117
Views
0
CrossRef citations to date
0
Altmetric
Review

Is Antigen Specificity the Key to Efficient Adoptive T-Cell Therapy?

, , &
Pages 495-505 | Published online: 04 Apr 2011

Bibliography

  • Balch CM , SoongSJ, GershenwaldJE et al.: Prognostic factors analysis of 17,600 melanoma patients: validation of the American Joint Committee on Cancer melanoma staging system.J. Clin. Oncol.19(16) , 3622–3634 (2001).
  • Surman DR , DudleyME, OverwijkWW, RestifoNP: Cutting edge: CD4+ T cell control of CD8+ T cell reactivity to a model tumor antigen.J. Immunol.164(2) , 562–565 (2000).
  • Dunn GP , OldLJ, SchreiberRD: The immunobiology of cancer immunosurveillance and immunoediting.Immunity21(2) , 137–148 (2004).
  • Sato E , OlsonSH, AhnJ et al.: Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer.Proc. Natl Acad. Sci. USA102(51) , 18538–18543 (2005).
  • Zhang L , Conejo-GarciaJR, KatsarosD et al.: Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer.N. Engl. J. Med.348(3) , 203–213 (2003).
  • Galon J , CostesA, Sanchez-CaboF et al.: Type, density, and location of immune cells within human colorectal tumors predict clinical outcome.Science313(5795) , 1960–1964 (2006).
  • Marrogi AJ , MunshiA, MerogiAJ et al.: Study of tumor infiltrating lymphocytes and transforming growth factor-β as prognostic factors in breast carcinoma.Int. J. Cancer74(5) , 492–501 (1997).
  • Clark WH Jr, Elder DE, Guerry DT et al.: Model predicting survival in stage I melanoma based on tumor progression. J. Natl Cancer Inst.81(24) , 1893–1904 (1989).
  • Clemente CG , MihmMC Jr, Bufalino R et al.: Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer77(7) , 1303–1310 (1996).
  • Zippelius A , BatardP, Rubio-GodoyV et al.: Effector function of human tumor-specific CD8 T cells in melanoma lesions: a state of local functional tolerance.Cancer Res.64(8) , 2865–2873 (2004).
  • Matzinger P : The danger model: a renewed sense of self.Science296(5566) , 301–305 (2002).
  • Ochsenbein AF , SierroS, OdermattB et al.: Roles of tumour localization, second signals and cross priming in cytotoxic T-cell induction.Nature411(6841) , 1058–1064 (2001).
  • Shevach EM : CD4+ CD25+ suppressor T cells: more questions than answers.Nat. Rev. Immunol.2(6) , 389–400 (2002).
  • Khammari A , NguyenJM, PandolfinoMC et al.: Long-term follow-up of patients treated by adoptive transfer of melanoma tumor-infiltrating lymphocytes as adjuvant therapy for stage III melanoma.Cancer Immunol. Immunother.56(11) , 1853–1860 (2007).
  • Vignard V , LemercierB, LimA et al.: Adoptive transfer of tumor-reactive Melan-A-specific CTL clones in melanoma patients is followed by increased frequencies of additional Melan-A-specific T cells.J. Immunol.175(7) , 4797–4805 (2005).
  • June CH : Adoptive T cell therapy for cancer in the clinic.J. Clin. Invest.117(6) , 1466–1476 (2007).
  • Hunder NN , WallenH, CaoJ et al.: Treatment of metastatic melanoma with autologous CD4+ T cells against NY-ESO-1.N. Engl. J. Med.358(25) , 2698–2703 (2008).
  • Mazumder A , RosenbergSA: Successful immunotherapy of natural killer-resistant established pulmonary melanoma metastases by the intravenous adoptive transfer of syngeneic lymphocytes activated in vitro by interleukin 2.J. Exp. Med.159(2) , 495–507 (1984).
  • Rosenberg SA , LotzeMT, MuulLM et al.: A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone.N. Engl. J. Med.316(15) , 889–897 (1987).
  • Rosenberg SA , LotzeMT, MuulLM et al.: Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer.N. Engl. J. Med.313(23) , 1485–1492 (1985).
  • Rosenberg SA , PackardBS, AebersoldPM et al.: Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report.N. Engl. J. Med.319(25) , 1676–1680 (1988).
  • Dillman RO , OldhamRK, BarthNM et al.: Continuous interleukin-2 and tumor-infiltrating lymphocytes as treatment of advanced melanoma. A national biotherapy study group trial.Cancer68(1) , 1–8 (1991).
  • Goedegebuure PS , DouvilleLM, LiH et al.: Adoptive immunotherapy with tumor-infiltrating lymphocytes and interleukin-2 in patients with metastatic malignant melanoma and renal cell carcinoma: a pilot study.J. Clin. Oncol.13(8) , 1939–1949 (1995).
  • Jotereau F , PandolfinoMC, BoudartD et al.: High-fold expansion of human cytotoxic T-lymphocytes specific for autologous melanoma cells for use in immunotherapy.J. Immunother.10(6) , 405–411 (1991).
  • Pandolfino MC , LabarriereN, TessierMH et al.: High-scale expansion of melanoma-reactive TIL by a polyclonal stimulus: predictability and relation with disease advancement.Cancer Immunol. Immunother.50(3) , 134–140 (2001).
  • Dreno B , NguyenJM, KhammariA et al.: Randomized trial of adoptive transfer of melanoma tumor-infiltrating lymphocytes as adjuvant therapy for stage III melanoma.Cancer Immunol. Immunother.51(10) , 539–546 (2002).
  • Labarriere N , PandolfinoMC, GervoisN et al.: Therapeutic efficacy of melanoma-reactive TIL injected in stage III melanoma patients.Cancer Immunol. Immunother.51(10) , 532–538 (2002).
  • Benlalam H , VignardV, KhammariA et al.: Infusion of Melan-A/Mart-1 specific tumor-infiltrating lymphocytes enhanced relapse-free survival of melanoma patients.Cancer Immunol. Immunother.56(4) , 515–526 (2007).
  • Godet Y , Moreau-AubryA, GuillouxY et al.: MELOE-1 is a new antigen overexpressed in melanomas and involved in adoptive T cell transfer efficiency.J. Exp. Med.205(11) , 2673–2682 (2008).
  • Dudley ME , WunderlichJR, RobbinsPF et al.: Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes.Science298(5594) , 850–854 (2002).
  • Dudley ME , WunderlichJR, YangJC et al.: Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma.J. Clin. Oncol.23(10) , 2346–2357 (2005).
  • Robbins PF , DudleyME, WunderlichJ et al.: Cutting edge: persistence of transferred lymphocyte clonotypes correlates with cancer regression in patients receiving cell transfer therapy.J. Immunol.173(12) , 7125–7130 (2004).
  • Zhou J , ShenX, HuangJ et al.: Telomere length of transferred lymphocytes correlates with in vivo persistence and tumor regression in melanoma patients receiving cell transfer therapy.J. Immunol.175(10) , 7046–7052 (2005).
  • Rosenberg SA ,Dudley ME: Adoptive cell therapy for the treatment of patients with metastatic melanoma. Curr. Opin. Immunol.21(2) , 233–240 (2009).
  • Antony PA , PiccirilloCA, AkpinarliA et al.: CD8+ T cell immunity against a tumor/self-antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells.J. Immunol.174(5) , 2591–2601 (2005).
  • Gattinoni L , FinkelsteinSE, KlebanoffCA et al.: Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells.J. Exp. Med.202(7) , 907–912 (2005).
  • Dudley ME , YangJC, SherryR et al.: Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens.J. Clin. Oncol.26(32) , 5233–5239 (2008).
  • Besser MJ , Shapira-FrommerR, TrevesAJ et al.: Clinical responses in a Phase II study using adoptive transfer of short-term cultured tumor infiltration lymphocytes in metastatic melanoma patients.Clin. Cancer Res.16(9) , 2646–2655 (2010).
  • Sharkey MS , LizeeG, GonzalesMI, PatelS, TopalianSL: CD4+ T-cell recognition of mutated B-RAF in melanoma patients harboring the V599E mutation.Cancer Res.64(5) , 1595–1599 (2004).
  • Linard B , BezieauS, BenlalamH et al.: A ras-mutated peptide targeted by CTL infiltrating a human melanoma lesion.J. Immunol.168(9) , 4802–4808 (2002).
  • Robbins PF , El-GamilM, LiYF et al.: A mutated β-catenin gene encodes a melanoma-specific antigen recognized by tumor infiltrating lymphocytes.J. Exp. Med.183(3) , 1185–1192 (1996).
  • De Smet C , LurquinC, LetheB, MartelangeV, BoonT: DNA methylation is the primary silencing mechanism for a set of germ line- and tumor-specific genes with a CpG-rich promoter.Mol. Cell. Biol.19(11) , 7327–7335 (1999).
  • Fijak M , MeinhardtA: The testis in immune privilege.Immunol. Rev.213 , 66–81 (2006).
  • Fiszer D , KurpiszM: Major histocompatibility complex expression on human, male germ cells: a review.Am. J. Reprod. Immunol.40(3) , 172–176 (1998).
  • van der Bruggen P , TraversariC, ChomezP et al.: A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma.Science254(5038) , 1643–1647 (1991).
  • Chomez P , De Backer O, Bertrand M et al.: An overview of the MAGE gene family with the identification of all human members of the family. Cancer Res.61(14) , 5544–5551 (2001).
  • Chen YT , ScanlanMJ, SahinU et al.: A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening.Proc. Natl Acad. Sci. USA94(5) , 1914–1918 (1997).
  • Lethe B , LucasS, MichauxL et al.: LAGE-1, a new gene with tumor specificity.Int. J. Cancer76(6) , 903–908 (1998).
  • Gure AO , WeiIJ, OldLJ, ChenYT: The SSX gene family: characterization of 9 complete genes.Int. J. Cancer101(5) , 448–453 (2002).
  • Chaux P , VantommeV, CoulieP, BoonT, van der Bruggen P: Estimation of the frequencies of anti-MAGE-3 cytolytic T-lymphocyte precursors in blood from individuals without cancer. Int. J. Cancer77(4) , 538–542 (1998).
  • Lonchay C , van der Bruggen P, Connerotte T et al.: Correlation between tumor regression and T cell responses in melanoma patients vaccinated with a MAGE antigen. Proc. Natl Acad. Sci. USA101(Suppl. 2) , 14631–14638 (2004).
  • Coulie PG , BrichardV, Van Pel A et al.: A new gene coding for a differentiation antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J. Exp. Med.180(1) , 35–42 (1994).
  • Kawakami Y , EliyahuS, DelgadoCH et al.: Cloning of the gene coding for a shared human melanoma antigen recognized by autologous T cells infiltrating into tumor.Proc. Natl Acad. Sci. USA91(9) , 3515–3519 (1994).
  • Brichard V , Van Pel A, Wolfel T et al.: The tyrosinase gene codes for an antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J. Exp. Med.178(2) , 489–495 (1993).
  • Bakker AB , SchreursMW, de Boer AJ et al.: Melanocyte lineage-specific antigen gp100 is recognized by melanoma-derived tumor-infiltrating lymphocytes. J. Exp. Med.179(3) , 1005–1009 (1994).
  • Godet Y , DesfrancoisJ, VignardV et al.: Frequent occurrence of high affinity T cells against MELOE-1 makes this antigen an attractive target for melanoma immunotherapy.Eur. J. Immunol.40(6) , 1786–1794 (2010).
  • Pittet MJ , ZippeliusA, ValmoriD et al.: Melan-A/MART-1-specific CD8 T cells: from thymus to tumor.Trends Immunol.23(7) , 325–328 (2002).
  • Zippelius A , PittetMJ, BatardP et al.: Thymic selection generates a large T cell pool recognizing a self-peptide in humans.J. Exp. Med.195(4) , 485–494 (2002).
  • Linehan DC , GoedegebuurePS, PeoplesGE, RogersSO, EberleinTJ: Tumor-specific and HLA-A2-restricted cytolysis by tumor-associated lymphocytes in human metastatic breast cancer.J. Immunol.155(9) , 4486–4491 (1995).
  • Ikeda H , LetheB, LehmannF et al.: Characterization of an antigen that is recognized on a melanoma showing partial HLA loss by CTL expressing an NK inhibitory receptor.Immunity6(2) , 199–208 (1997).
  • Griffioen M , KesslerJH, BorghiM et al.: Detection and functional analysis of CD8+ T cells specific for PRAME: a target for T-cell therapy.Clin. Cancer Res.12(10) , 3130–3136 (2006).
  • Quintarelli C , DottiG, AngelisB: Cytotoxic T lymphocytes directed to the preferentially expressed antigen of melanoma (PRAME) target chronic myeloid leukemia.Blood112(5) , 1876–1885 (2008).
  • Rezvani K , YongAS, TawabA: Ex vivo characterization of polyclonal memory CD8+ T-cell responses to PRAME-specific peptides in patients with acute lymphoblastic leukemia and acute and chronic myeloid leukemia.Blood113(10) , 2245–2255 (2009).
  • Mackensen A , MeidenbauerN, VoglS et al.: Phase I study of adoptive T-cell therapy using antigen-specific CD8+ T cells for the treatment of patients with metastatic melanoma.J. Clin. Oncol.24(31) , 5060–5069 (2006).
  • Meidenbauer N , MarienhagenJ, LaumerM et al.: Survival and tumor localization of adoptively transferred Melan-A-specific T cells in melanoma patients.J. Immunol.170(4) , 2161–2169 (2003).
  • Dudley ME , WunderlichJ, NishimuraMI et al.: Adoptive transfer of cloned melanoma-reactive T lymphocytes for the treatment of patients with metastatic melanoma.J. Immunother.24(4) , 363–373 (2001).
  • Khammari A , LabarriereN, VignardV et al.: Treatment of metastatic melanoma with autologous Melan-A/MART-1-specific cytotoxic T lymphocyte clones.J. Invest. Dermatol.129(12) , 2835–2842 (2009).
  • Yee C , ThompsonJA, ByrdD et al.: Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells.Proc. Natl Acad. Sci. USA99(25) , 16168–16173 (2002).
  • Dudley ME , WunderlichJR, YangJC et al.: A Phase I study of nonmyeloablative chemotherapy and adoptive transfer of autologous tumor antigen-specific T lymphocytes in patients with metastatic melanoma.J. Immunother.25(3) , 243–251 (2002).
  • Effros RB , PawelecG: Replicative senescence of T cells: does the Hayflick limit lead to immune exhaustion?Immunol. Today18(9) , 450–454 (1997).
  • Gattinoni L , PowellDJ Jr, Rosenberg SA, Restifo NP: Adoptive immunotherapy for cancer: building on success. Nat. Rev. Immunol.6(5) , 383–393 (2006).
  • Hinrichs CS , GattinoniL, RestifoNP: Programming CD8+ T cells for effective immunotherapy.Curr. Opin. Immunol.18(3) , 363–370 (2006).
  • Menzel O , MigliaccioM, GoldsteinDR et al.: Mechanisms regulating the proliferative potential of human CD8+ T lymphocytes overexpressing telomerase.J. Immunol.177(6) , 3657–3668 (2006).
  • Schumacher TN : T-cell-receptor gene therapy.Nat. Rev. Immunol.2(7) , 512–519 (2002).
  • Dembic Z , HaasW, WeissS et al.: Transfer of specificity by murine α and β T-cell receptor genes.Nature320(6059) , 232–238 (1986).
  • Clay TM , CusterMC, Sachs et al.: Efficient transfer of a tumor antigen-reactive TCR to human peripheral blood lymphocytes confers anti-tumor reactivity. J. Immunol.1163(1) , 507–513 (1999).
  • Calogero A , HospersGA, KruseKM et al.: Retargeting of a T cell line by anti MAGE-3/HLA-A2 α β TCR gene transfer.Anticancer Res.20(3A) , 1793–1799 (2000).
  • Fujio K , MisakiY, SetoguchiK et al.: Functional reconstitution of class II MHC-restricted T cell immunity mediated by retroviral transfer of the α β TCR complex.J. Immunol.165(1) , 528–532 (2000).
  • Stanislawski T , VossRH, LotzC et al.: Circumventing tolerance to a human MDM2-derived tumor antigen by TCR gene transfer.Nat. Immunol.2(10) , 962–970 (2001).
  • Morgan RA , DudleyME, WunderlichJR et al.: Cancer regression in patients after transfer of genetically engineered lymphocytes.Science314(5796) , 126–129 (2006).
  • Cohen CJ , LiYF, El-GamilM et al.: Enhanced antitumor activity of T cells engineered to express T-cell receptors with a second disulfide bond.Cancer Res.67(8) , 3898–3903 (2007).
  • Cohen CJ , ZhaoY, ZhengZ, RosenbergSA, MorganRA: Enhanced antitumor activity of murine-human hybrid T-cell receptor (TCR) in human lymphocytes is associated with improved pairing and TCR/CD3 stability.Cancer Res.66(17) , 8878–8886 (2006).
  • Kuball J , DossettML, WolflM et al.: Facilitating matched pairing and expression of TCR chains introduced into human T cells.Blood109(6) , 2331–2338 (2007).
  • Bialer G , Horovitz-FriedM, Ya‘acobi et al.: Selected murine residues endow human TCR with enhanced tumor recognition. J. Immunol.184(11) , 6232–6241 (2010).
  • Chinnasamy N , WargoJA, YuZ, Rao et al.: A TCR targeting the HLA-A*0201-restricted epitope of MAGE-A3 recognizes multiple epitopes of the MAGE-A antigen superfamily in several types of cancer. J. Immunol.186(2) , 685–696 (2011).
  • Eshhar Z : Tumor-specific T bodies: towards clinical application.Cancer Immunol. Immunother.45(3–4) , 131–136 (1997).
  • Jena B , DottiG, CooperLJN: Redirecting T-cell specificity by introducing a tumor-specific chimeric antigen receptor.Blood116(7) , 1035–1044 (2010).
  • Cobbold M , KhanN, PourgheysariB et al.: Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA-peptide tetramers.J. Exp. Med.202(3) , 379–386 (2005).
  • Bodinier M , PeyratMA, TournayC et al.: Efficient detection and immunomagnetic sorting of specific T cells using multimers of MHC class I and peptide with reduced CD8 binding.Nat. Med.6(6) , 707–710 (2000).
  • Labarriere N , GervoisN, BonninA et al.: PBMC are as good a source of tumor-reactive T lymphocytes as TIL after selection by Melan-A/A2 multimer immunomagnetic sorting.Cancer Immunol. Immunother.57(2) , 185–195 (2008).
  • Bouquie R , BonninA, BernardeauK et al.: A fast and efficient HLA multimer-based sorting procedure that induces little apoptosis to isolate clinical grade human tumor specific T lymphocytes.Cancer Immunol. Immunother.58(4) , 553–566 (2009).
  • Gao FG , KhammanivongV, LiuWJ et al.: Antigen-specific CD4+ T-cell help is required to activate a memory CD8+ T cell to a fully functional tumor killer cell.Cancer Res.62(22) , 6438–6441 (2002).
  • Hu HM , WinterH, UrbaWJ, FoxBA: Divergent roles for CD4+ T cells in the priming and effector/memory phases of adoptive immunotherapy.J. Immunol.165(8) , 4246–4253 (2000).
  • Hung K , HayashiR, Lafond-WalkerA et al.: The central role of CD4+ T cells in the antitumor immune response.J. Exp. Med.188(12) , 2357–2368 (1998).
  • Keene JA , FormanJ: Helper activity is required for the in vivo generation of cytotoxic T lymphocytes.J. Exp. Med.155(3) , 768–782 (1982).
  • Castellino F , GermainRN: Cooperation between CD4+ and CD8+ T cells: when, where, and how.Annu. Rev. Immunol.24 , 519–540 (2006).
  • Toes RE , OssendorpF, OffringaR, MeliefCJ: CD4 T cells and their role in antitumor immune responses.J. Exp. Med.189(5) , 753–756 (1999).
  • Schietinger A , PhilipM, LiuRB, SchreiberK, SchreiberH: Bystander killing of cancer requires the cooperation of CD4+ and CD8+ T cells during the effector phase.J. Exp. Med.207(11) , 2469–2477 (2010).
  • Quezada SA , SimpsonTR, PeggsKS et al.: Tumor-reactive CD4+ T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts.J. Exp. Med.207(3) , 637–650 (2010).
  • Chambers CA , KuhnsMS, EgenJG, AllisonJP: CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy.Annu. Rev. Immunol.19 , 565–594 (2001).
  • Attia P , PhanGQ, MakerAV et al.: Autoimmunity correlates with tumor regression in patients with metastatic melanoma treated with anti-cytotoxic T-lymphocyte antigen-4.J. Clin. Oncol.23(25) , 6043–6053 (2005).
  • Sanderson K , ScotlandR, LeeP et al.: Autoimmunity in a Phase I trial of a fully human anti-cytotoxic T-lymphocyte antigen-4 monoclonal antibody with multiple melanoma peptides and Montanide ISA 51 for patients with resected stages III and IV melanoma.J. Clin. Oncol.23(4) , 741–750 (2005).
  • Whiteside TL : Inhibiting the inhibitors: evaluating agents targeting cancer immunosuppression.Expert Opin. Biol. Ther.10(7) , 1019–1035 (2010).
  • Koike N , Pilon-ThomasS,Mule JJ: Nonmyeloablative chemotherapy followed by T-cell adoptive transfer and dendritic cell-based vaccination results in rejection of established melanoma. J. Immunother.31(4) , 402–412 (2008).
  • Zhang B , BowermanNA, SalamaJK et al.: Induced sensitization of tumor stroma leads to eradication of established cancer by T cells.J. Exp. Med.204(1) , 49–55 (2007).
  • Vo DD , PrinsRM, BegleyJL et al.: Enhanced antitumor activity induced by adoptive T-cell transfer and adjunctive use of the histone deacetylase inhibitor LAQ824.Cancer Res.69(22) , 8693–8699 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.