98
Views
0
CrossRef citations to date
0
Altmetric
Review

Achieving Graft-Versus-Tumor Effect in Brain Tumor Patients: From Autologous Progenitor Cell Transplant to Active Immunotherapy

, &
Pages 1139-1151 | Published online: 29 Nov 2012

References

  • Plosker GL , FiggittDP. Rituximab: a review of its use in non-Hodgkin‘s lymphoma and chronic lymphocytic leukaemia. Drugs63(8) , 803–843 (2003).
  • Yu AL , GilmanAL, OzkaynakMF et al. Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N. Engl. J. Med. 363(14) , 1324–1334 (2010).
  • Gomez GG , KruseCA. Mechanisms of malignant glioma immune resistance and sources of immunosuppression. Gene Ther. Mol. Biol.10(A) , 133–146 (2006).
  • Yang I , HanSJ, KaurG, CraneC, ParsaAT. The role of microglia in central nervous system immunity and glioma immunology. J. Clin. Neurosci.17(1) , 6–10 (2010).
  • Graeber MB , ScheithauerBW, KreutzbergGW. Microglia in brain tumors. Glia40(2) , 252–259 (2002).
  • Chang CN , HuangYC, YangDM et al. A Phase I/II clinical trial investigating the adverse and therapeutic effects of a postoperative autologous dendritic cell tumor vaccine in patients with malignant glioma. J. Clin. Neurosci. 18(8) , 1048–1054 (2011).
  • Held-Feindt J , HattermannK, MüerkösterSS et al. CX3CR1 promotes recruitment of human glioma-infiltrating microglia/macrophages (GIMs). Exp. Cell Res. 316(9) , 1553–1566 (2010).
  • Hussain SF , YangD, SukiD, AldapeK, GrimmE, HeimbergerAB. The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune responses. Neuro Oncol.8(3) , 261–279 (2006).
  • Gabrilovich DI , ChenHL, GirgisKR et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat. Med. 2(10) , 1096–1103 (1996).
  • Daga A , BottinoC, CastriconiR, GangemiR, FerriniS. New perspectives in glioma immunotherapy. Curr. Pharm. Des.17(23) , 2439–2467 (2011).
  • Dey M . The role of glioma microenvironment in immune modulation: potential targets for intervention. Lett. Drug Des. Discov.443–453 (2006).
  • Mehling M , SimonP, MittelbronnM et al. WHO grade associated downregulation of MHC class I antigen-processing machinery components in human astrocytomas: does it reflect a potential immune escape mechanism? Acta Neuropathol. 114(2) , 111–119 (2007).
  • Zagzag D , SalnikowK, ChiribogaL et al. Downregulation of major histocompatibility complex antigens in invading glioma cells: stealth invasion of the brain. Lab. Invest. 85(3) , 328–341 (2005).
  • Castriconi R , DonderoA, NegriF et al. Both CD133+ and CD133- medulloblastoma cell lines express ligands for triggering NK receptors and are susceptible to NK-mediated cytotoxicity. Eur. J. Immunol. 37(11) , 3190–3196 (2007).
  • Wu A , WiesnerS, XiaoJ et al. Expression of MHC I and NK ligands on human CD133+ glioma cells: possible targets of immunotherapy. J. Neurooncol. 83(2) , 121–131 (2007).
  • Salsman VS , ChowKK, ShafferDR et al. Crosstalk between medulloblastoma cells and endothelium triggers a strong chemotactic signal recruiting T lymphocytes to the tumor microenvironment. PLoS One 6(5) , e20267 (2011).
  • Didenko VV , NgoHN, MinchewC, BaskinDS. Apoptosis of T lymphocytes invading glioblastomas multiforme: a possible tumor defense mechanism. J. Neurosurg.96(3) , 580–584 (2002).
  • Walker DG , ChuahT, RistMJ, PenderMP. T-cell apoptosis in human glioblastoma multiforme: implications for immunotherapy. J. Neuroimmunol.175(1–2) , 59–68 (2006).
  • Wei J , BarrJ, KongLY et al. Glioma-associated cancer-initiating cells induce immunosuppression. Clin. Cancer Res. 16(2) , 461–473 (2010).
  • Grauer OM , NierkensS, BenninkE et al. CD4+FoxP3+ regulatory T cells gradually accumulate in gliomas during tumor growth and efficiently suppress antiglioma immune responses in vivo. Int. J. Cancer 121(1) , 95–105 (2007).
  • Sonabend AM , RolleCE, LesniakMS. The role of regulatory T cells in malignant glioma. Anticancer Res.28(2B) , 1143–1150 (2008).
  • Charles NA , HollandEC, GilbertsonR, GlassR, KettenmannH. The brain tumor microenvironment. Glia59(8) , 1169–1180 (2011).
  • Masson F , CalzasciaT, Di Berardino-Besson W, de Tribolet N, Dietrich PY, Walker PR. Brain microenvironment promotes the final functional maturation of tumor-specific effector CD8+ T cells. J. Immunol.179(2) , 845–853 (2007).
  • Rasku MA , ClemAL, TelangS et al. Transient T cell depletion causes regression of melanoma metastases. J. Transl. Med. 6 , 12 (2008).
  • van der Most RG , CurrieAJ, RobinsonBW, LakeRA. Decoding dangerous death: how cytotoxic chemotherapy invokes inflammation, immunity or nothing at all. Cell Death Differ.15(1) , 13–20 (2008).
  • Lake RA , RobinsonBW. Immunotherapy and chemotherapy – a practical partnership. Nat. Rev. Cancer5(5) , 397–405 (2005).
  • Haynes NM , van der Most RG, Lake RA, Smyth MJ. Immunogenic anti-cancer chemotherapy as an emerging concept. Curr. Opin. Immunol.20(5) , 545–557 (2008).
  • Baxevanis CN , PerezSA, PapamichailM. Combinatorial treatments including vaccines, chemotherapy and monoclonal antibodies for cancer therapy. Cancer Immunol. Immunother.58(3) , 317–324 (2009).
  • van der Most RG , CurrieAJ, MahendranS et al. Tumor eradication after cyclophosphamide depends on concurrent depletion of regulatory T cells: a role for cycling TNFR2-expressing effector-suppressor T cells in limiting effective chemotherapy. Cancer Immunol. Immunother. 58(8) , 1219–1228 (2009).
  • Banissi C , GhiringhelliF, ChenL, CarpentierAF. Treg depletion with a low-dose metronomic temozolomide regimen in a rat glioma model. Cancer Immunol. Immunother.58(10) , 1627–1634 (2009).
  • van der Most RG , CurrieA, RobinsonBW, LakeRA. Cranking the immunologic engine with chemotherapy: using context to drive tumor antigen cross-presentation towards useful antitumor immunity. Cancer Res.66(2) , 601–604 (2006).
  • Marachelian A , ButturiniA, FinlayJ. Myeloablative chemotherapy with autologous hematopoietic progenitor cell rescue for childhood central nervous system tumors. Bone Marrow Transplant.41(2) , 167–172 (2008).
  • Foreman NK , SchisselD, LeT et al. A study of sequential high dose cyclophosphamide and high dose carboplatin with peripheral stem-cell rescue in resistant or recurrent pediatric brain tumors. J. Neurooncol. 71(2) , 181–187 (2005).
  • Gardner SL . Application of stem cell transplant for brain tumors. Pediatr. Transplant.8(Suppl. 5) , S28–S32 (2004).
  • Brandes AA , PalmisanoV, PasettoLM, BassoU, MonfardiniS. High-dose chemotherapy with bone marrow rescue for high-grade gliomas in adults. Cancer Invest.19(1) , 41–48 (2001).
  • Massimino M , CohenKJ, FinlayJL. Is there a role for myeloablative chemotherapy with autologous hematopoietic cell rescue in the management of childhood high-grade astrocytomas? Pediatr. Blood Cancer54(4) , 641–643 (2010).
  • Finlay JL , DhallG, BoyettJM et al. Myeloablative chemotherapy with autologous bone marrow rescue in children and adolescents with recurrent malignant astrocytoma: outcome compared with conventional chemotherapy: a report from the Children‘s Oncology Group. Pediatr. Blood Cancer 51(6) , 806–811 (2008).
  • Fagnoni FF , LozzaL, ZiberaC et al. Cytotoxic chemotherapy preceding apheresis of peripheral blood progenitor cells can affect the early reconstitution phase of naive T cells after autologous transplantation. Bone Marrow Transplant. 31(1) , 31–38 (2003).
  • Schrama JG , RodenhuisS, de Gast GC. Prolonged survival associated with early lymphocyte recovery after autologous hematopoietic stem cell transplantation for patients with metastatic breast cancer. Bone Marrow Transplant.31(2) , 141–142 (2003).
  • Porrata LF , GertzMA, InwardsDJ et al. Early lymphocyte recovery predicts superior survival after autologous hematopoietic stem cell transplantation in multiple myeloma or non-Hodgkin lymphoma. Blood 98(3) , 579–585 (2001).
  • Porrata LF , IngleJN, LitzowMR, GeyerS, MarkovicSN. Prolonged survival associated with early lymphocyte recovery after autologous hematopoietic stem cell transplantation for patients with metastatic breast cancer. Bone Marrow Transplant.28(9) , 865–871 (2001).
  • Porrata LF , LitzowMR, TefferiA et al. Early lymphocyte recovery is a predictive factor for prolonged survival after autologous hematopoietic stem cell transplantation for acute myelogenous leukemia. Leukemia 16(7) , 1311–1318 (2002).
  • Agah R , MalloyB, KernerM, MazumderA. Generation and characterization of IL-2-activated bone marrow cells as a potent graft vs tumor effector in transplantation. J. Immunol.143(9) , 3093–3099 (1989).
  • Agah R , MalloyB, KernerM et al. Potent graft antitumor effect in natural killer-resistant disseminated tumors by transplantation of interleukin 2-activated syngeneic bone marrow in mice. Cancer Res. 49(21) , 5959–5963 (1989).
  • Boyman O , SprentJ. The role of interleukin-2 during homeostasis and activation of the immune system. Nat. Rev. Immunol.12(3) , 180–190 (2012).
  • Meehan KR , TalebianL, WuJ et al. Immune mobilization of autologous blood progenitor cells: direct influence on the cellular subsets collected. Cytotherapy 12(8) , 1013–1021 (2010).
  • Sosman JA , StiffP, MossSM et al. Pilot trial of interleukin-2 with granulocyte colony-stimulating factor for the mobilization of progenitor cells in advanced breast cancer patients undergoing high-dose chemotherapy: expansion of immune effectors within the stem-cell graft and post-stem-cell infusion. J. Clin. Oncol. 19(3) , 634–644 (2001).
  • Nagler A , BergerR, AckersteinA et al. A randomized controlled multicenter study comparing recombinant interleukin 2 (rIL-2) in conjunction with recombinant interferon α (IFN-α) versus no immunotherapy for patients with malignant lymphoma postautologous stem cell transplantation. J. Immunother. 33(3) , 326–333 (2010).
  • Antony PA , RestifoNP. CD4+CD25+ T regulatory cells, immunotherapy of cancer, and interleukin-2. J. Immunother.28(2) , 120–128 (2005).
  • Fehniger TA , CaligiuriMA. Interleukin 15: biology and relevance to human disease. Blood97(1) , 14–32 (2001).
  • Porrata LF , InwardsDJ, MicallefIN et al. Interleukin-15 affects patient survival through natural killer cell recovery after autologous hematopoietic stem cell transplantation for non-Hodgkin lymphomas. Clin. Dev. Immunol. 2010 , 914945 (2010).
  • Blaser BW , CaligiuriMA. Autologous immune strategies to reduce the risk of leukemic relapse: consideration for IL-15. Best Pract. Res. Clin. Haematol.19(2) , 281–292 (2006).
  • Hallett WH , MurphyWJ. Natural killer cells: biology and clinical use in cancer therapy. Cell. Mol. Immunol.1(1) , 12–21 (2004).
  • Aboody KS , NajbauerJ, DanksMK. Stem and progenitor cell-mediated tumor selective gene therapy. Gene Ther.15(10) , 739–752 (2008).
  • Sentman CL , BarberMA, BarberA, ZhangT. NK cell receptors as tools in cancer immunotherapy. Adv. Cancer Res.95 , 249–292 (2006).
  • Ishikawa E , TsuboiK, SaijoK et al. Autologous natural killer cell therapy for human recurrent malignant glioma. Anticancer Res. 24(3b) , 1861–1871 (2004).
  • Vivier E , RauletDH, MorettaA et al. Innate or adaptive immunity? The example of natural killer cells. Science 331(6013) , 44–49 (2011).
  • Moretta L , FerlazzoG, BottinoC et al. Effector and regulatory events during natural killer-dendritic cell interactions. Immunol. Rev. 214 , 219–228 (2006).
  • Andoniou CE , van Dommelen SL, Voigt V et al. Interaction between conventional dendritic cells and natural killer cells is integral to the activation of effective antiviral immunity. Nat. Immunol.6(10) , 1011–1019 (2005).
  • Voskens CJ , WatanabeR, RollinsS, CampanaD, HasumiK, MannDL. Ex-vivo expanded human NK cells express activating receptors that mediate cytotoxicity of allogeneic and autologous cancer cell lines by direct recognition and antibody directed cellular cytotoxicity. J. Exp. Clin. Cancer Res.29 , 134 (2010).
  • Miller JS , SoignierY, Panoskaltsis-MortariA et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 105(8) , 3051–3057 (2005).
  • Klingemann H , BoisselL. Targeted cellular therapy with natural killer cells. Horm. Metab. Res.40(2) , 122–125 (2008).
  • Müller T , UherekC, MakiG et al. Expression of a CD20-specific chimeric antigen receptor enhances cytotoxic activity of NK cells and overcomes NK-resistance of lymphoma and leukemia cells. Cancer Immunol. Immunother. 57(3) , 411–423 (2008).
  • Uherek C , TonnT, UherekB et al. Retargeting of natural killer-cell cytolytic activity to ErbB2-expressing cancer cells results in efficient and selective tumor cell destruction. Blood 100(4) , 1265–1273 (2002).
  • Ahmed N , RatnayakeM, SavoldoB et al. Regression of experimental medulloblastoma following transfer of HER2-specific T cells. Cancer Res. 67(12) , 5957–5964 (2007).
  • Lammering G , HewitTH, HolmesM et al. Inhibition of the type III epidermal growth factor receptor variant mutant receptor by dominant-negative EGFR-CD533 enhances malignant glioma cell radiosensitivity. Clin. Cancer Res. 10(19) , 6732–6743 (2004).
  • Farag SS , FehnigerTA, BecknellB, BlaserBW, CaligiuriMA. New directions in natural killer cell-based immunotherapy of human cancer. Expert Opin. Biol. Ther.3(2) , 237–250 (2003).
  • Ogbomo H , CinatlJ, ModyCH, ForsythPA. Immunotherapy in gliomas: limitations and potential of natural killer (NK) cell therapy. Trends Mol. Med.17(8) , 433–441 (2011).
  • Vauleon E , AvrilT, ColletB, MosserJ, QuillienV. Overview of cellular immunotherapy for patients with glioblastoma. Clin. Dev. Immunol.2010 (2010).
  • Hayes RL , ArbitE, OdaimiM et al. Adoptive cellular immunotherapy for the treatment of malignant gliomas. Crit. Rev. Oncol. Hematol. 39(1–2) , 31–42 (2001).
  • Finocchiaro G , PellegattaS. Immunotherapy for glioma: getting closer to the clinical arena? Curr. Opin. Neurol.24(6) , 641–647 (2011).
  • Dillman RO , DumaCM, EllisRA et al. Intralesional lymphokine-activated killer cells as adjuvant therapy for primary glioblastoma. J. Immunother. 32(9) , 914–919 (2009).
  • Ehtesham M , BlackKL, YuJS. Recent progress in immunotherapy for malignant glioma: treatment strategies and results from clinical trials. Cancer Control11(3) , 192–207 (2004).
  • Hofman FM , StathopoulosA, KruseCA, ChenTC, SchijnsVE. Immunotherapy of malignant gliomas using autologous and allogeneic tissue cells. Anticancer Agents Med. Chem.10(6) , 462–470 (2010).
  • Tsuboi K , SaijoK, IshikawaE et al. Effects of local injection of ex vivo expanded autologous tumor-specific T lymphocytes in cases with recurrent malignant gliomas. Clin. Cancer Res. 9(9) , 3294–3302 (2003).
  • Plautz GE , MillerDW, BarnettGH et al. T cell adoptive immunotherapy of newly diagnosed gliomas. Clin. Cancer Res. 6(6) , 2209–2218 (2000).
  • Kronik N , KoganY, VainsteinV, AgurZ. Improving alloreactive CTL immunotherapy for malignant gliomas using a simulation model of their interactive dynamics. Cancer Immunol. Immunother.57(3) , 425–439 (2008).
  • Chow KH , GottschalkS. Cellular immunotherapy for high-grade glioma. Immunotherapy3(3) , 423–434 (2011).
  • Ahmed N , SalsmanVS, KewY et al. HER2-specific T cells target primary glioblastoma stem cells and induce regression of autologous experimental tumors. Clin. Cancer Res. 16(2) , 474–485 (2010).
  • Kahlon KS , BrownC, CooperLJ, RaubitschekA, FormanSJ, JensenMC. Specific recognition and killing of glioblastoma multiforme by interleukin 13-zetakine redirected cytolytic T cells. Cancer Res.64(24) , 9160–9166 (2004).
  • Bullain SS , SahinA, SzentirmaiO et al. Genetically engineered T cells to target EGFRvIII expressing glioblastoma. J. Neurooncol. 94(3) , 373–382 (2009).
  • Auletta JJ , CookeKR, SolchagaLA, DeansRJ, van‘t Hof W. Regenerative stromal cell therapy in allogeneic hematopoietic stem cell transplantation: current impact and future directions. Biol. Blood Marrow Transplant.16(7) , 891–906 (2010).
  • von Bahr L , SundbergB, LönniesL et al. Long-term complications, immunologic effects, and role of passage for outcome in mesenchymal stromal cell therapy. Biol. Blood Marrow Transplant. 18(4) , 557–564 (2012).
  • Nakamizo A , MariniF, AmanoT et al. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res. 65(8) , 3307–3318 (2005).
  • Hamada H , KobuneM, NakamuraK et al. Mesenchymal stem cells (MSC) as therapeutic cytoreagents for gene therapy. Cancer Sci. 96(3) , 149–156 (2005).
  • Aboody KS , BrownA, RainovNG et al. Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc. Natl Acad. Sci. USA 97(23) , 12846–12851 (2000).
  • Binello E , GermanoIM. Stem cells as therapeutic vehicles for the treatment of high-grade gliomas. Neuro Oncol.14(3) , 256–265 (2012).
  • Roger M , ClavreulA, HuynhNT et al. Ferrociphenol lipid nanocapsule delivery by mesenchymal stromal cells in brain tumor therapy. Int. J. Pharm. 423(1) , 63–68 (2012).
  • Kosztowski T , ZaidiHA, Quiñones-HinojosaA. Applications of neural and mesenchymal stem cells in the treatment of gliomas. Expert Rev. Anticancer Ther.9(5) , 597–612 (2009).
  • Casiraghi F , RemuzziG, AbbateM, PericoN. Multipotent mesenchymal stromal cell therapy and risk of malignancies. Stem Cell Rev. doi:10.1007/s12015-011-9345-4 (2012).
  • Ciavarella S , DominiciM, DammaccoF, SilvestrisF. Mesenchymal stem cells: a new promise in anticancer therapy. Stem Cells Dev.20(1) , 1–10 (2011).
  • Kim W , LiauLM. Dendritic cell vaccines for brain tumors. Neurosurg. Clin. N. Am.21(1) , 139–157 (2010).
  • Akasaki Y , BlackKL, YuJS. Dendritic cell-based immunotherapy for malignant gliomas. Expert Rev. Neurother.5(4) , 497–508 (2005).
  • Parajuli P , MathupalaS, MittalS, SloanAE. Dendritic cell-based active specific immunotherapy for malignant glioma. Expert Opin. Biol. Ther.7(4) , 439–448 (2007).
  • Ardon H , De Vleeschouwer S, Van Calenbergh F et al. Adjuvant dendritic cell-based tumour vaccination for children with malignant brain tumours. Pediatr. Blood Cancer54(4) , 519–525 (2010).
  • Ardon H , Van Gool S, Lopes IS et al. Integration of autologous dendritic cell-based immunotherapy in the primary treatment for patients with newly diagnosed glioblastoma multiforme: a pilot study. J. Neurooncol.99(2) , 261–272 (2010).
  • Luptrawan A , LiuG, YuJS. Dendritic cell immunotherapy for malignant gliomas. Rev. Recent Clin. Trials3(1) , 10–21 (2008).
  • Okada H , KalinskiP, UedaR et al. Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with α-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J. Clin. Oncol. 29(3) , 330–336 (2011).
  • Renga M , PedrazzoliP, SienaS. Present results and perspectives of allogeneic non-myeloablative hematopoietic stem cell transplantation for treatment of human solid tumors. Ann. Oncol.14(8) , 1177–1184 (2003).
  • Sung KW , ParkJE, ChuehHW et al. Reduced-intensity allogeneic stem cell transplantation for children with neuroblastoma who failed tandem autologous stem cell transplantation. Pediatr. Blood Cancer 57(4) , 660–665 (2011).
  • Hentschke P , BarkholtL, UzunelM et al. Low-intensity conditioning and hematopoietic stem cell transplantation in patients with renal and colon carcinoma. Bone Marrow Transplant. 31(4) , 253–261 (2003).
  • Baird K , FryTJ, SteinbergSM et al. Reduced-intensity allogeneic stem cell transplantation in children and young adults with ultrahigh-risk pediatric sarcomas. Biol. Blood Marrow Transplant. 18(5) , 698–707 (2012).
  • Secondino S , PedrazzoliP, SchiavettoI et al. Antitumor effect of allogeneic hematopoietic SCT in metastatic medulloblastoma. Bone Marrow Transplant. 42(2) , 131–133 (2008).
  • Lundberg JH , WeissmanDE, BeattyPA, AshRC. Treatment of recurrent metastatic medulloblastoma with intensive chemotherapy and allogeneic bone marrow transplantation. J. Neurooncol.13(2) , 151–155 (1992).
  • Leary SE , OlsonJM. The molecular classification of medulloblastoma: driving the next generation clinical trials. Curr. Opin. Pediatr.24(1) , 33–39 (2012).
  • Li Z , LeeJW, MukherjeeD et al. Immunotherapy targeting glioma stem cells – insights and perspectives. Expert Opin. Biol. Ther. 12(2) , 165–178 (2012).

▪ Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.