyahuS: Potential prophylactic measures against postoperative immunosuppression: could they reduce recurrence rates in oncological patients?Ann. Surg. Oncol.10(8) , 972–992 (2003).
  • Weighardt H , HeideckeCD, EmmanuilidisK et al.: Sepsis after major visceral surgery is associated with sustained and interferon-γ-resistant defects of monocyte cytokine production.Surgery127(3) , 309–315 (2000).
  • Saito H , DubskyP, DantinC, FinnOJ, BanchereauJ, PaluckaAK: Cross-priming of cyclin B1, MUC-1 and survivin-specific CD8+ T cells by dendritic cells loaded with killed allogeneic breast cancer cells.Breast Cancer Res.8(6) , R65 (2006).
  • Thomas AM , SantarsieroLM, LutzER et al.: Mesothelin-specific CD8+ T cell responses provide evidence of in vivo cross-priming by antigen-presenting cells in vaccinated pancreatic cancer patients.J. Exp. Med.200(3) , 297–306 (2004).
  • Jaffee EM , HrubanRH, BiedrzyckiB et al.: Novel allogeneic granulocyte-macrophage colony-stimulating factor-secreting tumor vaccine for pancreatic cancer: a Phase I trial of safety and immune activation.J. Clin. Oncol.19(1) , 145–156 (2001).
  • Hassan R , HoM: Mesothelin targeted cancer immunotherapy.Eur. J. Cancer44(1) , 46–53 (2008).
  • Beatson RE , Taylor-PapadimitriouJ, BurchellJM: MUC1 immunotherapy.Immunotherapy2(3) , 305–327 (2010).
  • Mandell RB , FlickR, StaplinWR et al.: The αGal HyperAcute® technology: enhancing immunogenicity of antiviral vaccines by exploiting the natural αGal-mediated zoonotic blockade.Zoonoses Public Health56(6–7) , 391–406, (2009).
  • Macher BA , GaliliU: The Galα1,3Galβ1,4GlcNAc-R (α-Gal) epitope: a carbohydrate of unique evolution and clinical relevance.Biochim. Biophys. Acta1780(2) , 75–88 (2008).
  • Deguchi T , TanemuraM, MiyoshiE et al.: Increased immunogenicity of tumor-associated antigen, mucin 1, engineered to express α-Gal epitopes: a novel approach to immunotherapy in pancreatic cancer.Cancer Res.70 , 5259 (2010).
  • Rossi GR , UnferRC, SereginaT, LinkCJ: Complete protection against melanoma in absence of autoimmune depigmentation after rejection of melanoma cells expressing α(1,3)galactosyl epitopes.Cancer Immunol. Immunother.54(10) , 999–1009 (2005).
  • Rossi GR , MautinoMR, AwwadDZ et al.: Allogeneic melanoma vaccine expressing αGal epitopes induces antitumor immunity to autologous antigens in mice without signs of toxicity.J. Immunother.31(6) , 545–554 (2008).
  • Koido S , HaraE, HommaS et al.: Cancer vaccine by fusions of dendritic and cancer cells.Clin. Dev. Immunol.2009 , 657369 (2009).
  • Schmidt T , ZiskeC, MartenA et al.: Intratumoral immunization with tumor RNA-pulsed dendritic cells confers antitumor immunity in a C57BL/6 pancreatic murine tumor model.Cancer Res.63(24) , 8962–8967 (2003).
  • Kyte JA , MuL, AamdalS, KvalheimG, DuelandS, HauserM et al.: Phase I/II trial of melanoma therapy with dendritic cells transfected with autologous tumor-mRNA.Cancer Gene Ther.13(10) , 905–918 (2006).
  • Kyte JA , KvalheimG, LislerudK et al.: T cell responses in melanoma patients after vaccination with tumor-mRNA transfected dendritic cells.Cancer Immunol. Immunother.56(5) , 659–675 (2007).
  • Schnurr M , ScholzC, RothenfusserS et al.: Apoptotic pancreatic tumor cells are superior to cell lysates in promoting cross-priming of cytotoxic T cells and activate NK and γδ T cells.Cancer Res.62(8) , 2347–2352 (2002).
  • Kantoff PW , HiganoCS, ShoreND et al.: Sipuleucel-T immunotherapy for castration-resistant prostate cancer.N. Engl. J. Med.363(5) , 411–422 (2010).
  • Mazzolini G , AlfaroC, SangroB et al.: Intratumoral injection of dendritic cells engineered to secrete interleukin-12 by recombinant adenovirus in patients with metastatic gastrointestinal carcinomas.J. Clin. Oncol.23(5) , 999–1010 (2005).
  • Koido S , HommaS, HaraE et al.: Antigen-specific polyclonal cytotoxic T lymphocytes induced by fusions of dendritic cells and tumor cells.J. Biomed. Biotechnol.752381 (2010).
  • Yamamoto M , KamigakiT, YamashitaK et al.: Enhancement of anti-tumor immunity by high levels of Th1 and Th17 with a combination of dendritic cell fusion hybrids and regulatory T cell depletion in pancreatic cancer.Oncol. Rep.22(2) , 337–343 (2009).
  • Pecher G , HaringA, KaiserL, ThielE: Mucin gene (MUC1) transfected dendritic cells as vaccine: results of a Phase I/II clinical trial.Cancer Immunol. Immunother.51(11–12) , 669–673 (2002).
  • Lepisto AJ , MoserAJ, ZehH et al.: A Phase I/II study of a MUC1 peptide pulsed autologous dendritic cell vaccine as adjuvant therapy in patients with resected pancreatic and biliary tumors.Cancer Ther.6(B) , 955–964 (2008).
  • Aloysius MM , Mc Kechnie AJ, Robins RA et al.: Generation in vivo of peptide-specific cytotoxic T cells and presence of regulatory T cells during vaccination with hTERT (class I and II) peptide-pulsed DCs. J. Transl. Med.7 , 18 (2009).
  • Carbone DP , CiernikIF, KelleyMJ et al.: Immunization with mutant p53- and K-ras-derived peptides in cancer patients: immune response and clinical outcome.J. Clin. Oncol.23(22) , 5099–5107 (2005).
  • Ramanathan RK , LeeKM, McKolanisJ et al.: Phase I study of a MUC1 vaccine composed of different doses of MUC1 peptide with SB-AS2 adjuvant in resected and locally advanced pancreatic cancer.Cancer Immunol. Immunother.54(3) , 254–264 (2005).
  • Yamamoto K , UenoT, KawaokaT et al.: MUC1 peptide vaccination in patients with advanced pancreas or biliary tract cancer.Anticancer Res.25(5) , 3575–3579 (2005).
  • Bernhardt SL , GjertsenMK, TrachselS et al.: Telomerase peptide vaccination of patients with non-resectable pancreatic cancer: a dose escalating Phase I/II study.Br. J. Cancer95(11) , 1474–1482 (2006).
  • Buanes T , MaurelJ, LiauwW, HebbarM, NemunaitisJ: A randomized Phase III study of gemcitabine (G) versus GV1001 in sequential combination with G in patients with unresectable and metastatic pancreatic cancer (PC).J. Clin. Oncol.27(Suppl. 15) , Abstract 4601 (2009).
  • Miyazawa M , OhsawaR, TsunodaT et al.: Phase I clinical trial using peptide vaccine for human vascular endothelial growth factor receptor 2 in combination with gemcitabine for patients with advanced pancreatic cancer.Cancer Sci.101(2) , 433–439 (2010).
  • Toubaji A , AchtarM, ProvenzanoM et al.: Pilot study of mutant ras peptide-based vaccine as an adjuvant treatment in pancreatic and colorectal cancers.Cancer Immunol. Immunother.57(9) , 1413–1420 (2008).
  • Begley J , RibasA: Targeted therapies to improve tumor immunotherapy.Clin. Cancer Res.14(14) , 4385–4391 (2008).
  • Chapatte L , AyyoubM, MorelS et al.: Processing of tumor-associated antigen by the proteasomes of dendritic cells controls in vivo T-cell responses.Cancer Res.1566(10) , 5461–5468 (2006).
  • Houghton AN , Guevara-PatinoJA: Immune recognition of self in immunity against cancer.J. Clin. Invest.114(4) , 468–471 (2004).
  • Weiner LM , SuranaR, MurrayJ: Vaccine prevention of cancer: can endogenous antigens be targeted?Cancer Prev. Res. (Phila.)3(4) , 410–415 (2010).
  • Yu Z , TheoretMR, TouloukianCE et al.: Poor immunogenicity of a self/tumor antigen derives from peptide–MHC-I instability and is independent of tolerance.J. Clin. Invest.114(4) , 551–559 (2004).
  • Tsang KY , PalenaC, GulleyJ, ArlenP, SchlomJ: A human cytotoxic T-lymphocyte epitope and its agonist epitope from the nonvariable number of tandem repeat sequence of MUC-1.Clin. Cancer Res.10(6) , 2139–2149 (2004).
  • Wobser M , KeikavoussiP, KunzmannV, WeiningerM, AndersenMH, BeckerJC: Complete remission of liver metastasis of pancreatic cancer under vaccination with a HLA-A2 restricted peptide derived from the universal tumor antigen survivin.Cancer Immunol. Immunother.55(10) , 1294–1298 (2006).
  • Charalambous A , OksM, NchindaG, YamazakiS, SteinmanRM: Dendritic cell targeting of survivin protein in a xenogeneic form elicits strong CD4+ T cell immunity to mouse survivin.J. Immunol.177(12) , 8410–8421 (2006).
  • Wang B , KuroiwaJM, HeLZ, CharalambousA, KelerT, SteinmanRM: The human cancer antigen mesothelin is more efficiently presented to the mouse immune system when targeted to the DEC-205/CD205 receptor on dendritic cells.Ann. NY Acad. Sci.1174 , 6–17 (2009).
  • Shibagaki N , UdeyMC: Dendritic cells transduced with protein antigens induce cytotoxic lymphocytes and elicit antitumor immunity.J. Immunol.168(5) , 2393–2401 (2002).
  • Bae MY , ChoNH, SeongSY: Protective anti-tumour immune responses by murine dendritic cells pulsed with recombinant Tat-carcinoembryonic antigen derived from Escherichia coli.Clin. Exp. Immunol.157(1) , 128–138 (2009).
  • Tanaka Y , DowdySF, LinehanDC, EberleinTJ, GoedegebuurePS: Induction of antigen-specific CTL by recombinant HIV trans-activating fusion protein-pulsed human monocyte-derived dendritic cells.J. Immunol.170(3) , 1291–1298 (2003).
  • Viehl CT , TanakaY, ChenT et al.: Tat mammaglobin fusion protein transduced dendritic cells stimulate mammaglobin-specific CD4 and CD8 T cells.Breast Cancer Res. Treat.91(3) , 271–278 (2005).
  • Viehl CT , Becker-HapakM, LewisJS et al.: A Tat fusion protein-based tumor vaccine for breast cancer.Ann. Surg. Oncol.12(7) , 517–525 (2005).
  • Saha A , ChatterjeeSK, FoonKA, Bhattacharya-ChatterjeeM: Anti-idiotype antibody induced cellular immunity in mice transgenic for human carcinoembryonic antigen.Immunology118(4) , 483–496 (2006).
  • Saha A , BaralRN, ChatterjeeSK et al.: CpG oligonucleotides enhance the tumor antigen-specific immune response of an anti-idiotype antibody-based vaccine strategy in CEA transgenic mice.Cancer Immunol. Immunother.55(5) , 515–527 (2006).
  • Saha A , ChatterjeeSK, FoonKA, CelisE, Bhattacharya-ChatterjeeM: Therapy of established tumors in a novel murine model transgenic for human carcinoembryonic antigen and HLA-A2 with a combination of anti-idiotype vaccine and CTL peptides of carcinoembryonic antigen.Cancer Res.67(6) , 2881–2892 (2007).
  • Yanagimoto H , ShiomiH, SatoiS et al.: A Phase II study of personalized peptide vaccination combined with gemcitabine for non-resectable pancreatic cancer patients.Oncol. Rep.24(3) , 795–801 (2010).
  • Bodles-Brakhop AM , Draghia-AkliR: DNA vaccination and gene therapy: optimization and delivery for cancer therapy.Expert Rev. Vaccines7(7) , 1085–1101 (2008).
  • Zhu K , QinH, ChaSC et al.: Survivin DNA vaccine generated specific antitumor effects in pancreatic carcinoma and lymphoma mouse models.Vaccine25(46) , 7955–7961 (2007).
  • Rong Y , JinD, WuW et al.: Induction of protective and therapeutic anti-pancreatic cancer immunity using a reconstructed MUC1 DNA vaccine.BMC Cancer9 , 191 (2009).
  • Chang CL , WuTC, HungCF: Control of human mesothelin-expressing tumors by DNA vaccines.Gene Ther.14(16) , 1189–1198 (2007).
  • Dong Y , QianJ, IbrahimR, BerzofskyJA, KhleifSN: Identification of H-2Db-specific CD8+ T-cell epitopes from mouse VEGFR2 that can inhibit angiogenesis and tumor growth.J. Immunother.29(1) , 32–40 (2006).
  • Johansson S , EkM, WahrenB, StoutR, LiuM, HallermalmK: Intracellular targeting of CEA results in Th1-type antibody responses following intradermal genetic vaccination by a needle-free jet injection device.ScientificWorldJournal7 , 987–999 (2007).
  • Brave A , HallengardD, GudmundsdotterL et al.: Late administration of plasmid DNA by intradermal electroporation efficiently boosts DNA-primed T and B cell responses to carcinoembryonic antigen.Vaccine27(28) , 3692–3696 (2009).
  • Hallermalm K , JohanssonS, BraveA et al.: Pre-clinical evaluation of a CEA DNA prime/protein boost vaccination strategy against colorectal cancer.Scand. J. Immunol.66(1) , 43–51 (2007).
  • Yu YY , NetuschilN, LybargerL, ConnollyJM, HansenTH: Cutting edge: single-chain trimers of MHC class I molecules form stable structures that potently stimulate antigen-specific T cells and B cells.J. Immunol.168(7) , 3145–3149 (2002).
  • Huang CH , PengS, HeL et al.: Cancer immunotherapy using a DNA vaccine encoding a single-chain trimer of MHC class I linked to an HPV-16 E6 immunodominant CTL epitope.Gene Ther.12(15) , 1180–1186 (2005).
  • Li L , HerndonJM, TruscottSM et al.: Engineering superior DNA vaccines: MHC class I single chain trimers bypass antigen processing and enhance the immune response to low affinity antigens.Vaccine2328(8) , 1911–1918 (2010).
  • Zhang Y , LiS, ShanM et al.: Hepatitis B virus core antigen epitopes presented by HLA-A2 single-chain trimers induce functional epitope-specific CD8+ T-cell responses in HLA-A2.1/Kb transgenic mice.Immunology121(1) , 105–112 (2007).
  • Cheung YK , ChengSC, SinFW, ChanKT, XieY: Induction of T-cell response by a DNA vaccine encoding a novel HLA-A*0201 severe acute respiratory syndrome coronavirus epitope.Vaccine25(32) , 6070–6077 (2007).
  • Cheung YK , ChengSC, KeY, XieY: Two novel HLA-A*0201 T-cell epitopes in avian H5N1 viral nucleoprotein induced specific immune responses in HHD mice.Vet Res.41(2) , 24 (2010).
  • Huang B , MaoCP, PengS, HeL, HungCF, WuTC: Intradermal administration of DNA vaccines combining a strategy to bypass antigen processing with a strategy to prolong dendritic cell survival enhances DNA vaccine potency.Vaccine25(45) , 7824–7831 (2007).
  • Hung CF , CalizoR, TsaiYC, HeL, WuTC: A DNA vaccine encoding a single-chain trimer of HLA-A2 linked to human mesothelin peptide generates anti-tumor effects against human mesothelin-expressing tumors.Vaccine25(1) , 127–135 (2007).
  • Kim S , LiL, McMurtreyCP et al.: Single-chain HLA-A2 MHC trimers that incorporate an immundominant peptide elicit protective T cell immunity against lethal West Nile virus infection.J. Immunol.184(8) , 4423–4430 (2010).
  • Pejawar-Gaddy S , RajawatY, HiliotiZ et al.: Generation of a tumor vaccine candidate based on conjugation of a MUC1 peptide to polyionic papillomavirus virus-like particles.Cancer Immunol. Immunother.59(11) , 1685–1696 (2010).
  • Gabitzsch ES , XuY, BalintJP Jr, Hartman ZC, Lyerly HK, Jones FR: Anti-tumor immunotherapy despite immunity to adenovirus using a novel adenoviral vector Ad5 [E1-, E2b-]-CEA. Cancer Immunol. Immunother.59(7) , 1131–1135 (2010).
  • Kaufman HL , Kim-SchulzeS, MansonK et al.: Poxvirus-based vaccine therapy for patients with advanced pancreatic cancer.J. Transl. Med.5 , 60 (2007).
  • Morse MA , HobeikaAC, OsadaT et al.: An alphavirus vector overcomes the presence of neutralizing antibodies and elevated numbers of Tregs to induce immune responses in humans with advanced cancer.J. Clin. Invest.120(9) , 3234–3241 (2010).
  • Ryman KD , KlimstraWB: Host responses to alphavirus infection.Immunol. Rev.225 , 27–45 (2008).
  • Yang L , YangH, RideoutK et al.: Engineered lentivector targeting of dendritic cells for in vivo immunization.Nat. Biotechnol.26(3) , 326–334 (2008).
  • Bernstein MB , ChakrabortyM, WansleyEK et al.: Recombinant Saccharomyces cerevisiae(yeast-CEA) as a potent activator of murine dendritic cells.Vaccine26(4) , 509–521 (2008).
  • Remondo C , CeredaV, MostbockS et al.: Human dendritic cell maturation and activation by a heat-killed recombinant yeast (Saccharomyces cerevisiae) vector encoding carcinoembryonic antigen.Vaccine27(7) , 987–994 (2009).
  • Boehm AL , HigginsJ, FranzusoffA, SchlomJ, HodgeJW: Concurrent vaccination with two distinct vaccine platforms targeting the same antigen generates phenotypically and functionally distinct T-cell populations.Cancer Immunol. Immunother.59(3) , 397–408 (2010).
  • Wansley EK , ChakrabortyM, HanceKW et al.: Vaccination with a recombinant Saccharomyces cerevisiae expressing a tumor antigen breaks immune tolerance and elicits therapeutic antitumor responses.Clin. Cancer Res.14(13) , 4316–4325 (2008).
  • Lu Y , BellgrauD, Dwyer-NieldLD et al.: Mutation-selective tumor remission with Ras-targeted, whole yeast-based immunotherapy.Cancer Res.64(15) , 5084–5088 (2004).
  • Paterson Y , GuirnaldaPD, WoodLM: Listeria and Salmonella bacterial vectors of tumor-associated antigens for cancer immunotherapy.Semin. Immunol.22(3) , 183–189 (2010).
  • Le DT , Nir-PazR, HamplJ et al.: Results of Phase I studies testing two live-attenuated listeria vaccines, ANZ-100 and CRS-207, for the treatment of cancer. In: Tumor Immunology: Basic and Clinical Advances. AACR Program and Proceedings. Abstract B12 (2010).
  • Ishizaki H , SongGY, SrivastavaT et al.: Heterologous prime/boost immunization with p53-based vaccines combined with Toll-like receptor stimulation enhances tumor regression.J. Immunother.33(6) , 609–617 (2010).
  • Seavey MM , MaciagPC, Al-RawiN, SewellD, PatersonY: An anti-vascular endothelial growth factor receptor 2/fetal liver kinase-1 Listeria monocytogenes anti-angiogenesis cancer vaccine for the treatment of primary and metastatic Her-2/neu+ breast tumors in a mouse model.J. Immunol.182(9) , 5537–5546 (2009).
  • Seavey MM , PanZK, MaciagPC et al.: A novel human Her-2/neu chimeric molecule expressed by Listeria monocytogenes can elicit potent HLA-A2 restricted CD8-positive T cell responses and impact the growth and spread of Her-2/neu-positive breast tumors.Clin. Cancer Res.115(3) , 924–932 (2009).
  • Shahabi V , SeaveyMM, MaciagPC, RiveraS, WallechaA: Development of a live and highly attenuated Listeria monocytogenes-based vaccine for the treatment of Her2/neu-overexpressing cancers in human.Cancer Gene Ther.18 , 53–62 (2010).
  • Niethammer AG , PrimusFJ, XiangR et al.: An oral DNA vaccine against human carcinoembryonic antigen (CEA) prevents growth and dissemination of Lewis lung carcinoma in CEA transgenic mice.Vaccine20(3–4) , 421–429 (2001).
  • Xiang R , PrimusFJ, RuehlmannJM et al.: A dual-function DNA vaccine encoding carcinoembryonic antigen and CD40 ligand trimer induces T cell-mediated protective immunity against colon cancer in carcinoembryonic antigen-transgenic mice.J. Immunol.167(8) , 4560–4565 (2001).
  • Xiong G , HusseinyMI, SongL et al.: Novel cancer vaccine based on genes of Salmonella pathogenicity island 2.Int. J. Cancer126(11) , 2622–2634 (2010).
  • Hellstrom I , FriedmanE, VerchT et al.: Anti-mesothelin antibodies and circulating mesothelin relate to the clinical state in ovarian cancer patients.Cancer Epidemiol. Biomarkers Prev.17(6) , 1520–1526 (2008).
  • Ho M , HassanR, ZhangJ et al.: Humoral immune response to mesothelin in mesothelioma and ovarian cancer patients.Clin. Cancer Res.11(10) , 3814–3820 (2005).
  • Reichert JM , Valge-ArcherVE: Development trends for monoclonal antibody cancer therapeutics.Nat. Rev. Drug Discov.6(5) , 349–356 (2007).
  • Arnould L , GellyM, Penault-LlorcaF et al.: Trastuzumab-based treatment of HER2-positive breast cancer: an antibody-dependent cellular cytotoxicity mechanism?Br. J. Cancer94(2) , 259–267 (2006).
  • Clynes R , TakechiY, MoroiY, HoughtonA, RavetchJV: Fc receptors are required in passive and active immunity to melanoma.Proc. Natl Acad. Sci. USA95(2) , 652–656 (1998).
  • Weiner LM , SuranaR, WangS: Monoclonal antibodies: versatile platforms for cancer immunotherapy.Nat. Rev. Immunol.10(5) , 317–327 (2010).
  • Hassan R , BullockS, PremkumarA et al.: Phase I study of SS1P, a recombinant anti-mesothelin immunotoxin given as a bolus I.V. infusion to patients with mesothelin-expressing mesothelioma, ovarian, and pancreatic cancers.Clin. Cancer Res.13(17) , 5144–5149 (2007).
  • Filpula D , ZhaoH: Releasable PEGylation of proteins with customized linkers.Adv. Drug Deliv. Rev.60(1) , 29–49 (2008).
  • Kreitman RJ , HassanR, FitzgeraldDJ, PastanI: Phase I trial of continuous infusion anti-mesothelin recombinant immunotoxin SS1P.Clin. Cancer Res.15(16) , 5274–5279 (2009).
  • Hassan R , EbelW, RouthierEL et al.: Preclinical evaluation of MORAb-009, a chimeric antibody targeting tumor-associated mesothelin.Cancer Immun.7 , 20 (2007).
  • Feng Y , XiaoX, ZhuZ et al.: A novel human monoclonal antibody that binds with high affinity to mesothelin-expressing cells and kills them by antibody-dependent cell-mediated cytotoxicity.Mol. Cancer Ther.8(5) , 1113–1118 (2009).
  • Ho M , FengM, FisherRJ, RaderC, PastanI: A novel high affinity human monoclonal antibody to mesothelin.Int. J. Cancer128(9) , 2020–2030 (2011).
  • Richman PI , BodmerWF: Monoclonal antibodies to human colorectal epithelium: markers for differentiation and tumour characterization.Int. J. Cancer39(3) , 317–328 (1987).
  • Stewart LM , YoungS, WatsonG et al.: Humanisation and characterisation of PR1A3, a monoclonal antibody specific for cell-bound carcinoembryonic antigen.Cancer Immunol. Immunother.47(6) , 299–306 (1999).
  • Ashraf SQ , UmanaP, MossnerE et al.: Humanised IgG1 antibody variants targeting membrane-bound carcinoembryonic antigen by antibody-dependent cellular cytotoxicity and phagocytosis.Br. J. Cancer101(10) , 1758–1768 (2009).
  • Conaghan P , AshrafS, TytherleighM et al.: Targeted killing of colorectal cancer cell lines by a humanised IgG1 monoclonal antibody that binds to membrane-bound carcinoembryonic antigen.Br. J. Cancer98(7) , 1217–1225 (2008).
  • Blumenthal RD , OsorioL, HayesMK, HorakID, HansenHJ, GoldenbergDM: Carcinoembryonic antigen antibody inhibits lung metastasis and augments chemotherapy in a human colonic carcinoma xenograft.Cancer Immunol. Immunother.54(4) , 315–327 (2005).
  • Danielczyk A , StahnR, FaulstichD et al.: PankoMab: a potent new generation anti-tumour MUC1 antibody.Cancer Immunol. Immunother.55(11) , 1337–1347 (2006).
  • Fan XN , KarstenU, GoletzS, CaoY: Reactivity of a humanized antibody (hPankoMab) towards a tumor-related MUC1 epitope (TA-MUC1) with various human carcinomas.Pathol. Res. Pract.206(8) , 585–589 (2010).
  • Pratesi G , PetrangoliniG, TortoretoM et al.: Antitumor efficacy of trastuzumab in nude mice orthotopically xenografted with human pancreatic tumor cells expressing low levels of HER-2/neu.J. Immunother.31(6) , 537–544 (2008).
  • Saeki H , YanomaS, TakemiyaS et al.: Antitumor activity of a combination of trastuzumab (Herceptin) and oral fluoropyrimidine S-1 on human epidermal growth factor receptor 2-overexpressing pancreatic cancer.Oncol. Rep.18(2) , 433–439 (2007).
  • Larbouret C , RobertB, Navarro-TeulonI et al.: In vivo therapeutic synergism of anti-epidermal growth factor receptor and anti-HER2 monoclonal antibodies against pancreatic carcinomas.Clin. Cancer Res.13(11) , 3356–3362 (2007).
  • Larbouret C , RobertB, Bascoul-MolleviC et al.: Combined cetuximab and trastuzumab are superior to gemcitabine in the treatment of human pancreatic carcinoma xenografts.Ann. Oncol.21(1) , 98–103 (2010).
  • Hung CF , TsaiYC, HeL, WuTC: Control of mesothelin-expressing ovarian cancer using adoptive transfer of mesothelin peptide-specific CD8+ T cells.Gene Ther.14(12) , 921–929 (2007).
  • Kawaoka T , OkaM, TakashimaM et al.: Adoptive immunotherapy for pancreatic cancer: cytotoxic T lymphocytes stimulated by the MUC1-expressing human pancreatic cancer cell line YPK-1.Oncol. Rep.20(1) , 155–163 (2008).
  • Kondo H , HazamaS, KawaokaT et al.: Adoptive immunotherapy for pancreatic cancer using MUC1 peptide-pulsed dendritic cells and activated T lymphocytes.AntiCancer Res.28(1B) , 379–387 (2008).
  • Carpenito C , MiloneMC, HassanR et al.: Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains.Proc. Natl Acad. Sci. USA106(9) , 3360–3365 (2009).
  • Davies DM , MaherJ: Adoptive T-cell immunotherapy of cancer using chimeric antigen receptor-grafted T cells.Arch. Immunol. Ther. Exp. (Warsz.)58(3) , 165–178 (2010).
  • Emtage PC , LoAS, GomesEM, LiuDL, Gonzalo-DaganzoRM, JunghansRP: Second-generation anti-carcinoembryonic antigen designer T cells resist activation-induced cell death, proliferate on tumor contact, secrete cytokines, and exhibit superior antitumor activity in vivo: a preclinical evaluation.Clin. Cancer Res.14(24) , 8112–8122 (2008).
  • Shirasu N , ShibaguciH, KurokiM, YamadaH, KurokiM: Construction and molecular characterization of human chimeric T-cell antigen receptors specific for carcinoembryonic antigen.Anti. Cancer Res.30(7) , 2731–2738 (2010).
  • Wilkie S , BurbridgeSE, Chiapero-StankeL et al.: Selective expansion of chimeric antigen receptor-targeted T-cells with potent effector function using interleukin-4.J. Biol. Chem.285(33) , 25538–25544 (2010).
  • Bakhtiari SH , RahbarizadehF, HasanniaS, AhmadvandD, Iri-SoflaFJ, RasaeeMJ: Anti-MUC1 nanobody can redirect T-body cytotoxic effector function.Hybridoma (Larchmt)28(2) , 85–92 (2009).
  • Wang H , WeiH, ZhangR et al.: Genetically targeted T cells eradicate established breast cancer in syngeneic mice.Clin. Cancer Res.15(3) , 943–950 (2009).
  • Zhao Y , WangQJ, YangS et al.: A herceptin-based chimeric antigen receptor with modified signaling domains leads to enhanced survival of transduced T lymphocytes and antitumor activity.J. Immunol.183(9) , 5563–5574 (2009).
  • Koos D , JosephsSF, AlexandrescuDT et al.: Tumor vaccines in 2010: need for integration.Cell Immunol.263(2) , 138–147 (2010).
  • Liyanage UK , MooreTT, JooHG et al.: Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma.J. Immunol.169(5) , 2756–2761 (2002).
  • Tian M , NeilJR, SchiemannWP: Transforming growth factor-β and the hallmarks of cancer.Cell Signal.23(6) , 951–962 (2011).
  • von Bernstorff W , SpanjaardRA, ChanAK et al.: Pancreatic cancer cells can evade immune surveillance via nonfunctional Fas (APO-1/CD95) receptors and aberrant expression of functional Fas ligand.Surgery125(1) , 73–84 (1999).
  • Derre L , RivalsJP, JandusC et al.: BTLA mediates inhibition of human tumor-specific CD8+ T cells that can be partially reversed by vaccination.J. Clin. Invest.120(1) , 157–167 (2010).
  • Witkiewicz A , WilliamsTK, CozzitortoJ et al.: Expression of indoleamine 2,3-dioxygenase in metastatic pancreatic ductal adenocarcinoma recruits regulatory T cells to avoid immune detection.J. Am. Coll. Surg.206(5) , 849–854 (2008).
  • Gabrilovich DI , NagarajS: Myeloid-derived suppressor cells as regulators of the immune system.Nat. Rev. Immunol.9(3) , 162–174 (2009).
  • Almand B , ClarkJI, NikitinaE et al.: Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer.J. Immunol.166(1) , 678–689 (2001).
  • Diaz-Montero CM , SalemML, NishimuraMI, Garrett-MayerE, ColeDJ, MonteroAJ: Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy.Cancer Immunol. Immunother.58(1) , 49–59 (2009).
  • Mishra P , BanerjeeD, Ben-BaruchA: Chemokines at the crossroads of tumor-fibroblast interactions that promote malignancy.J. Leukoc. Biol.89(1) , 31–39 (2011).
  • Tan MC , GoedegebuurePS, BeltBA et al.: Disruption of CCR5-dependent homing of regulatory T cells inhibits tumor growth in a murine model of pancreatic cancer.J. Immunol. 1 182(3) , 1746–1755 (2009).
  • Munn DH , MellorAL: Indoleamine 2,3-dioxygenase and tumor-induced tolerance.J. Clin. Invest.117(5) , 1147–1154 (2007).
  • Katz JB , MullerAJ, PrendergastGC: Indoleamine 2,3-dioxygenase in T-cell tolerance and tumoral immune escape.Immunol. Rev.222 , 206–221 (2008).
  • Weber J : Immune checkpoint proteins: a new therapeutic paradigm for cancer – preclinical background: CTLA-4 and PD-1 blockade.Semin. Oncol.37(5) , 430–439 (2010).
  • Agarwala SS , RibasA: Current experience with CTLA4-blocking monoclonal antibodies for the treatment of solid tumors.J. Immunother.33(6) , 557–569 (2010).
  • Hodi FS , O‘DaySJ, McDermottDF et al.: Improved survival with ipilimumab in patients with metastatic melanoma.N. Engl. J. Med.363(8) , 711–723 (2010).
  • Royal RE , LevyC, TurnerK et al.: Phase 2 trial of single agent ipilimumab (anti-CTLA-4) for locally advanced or metastatic Ppancreatic adenocarcinoma.J. Immunother.33(8) , 828–833 (2010).
  • Brahmer JR , DrakeCG, WollnerI et al.: Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates.J. Clin. Oncol.28(19) , 3167–3175 (2010).
  • Berger R , Rotem-YehudarR, SlamaG et al.: Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies.Clin. Cancer Res.14(10) , 3044–3051 (2008).
  • Melani C , SangalettiS, BarazzettaFM, WerbZ, ColomboMP: Amino-biphosphonate-mediated MMP-9 inhibition breaks the tumor-bone marrow axis responsible for myeloid-derived suppressor cell expansion and macrophage infiltration in tumor stroma.Cancer Res.67(23) , 11438–11446 (2007).
  • Yang L , DeBuskLM, FukudaK et al.: Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis.Cancer Cell6(4) , 409–421 (2004).
  • Zhang B , ZhangY, BowermanNA et al.: Equilibrium between host and cancer caused by effector T cells killing tumor stroma.Cancer Res.68(5) , 1563–1571 (2008).
  • Nishikawa H , KatoT, TanidaK et al.: CD4+ CD25+ T cells responding to serologically defined autoantigens suppress antitumor immune responses.Proc. Natl Acad. Sci. USA100(19) , 10902–10906 (2003).
  • Wang HY , LeeDA, PengG et al.: Tumor-specific human CD4+ regulatory T cells and their ligands: implications for immunotherapy.Immunity20(1) , 107–118 (2004).
  • Ding L , EllisMJ, LiS et al.: Genome remodelling in a basal-like breast cancer metastasis and xenograft.Nature464(7291) , 999–1005 (2010).
  • Ley TJ , MardisER, DingL et al.: DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome.Nature456(7218) , 66–72 (2008).
  • Campbell PJ , YachidaS, MudieLJ et al.: The patterns and dynamics of genomic instability in metastatic pancreatic cancer.Nature467(7319) , 1109–1113 (2010).
  • Yachida S , JonesS, BozicI et al.: Distant metastasis occurs late during the genetic evolution of pancreatic cancer.Nature467(7319) , 1114–1117 (2010).
  • Segal NH , ParsonsDW, PeggsKS et al.: Epitope landscape in breast and colorectal cancer.Cancer Res.68(3) , 889–892 (2008).
  • Sensi M , AnichiniA: Unique tumor antigens: evidence for immune control of genome integrity and immunogenic targets for T cell-mediated patient-specific immunotherapy.Clin. Cancer Res.12(17) , 5023–5032 (2006).
  • Huang EH , KaufmanHL: CEA-based vaccines.Expert Rev. Vaccines1(1) , 49–63 (2002).
  • Beatty JD , RomeroC, BrownPW, LawrenceW Jr, Terz JJ: Clinical value of carcinoembryonic antigen: diagnosis, prognosis, and follow-up of patients with cancer. Arch. Surg.114(5) , 563–567 (1979).
  • Ona FV , ZamcheckN, DharP, MooreT, KupchikHZ: Carcinoembryonic antigen (CEA) in the diagnosis of pancreatic cancer.Cancer31(2) , 324–327 (1973).
  • Ladjemi MZ , JacotW, ChardesT, PelegrinA, Navarro-TeulonI: Anti-HER2 vaccines: new prospects for breast cancer therapy.Cancer Immunol. Immunother.59(9) , 1295–1312 (2010).
  • Lei S , AppertHE, NakataB, DomenicoDR, KimK, HowardJM: Overexpression of HER2/neu oncogene in pancreatic cancer correlates with shortened survival.Int. J. Pancreatol.17(1) , 15–21 (1995).
  • Yamanaka Y , FriessH, KobrinMS et al.: Overexpression of HER2/neu oncogene in human pancreatic carcinoma.Hum. Pathol.24(10) , 1127–1134 (1993).
  • Downward J : Targeting RAS and PI3K in lung cancer.Nat. Med.14(12) , 1315–1316 (2008).
  • Almoguera C , ShibataD, ForresterK, MartinJ, ArnheimN, PeruchoM: Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes.Cell53(4) , 549–554 (1988).
  • Li M , BharadwajU, ZhangR et al.: Mesothelin is a malignant factor and therapeutic vaccine target for pancreatic cancer.Mol. Cancer Ther.7(2) , 286–296 (2008).
  • Hassan R , LaszikZG, LernerM, RaffeldM, PostierR, BrackettD: Mesothelin is overexpressed in pancreaticobiliary adenocarcinomas but not in normal pancreas and chronic pancreatitis.Am. J. Clin. Pathol.124(6) , 838–845 (2005).
  • Argani P , Iacobuzio-DonahueC, RyuB et al.: Mesothelin is overexpressed in the vast majority of ductal adenocarcinomas of the pancreas: identification of a new pancreatic cancer marker by serial analysis of gene expression (SAGE).Clin. Cancer Res.7(12) , 3862–3868 (2001).
  • Kaneko O , GongL, ZhangJ et al.: A binding domain on mesothelin for CA125/MUC16.J. Biol. Chem.6284(6) , 3739–3749 (2009).
  • Tang CK , KatsaraM, ApostolopoulosV: Strategies used for MUC1 immunotherapy: human clinical studies.Expert Rev. Vaccines7(7) , 963–975 (2008).
  • Qu CF , LiY, SongYJ et al.: MUC1 expression in primary and metastatic pancreatic cancer cells for in vitro treatment by (213)Bi-C595 radioimmunoconjugate.Br. J. Cancer91(12) , 2086–2093 (2004).
  • Chen F , WangW, El-DeiryWS: Current strategies to target p53 in cancer.Biochem. Pharmacol.80(5) , 724–730 (2010).
  • Scarpa A , CapelliP, MukaiK et al.: Pancreatic adenocarcinomas frequently show p53 gene mutations.Am. J. Pathol.142(5) , 1534–1543 (1993).
  • Ryan BM , O‘DonovanN, DuffyMJ: Survivin: a new target for anti-cancer therapy.Cancer Treat. Rev.35(7) , 553–562 (2009).
  • Kanwar RK , CheungCH, ChangJY, KanwarJR: Recent advances in anti-survivin treatments for cancer.Curr. Med. Chem.17(15) , 1509–1515 (2010).
  • Qiao JG , ZhangYQ, YinYC, TanZ: Expression of Survivin in pancreatic cancer and its correlation to expression of Bcl-2.World J. Gastroenterol.10(18) , 2759–2761 (2004).
  • Satoh K , KanekoK, HirotaM, MasamuneA, SatohA, ShimosegawaT: Expression of survivin is correlated with cancer cell apoptosis and is involved in the development of human pancreatic duct cell tumors.Cancer92(2) , 271–278 (2001).
  • Liu JP , ChenW, SchwarerAP, LiH: Telomerase in cancer immunotherapy.Biochim. Biophys. Acta1805(1) , 35–42 (2010).
  • Hiyama E , KodamaT, ShinbaraK et al.: Telomerase activity is detected in pancreatic cancer but not in benign tumors.Cancer Res.57(2) , 326–331 (1997).
  • Shibuya M : Vascular endothelial growth factor (VEGF)-receptor2: its biological functions, major signaling pathway, and specific ligand VEGF-E.Endothelium13(2) , 63–69 (2006).
  • Itakura J , IshiwataT, FriessH et al.: Enhanced expression of vascular endothelial growth factor in human pancreatic cancer correlates with local disease progression.Clin. Cancer Res.3(8) , 1309–1316 (1997).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.