310
Views
0
CrossRef citations to date
0
Altmetric
Review

Cancer-Associated Fibroblasts as Targets for Immunotherapy

, &
Pages 1129-1138 | Published online: 29 Nov 2012

References

  • Paget S . The distribution of secondary growth in cancer of the breast. Lancet1 , 571–573 (1889).
  • Mueller MM , FusenigNE. Friends or foes – bipolar effects of the tumour stroma in cancer. Nat. Rev. Cancer4(11) , 839–849 (2004).
  • De WO , DemetterP, MareelM, BrackeM. Stromal myofibroblasts are drivers of invasive cancer growth. Int. J. Cancer123(10) , 2229–2238 (2008).
  • Krtolica A , ParrinelloS, LockettS, DesprezPY, CampisiJ. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc. Natl Acad. Sci.USA98(21) , 12072–12077 (2001).
  • Gonda TA , TuS, WangTC. Chronic inflammation, the tumor microenvironment and carcinogenesis. Cell Cycle.8(13) , 2005–2013 (2009).
  • Kurose K , GilleyK, MatsumotoS, WatsonPH, ZhouXP, EngC. Frequent somatic mutations in PTEN and TP53 are mutually exclusive in the stroma of breast carcinomas. Nat. Genet.32(3) , 355–357 (2002).
  • Hill R , SongY, CardiffRD, van Dyke T. Selective evolution of stromal mesenchyme with p53 loss in response to epithelial tumorigenesis. Cell123(6) , 1001–1011 (2005).
  • Hu M , YaoJ, CaiL et al. Distinct epigenetic changes in the stromal cells of breast cancers. Nat. Genet. 37(8) , 899–905 (2005).
  • Radisky DC , KennyPA, BissellMJ. Fibrosis and cancer: do myofibroblasts come also from epithelial cells via EMT? J. Cell. Biochem.101(4) , 830–839 (2007).
  • Zeisberg EM , PotentaS, XieL, ZeisbergM, KalluriR. Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res.67(21) , 10123–10128 (2007).
  • Direkze NC , Hodivala-DilkeK, JefferyR et al. Bone marrow contribution to tumor-associated myofibroblasts and fibroblasts. Cancer Res. 64(23) , 8492–8495 (2004).
  • Wipff PJ , RifkinDB, MeisterJJ, HinzB. Myofibroblast contraction activates latent TGF-β1 from the extracellular matrix. J. Cell. Biol.179(6) , 1311–1323 (2007).
  • Leask A , AbrahamDJ. TGF-β signaling and the fibrotic response. FASEB J.18(7) , 816–827 (2004).
  • Powell DW , AdegboyegaPA, Di Mari JF, Mifflin RC. Epithelial cells and their neighbors I. Role of intestinal myofibroblasts in development, repair, and cancer. Am. J. Physiol. Gastrointest. Liver Physiol.289(1) , G2–G7 (2005).
  • Ostman A , HeldinCH. PDGF receptors as targets in tumor treatment. Adv. Cancer Res.97 , 247–274 (2007).
  • Spaeth EL , DembinskiJL, SasserAK et al. Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS One 4(4) , e4992 (2009).
  • Iwano M , PliethD, DanoffTM, XueC, OkadaH, NeilsonEG. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J. Clin. Invest.110(3) , 341–350 (2002).
  • Faouzi S , LeBB, NeaudV et al. Myofibroblasts are responsible for collagen synthesis in the stroma of human hepatocellular carcinoma: an in vivo and in vitro study. J. Hepatol. 30(2) , 275–284 (1999).
  • Serini G , Bochaton-PiallatML, RoprazP et al. The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-β1. J. Cell. Biol. 142(3) , 873–881 (1998).
  • Chang HY , ChiJT, DudoitS et al. Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc. Natl Acad. Sci. USA 99(20) , 12877–12882 (2002).
  • Grugan KD , MillerCG, YaoY et al. Fibroblast-secreted hepatocyte growth factor plays a functional role in esophageal squamous cell carcinoma invasion. Proc. Natl Acad. Sci. USA 107(24) , 11026–11031 (2010).
  • Li G , SatyamoorthyK, HerlynM. N-cadherin-mediated intercellular interactions promote survival and migration of melanoma cells. Cancer Res.61(9) , 3819–3825 (2001).
  • Franco OE , JiangM, StrandDW et al. Altered TGF-β signaling in a subpopulation of human stromal cells promotes prostatic carcinogenesis. Cancer Res. 71(4) , 1272–1281 (2011).
  • Rudnick JA , ArendtLM, KlebbaI et al. Functional heterogeneity of breast fibroblasts is defined by a prostaglandin secretory phenotype that promotes expansion of cancer-stem like cells. PLoS One 6(9) , e24605 (2011).
  • Skobe M , FusenigNE. Tumorigenic conversion of immortal human keratinocytes through stromal cell activation. Proc. Natl Acad. Sci. USA95(3) , 1050–1055 (1998).
  • Tjomsland V , SpangeusA, ValilaJ et al. Interleukin 1α sustains the expression of inflammatory factors in human pancreatic cancer microenvironment by targeting cancer-associated fibroblasts. Neoplasia 13(8) , 664–675 (2011).
  • Hugo HJ , LebretS, Tomaskovic-CrookE et al. Contribution of fibroblast and mast cell (afferent) and tumor (efferent) IL-6 effects within the tumor microenvironment. Cancer Microenviron. 5(1) , 83–93 (2012).
  • Hynes RO . The extracellular matrix: not just pretty fibrils. Science326(5957) , 1216–1219 (2009).
  • Erez N , TruittM, OlsonP, ArronST, HanahanD. Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-κB-dependent manner. Cancer Cell17(2) , 135–147 (2010).
  • Orimo A , GuptaPB, SgroiDC et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121(3) , 335–348 (2005).
  • Fukumura D , XavierR, SugiuraT et al. Tumor induction of VEGF promoter activity in stromal cells. Cell 94(6) , 715–725 (1998).
  • Crawford Y , KasmanI, YuL et al. PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell 15(1) , 21–34 (2009).
  • Powathil G , KohandelM, MilosevicM, SivaloganathanS. Modeling the spatial distribution of chronic tumor hypoxia: implications for experimental and clinical studies. Comput. Math. Methods Med.2012 , 410602– (2012).
  • Pavlides S , TsirigosA, MignecoG et al. The autophagic tumor stroma model of cancer: role of oxidative stress and ketone production in fueling tumor cell metabolism. Cell Cycle 9(17) , 3485–3505 (2010).
  • Cannito S , NovoE, CompagnoneA et al. Redox mechanisms switch on hypoxia-dependent epithelial-mesenchymal transition in cancer cells. Carcinogenesis 29(12) , 2267–2278 (2008).
  • Taub DD , Turcovski-CorralesSM, KeyML, LongoDL, MurphyWJ. Chemokines and T lymphocyte activation: I. β chemokines costimulate human T lymphocyte activation in vitro. J. Immunol.156(6) , 2095–2103 (1996).
  • Sturm A , KrivacicKA, FiocchiC, LevineAD. Dual function of the extracellular matrix: stimulatory for cell cycle progression of naive T cells and antiapoptotic for tissue-derived memory T cells. J. Immunol.173(6) , 3889–3900 (2004).
  • Barnas JL , Simpson-AbelsonMR, YokotaSJ, KelleherRJ, BankertRB. T cells and stromal fibroblasts in human tumor microenvironments represent potential therapeutic targets. Cancer Microenviron.3(1) , 29–47 (2010).
  • Liao D , LuoY, MarkowitzD, XiangR, ReisfeldRA. Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model. PLoS One4(11) , e7965 (2009).
  • Chomarat P , BanchereauJ, DavoustJ, PaluckaAK. IL-6 switches the differentiation of monocytes from dendritic cells to macrophages. Nat. Immunol.1(6) , 510–514 (2000).
  • Protti MP , DeML. Cross-talk within the tumor microenvironment mediates Th2-type inflammation in pancreatic cancer. Oncoimmunology1(1) , 89–91 (2012).
  • Shojaei F , ZhongC, WuX, YuL, FerraraN. Role of myeloid cells in tumor angiogenesis and growth. Trends Cell. Biol.18(8) , 372–378 (2008).
  • Nizar S , MeyerB, GalustianC, KumarD, DalgleishA. T regulatory cells, the evolution of targeted immunotherapy. Biochim. Biophys. Acta1806(1) , 7–17 (2010).
  • Munn DH , MellorAL. Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J. Clin. Invest.117(5) , 1147–1154 (2007).
  • Pinchuk IV , SaadaJI, BeswickEJ et al. PD-1 ligand expression by human colonic myofibroblasts/fibroblasts regulates CD4+ T-cell activity. Gastroenterology 135(4) , 1228–1237, 1237 (2008).
  • Chen CH , Seguin-DevauxC, BurkeNA et al. Transforming growth factor β blocks Tec kinase phosphorylation, Ca2+ influx, and NFATc translocation causing inhibition of T cell differentiation. J. Exp. Med. 197(12) , 1689–1699 (2003).
  • Nazareth MR , BroderickL, Simpson-AbelsonMR, KelleherRJ, YokotaSJ, BankertRB. Characterization of human lung tumor-associated fibroblasts and their ability to modulate the activation of tumor-associated T cells. J. Immunol.178(9) , 5552–5562 (2007).
  • Balsamo M , ScordamagliaF, PietraG et al. Melanoma-associated fibroblasts modulate NK cell phenotype and antitumor cytotoxicity. Proc. Natl Acad. Sci. USA 106(49) , 20847–20852 (2009).
  • Egeblad M , WerbZ. New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer2(3) , 161–174 (2002).
  • Toullec A , GeraldD, DespouyG et al. Oxidative stress promotes myofibroblast differentiation and tumour spreading. EMBO Mol. Med. 2(6) , 211–230 (2010).
  • Marastoni S , LigrestiG, LorenzonE, ColombattiA, MongiatM. Extracellular matrix: a matter of life and death. Connect. Tissue Res.49(3) , 203–206 (2008).
  • Kanayama S , YamadaY, KawaguchiR, TsujiY, HarutaS, KobayashiH. Hepatocyte growth factor induces anoikis resistance by up-regulation of cyclooxygenase-2 expression in uterine endometrial cancer cells. Oncol. Rep.19(1) , 117–122 (2008).
  • Gaggioli C , HooperS, Hidalgo-CarcedoC et al. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat. Cell. Biol. 9(12) , 1392–1400 (2007).
  • Mani SA , GuoW, LiaoMJ et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133(4) , 704–715 (2008).
  • Stuelten CH , BuschJI, TangB et al. Transient tumor-fibroblast interactions increase tumor cell malignancy by a TGF-β mediated mechanism in a mouse xenograft model of breast cancer. PLoS One 5(3) , e9832 (2010).
  • Boyd NF , GuoH, MartinLJ et al. Mammographic density and the risk and detection of breast cancer. N. Engl. J. Med. 356(3) , 227–236 (2007).
  • Cohen SJ , AlpaughRK, PalazzoI et al. Fibroblast activation protein and its relationship to clinical outcome in pancreatic adenocarcinoma. Pancreas 37(2) , 154–158 (2008).
  • Shi M , YuDH, ChenY et al. Expression of fibroblast activation protein in human pancreatic adenocarcinoma and its clinicopathological significance. World J. Gastroenterol. 18(8) , 840–846 (2012).
  • Fujita H , OhuchidaK, MizumotoK et al. α-smooth muscle actin expressing stroma promotes an aggressive tumor biology in pancreatic ductal adenocarcinoma. Pancreas 39(8) , 1254–1262 (2010).
  • Schoppmann SF , BerghoffA, DinhofC et al. Podoplanin-expressing cancer-associated fibroblasts are associated with poor prognosis in invasive breast cancer. Breast Cancer Res. Treat. 134(1) , 237–244 (2012).
  • Spiotto MT , RowleyDA, SchreiberH. Bystander elimination of antigen loss variants in established tumors. Nat. Med.10(3) , 294–298 (2004).
  • Zhang B , BowermanNA, SalamaJK et al. Induced sensitization of tumor stroma leads to eradication of established cancer by T cells. J. Exp. Med. 204(1) , 49–55 (2007).
  • Sethi T , RintoulRC, MooreSM et al. Extracellular matrix proteins protect small cell lung cancer cells against apoptosis: a mechanism for small cell lung cancer growth and drug resistance in vivo. Nat. Med. 5(6) , 662–668 (1999).
  • Heldin CH , RubinK, PietrasK, OstmanA. High interstitial fluid pressure – an obstacle in cancer therapy. Nat. Rev. Cancer4(10) , 806–813 (2004).
  • Brown JM , GiacciaAJ. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res.58(7) , 1408–1416 (1998).
  • Liang D , MaY, LiuJ et al. The hypoxic microenvironment upgrades stem-like properties of ovarian cancer cells. BMC Cancer 12 , 201– (2012).
  • Fassnacht M , LeeJ, MilazzoC et al. Induction of CD4+ and CD8+ T-cell responses to the human stromal antigen, fibroblast activation protein: implication for cancer immunotherapy. Clin. Cancer Res. 11(15) , 5566–5571 (2005).
  • Ostman A , AugstenM. Cancer-associated fibroblasts and tumor growth – bystanders turning into key players. Curr. Opin. Genet. Dev.19(1) , 67–73 (2009).
  • Rettig WJ , Garin-ChesaP, BeresfordHR, OettgenHF, MelamedMR, OldLJ. Cell-surface glycoproteins of human sarcomas: differential expression in normal and malignant tissues and cultured cells. Proc. Natl Acad. Sci. USA85(9) , 3110–3114 (1988).
  • Rettig WJ , SuSL, FortunatoSR et al. Fibroblast activation protein: purification, epitope mapping and induction by growth factors. Int. J. Cancer 58(3) , 385–392 (1994).
  • Park JE , LenterMC, ZimmermannRN, Garin-ChesaP, OldLJ, RettigWJ. Fibroblast activation protein, a dual specificity serine protease expressed in reactive human tumor stromal fibroblasts. J. Biol. Chem.274(51) , 36505–36512 (1999).
  • Garin-Chesa P , OldLJ, RettigWJ. Cell surface glycoprotein of reactive stromal fibroblasts as a potential antibody target in human epithelial cancers. Proc. Natl Acad. Sci. USA87(18) , 7235–7239 (1990).
  • Kelly T . Fibroblast activation protein-α and dipeptidyl peptidase IV (CD26): cell-surface proteases that activate cell signaling and are potential targets for cancer therapy. Drug Res. Updat.8(1–2) , 51–58 (2005).
  • Chen WT , KellyT. Seprase complexes in cellular invasiveness. Cancer Metastasis Rev.22(2–3) , 259–269 (2003).
  • Brennen WN , IsaacsJT, DenmeadeSR. Rationale behind targeting fibroblast activation protein-expressing carcinoma-associated fibroblasts as a novel chemotherapeutic strategy. Mol. Cancer Ther.11(2) , 257–266 (2012).
  • Cheng JD , ValianouM, CanutescuAA et al. Abrogation of fibroblast activation protein enzymatic activity attenuates tumor growth. Mol. Cancer Ther. 4(3) , 351–360 (2005).
  • Kraman M , BambroughPJ, ArnoldJN et al. Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-α. Science 330(6005) , 827–830 (2010).
  • Santos AM , JungJ, AzizN, KissilJL, PureE. Targeting fibroblast activation protein inhibits tumor stromagenesis and growth in mice. J. Clin. Invest.119(12) , 3613–3625 (2009).
  • LeBeau AM , BrennenWN, AggarwalS, DenmeadeSR. Targeting the cancer stroma with a fibroblast activation protein-activated promelittin protoxin. Mol. Cancer Ther.8(5) , 1378–1386 (2009).
  • Welt S , DivgiCR, ScottAM et al. Antibody targeting in metastatic colon cancer: a Phase I study of monoclonal antibody F19 against a cell-surface protein of reactive tumor stromal fibroblasts. J. Clin. Oncol. 12(6) , 1193–1203 (1994).
  • Scott AM , WisemanG, WeltS et al. A Phase I dose-escalation study of sibrotuzumab in patients with advanced or metastatic fibroblast activation protein-positive cancer. Clin. Cancer Res. 9(5) , 1639–1647 (2003).
  • Tanswell P , Garin-ChesaP, RettigWJ et al. Population pharmacokinetics of antifibroblast activation protein monoclonal antibody F19 in cancer patients. Br. J. Clin. Pharmacol. 51(2) , 177–180 (2001).
  • Ostermann E , Garin-ChesaP, HeiderKH et al. Effective immunoconjugate therapy in cancer models targeting a serine protease of tumor fibroblasts. Clin. Cancer Res. 14(14) , 4584–4592 (2008).
  • Wuest T , GerlachE, BanerjeeD, GerspachJ, MoosmayerD, PfizenmaierK. TNF-selectokine: a novel prodrug generated for tumor targeting and site-specific activation of tumor necrosis factor. Oncogene21(27) , 4257–4265 (2002).
  • Messerschmidt SK , MusyanovychA, AltvaterM et al. Targeted lipid-coated nanoparticles: delivery of tumor necrosis factor-functionalized particles to tumor cells. J. Control. Release 137(1) , 69–77 (2009).
  • Samel D , MullerD, GerspachJ et al. Generation of a FasL-based proapoptotic fusion protein devoid of systemic toxicity due to cell-surface antigen-restricted activation. J. Biol. Chem. 278(34) , 32077–32082 (2003).
  • Burckhart T , ThielM, NishikawaH et al. Tumor-specific crosslinking of GITR as costimulation for immunotherapy. J. Immunother.33(9) , 925–934 (2010).
  • Lee J , FassnachtM, NairS, BoczkowskiD, GilboaE. Tumor immunotherapy targeting fibroblast activation protein, a product expressed in tumor-associated fibroblasts. Cancer Res.65(23) , 11156–11163 (2005).
  • Loeffler M , KrugerJA, NiethammerAG, ReisfeldRA. Targeting tumor-associated fibroblasts improves cancer chemotherapy by increasing intratumoral drug uptake. J. Clin. Invest.116(7) , 1955–1962 (2006).
  • Wen Y , WangCT, MaTT et al. Immunotherapy targeting fibroblast activation protein inhibits tumor growth and increases survival in a murine colon cancer model. Cancer Sci. 101(11) , 2325–2332 (2010).
  • Sadelain M , RiviereI, BrentjensR. Targeting tumours with genetically enhanced T lymphocytes. Nat. Rev. Cancer3(1) , 35–45 (2003).
  • Kakarla S , WangL, RowleyD, PfizenmaierK, GottschalkS. Improving T-cell immunotherapies for solid tumors by targeting the tumor stroma. Biol. Blood Marrow Trans.17(2 Suppl. 1) , S270 (2011).
  • Kobayashi T , LiuX, WenFQ et al. Smad3 mediates TGF-β1 induction of VEGF production in lung fibroblasts. Biochem. Biophys. Res. Commun. 327(2) , 393–398 (2005).
  • Chen MM , LamA, AbrahamJA, SchreinerGF, JolyAH. CTGF expression is induced by TGF-β in cardiac fibroblasts and cardiac myocytes: a potential role in heart fibrosis. J. Mol. Cell. Cardiol.32(10) , 1805–1819 (2000).
  • Yingling JM , BlanchardKL, SawyerJS. Development of TGF-β signalling inhibitors for cancer therapy. Nat. Rev. Drug Discov.3(12) , 1011–1022 (2004).
  • Fakhrai H , DorigoO, ShawlerDL et al. Eradication of established intracranial rat gliomas by transforming growth factor β antisense gene therapy. Proc. Natl Acad. Sci. USA 93(7) , 2909–2914 (1996).
  • Nemunaitis J , DillmanRO, SchwarzenbergerPO et al. Phase II study of belagenpumatucel-L, a transforming growth factor β-2 antisense gene-modified allogeneic tumor cell vaccine in non-small-cell lung cancer. J. Clin. Oncol. 24(29) , 4721–4730 (2006).
  • Flechsig P , DadrichM, BickelhauptS et al. LY2109761 attenuates radiation-induced pulmonary murine fibrosis via reversal of TGF-β and BMP associated proinflammatory and proangiogenic signals. Clin. Cancer Res. 18(13) , 3616–3627 (2012).
  • Akhurst RJ . TGF-β antagonists: why suppress a tumor suppressor? J. Clin. Invest.109(12) , 1533–1536 (2002).
  • Akhurst RJ . TGF β signaling in health and disease. Nat. Genet.36(8) , 790–792 (2004).
  • Bollard CM , RossigC, CalongeMJ et al. Adapting a transforming growth factor β-related tumor protection strategy to enhance antitumor immunity. Blood 99(9) , 3179–3187 (2002).
  • Lacuesta K , BuzaE, HauserH et al. Assessing the safety of cytotoxic T lymphocytes transduced with a dominant negative transforming growth factor-β receptor. J. Immun. 29(3) , 250–260 (2006).
  • Yu Q , StamenkovicI. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-β and promotes tumor invasion and angiogenesis. Genes Dev.14(2) , 163–176 (2000).
  • Hidalgo M , EckhardtSG. Development of matrix metalloproteinase inhibitors in cancer therapy. J. Natl Cancer Inst.93(3) , 178–193 (2001).
  • Steeghs N , NortierJW, GelderblomH. Small molecule tyrosine kinase inhibitors in the treatment of solid tumors: an update of recent developments. Ann. Surg. Oncol.14(2) , 942–953 (2007).
  • Escudier B , EisenT, StadlerWM et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N. Engl. J. Med. 356(2) , 125–134 (2007).
  • Vanneman M , DranoffG. Combining immunotherapy and targeted therapies in cancer treatment. Nat. Rev. Cancer12(4) , 237–251 (2012).
  • Shrimali RK , YuZ, TheoretMR, ChinnasamyD, RestifoNP, RosenbergSA. Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. Cancer Res.70(15) , 6171–6180 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.