745
Views
0
CrossRef citations to date
0
Altmetric
Review

Modes of Action of TLR7 Agonists in Cancer Therapy

, , &
Pages 1085-1095 | Published online: 27 Nov 2014

References

  • Gay NJ, Keith FJ. Drosophila Toll and IL-1 receptor. Nature 351(6325),355–356(1991).
  • Roach JC, Glusman G, Rowen L et al. The evolution of vertebrate Toll-like receptors. Proc. Natl. Acad. Sci. USA 102(27), 9577–9582(2005).
  • Uematsu S, Akira S. Toll-like receptors and innate immunity. J. Mol. Med. (Berl.) 84(9), 712–725(2006).
  • Vacchelli E, Eggermont A, Sautes-Fridman C et al. Trial watch: Toll-like receptor agonists for cancer therapy. Oncoimmunology 2(8), e25238(2013).
  • Wiemann B, Starnes CO. Coley’s toxins, tumor necrosis factor and cancer research: a historical perspective. Pharmacol. Ther. 64(3), 529–564(1994).
  • Engelhardt R, Mackensen A, Galanos C. Phase I trial of intravenously administered endotoxin (Salmonella abortus equi) in cancer patients. Cancer Res. 51(10), 2524–2530(1991).
  • Witt PL, Ritch PS, Reding D et al. Phase I trial of an oral immunomodulator and interferon inducer in cancer patients. Cancer Res. 53(21), 5176–5180(1993).
  • Krieg AM. Therapeutic potential of Toll-like receptor 9 activation. Nat. Rev. Drug Discov. 5(6), 471–484(2006).
  • Dudek AZ, Yunis C, Harrison LI et al. First in human Phase I trial of 852A, a novel systemic Toll-like receptor 7 agonist, to activate innate immune responses in patients with advanced cancer. Clin. Cancer Res. 13(23), 7119–7125(2007).
  • Holldack J. Toll-like receptors as therapeutic targets for cancer. Drug Discov Today 19(4), 379–382(2013).
  • Bourquin C, Hotz C, Noerenberg D et al. Systemic cancer therapy with a small molecule agonist of Toll-like receptor 7 can be improved by circumventing TLR tolerance. Cancer Res. 71(15), 5123–5133(2011).
  • Chitwood K, Etzkorn J, Cohen G. Topical and intralesional treatment of nonmelanoma skin cancer: efficacy and cost comparisons. Dermatol. Surg. 39(9), 1306–1316(2013).
  • Arits AH, Mosterd K, Essers BA et al. Photodynamic therapy versus topical imiquimod versus topical fluorouracil for treatment of superficial basal-cell carcinoma: a single blind, non-inferiority, randomised controlled trial. Lancet Oncol. 14(7), 647–654(2013).
  • Du X, Poltorak A, Wei Y, Beutler B. Three novel mammalian Toll-like receptors: gene structure, expression, and evolution. Eur. Cytokine Netw. 11(3), 362–371(2000).
  • Adams S, Kozhaya L, Martiniuk F et al. Topical TLR7 agonist imiquimod can induce immune-mediated rejection of skin metastases in patients with breast cancer. Clin. Cancer Res. 18(24), 6748–6757(2012).
  • Geller MA, Cooley S, Argenta PA et al. Toll-like receptor-7 agonist administered subcutaneously in a prolonged dosing schedule in heavily pretreated recurrent breast, ovarian, and cervix cancers. Cancer Immunol. Immunother. 59(12), 1877–1884(2010).
  • Walter S, Weinschenk T, Stenzl A et al. Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat. Med. 18(8), 1254–1261(2012).
  • Hornung V, Guenthner-Biller M, Bourquin C et al. Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat. Med. 11(3), 263–270(2005).
  • Kawasaki T, Kawai T, Akira S. Recognition of nucleic acids by pattern-recognition receptors and its relevance in autoimmunity. Immunol. Rev. 243(1), 61–73(2011).
  • Guiducci C, Coffman RL, Barrat FJ. Signalling pathways leading to IFN-alpha production in human plasmacytoid dendritic cell and the possible use of agonists or antagonists of TLR7 and TLR9 in clinical indications. J. Int. Med. 265(1), 43–57(2009).
  • Engel AL, Holt GE, Lu H. The pharmacokinetics of Toll-like receptor agonists and the impact on the immune system. Exp. Rev. Clin. Pharm. 4(2), 275–289(2011).
  • Hemmi H, Kaisho T, Takeuchi O et al. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat. Immunol. 3(2), 196–200(2002).
  • Applequist SE, Wallin RP, Ljunggren HG. Variable expression of Toll-like receptor in murine innate and adaptive immune cell lines. Int. Immunol. 14(9), 1065–1074(2002).
  • Hornung V, Rothenfusser S, Britsch S et al. Quantitative expression of Toll-like receptor 1–10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J. Immunol. 168(9), 4531–4537(2002).
  • Edwards AD, Diebold SS, Slack EM et al. Toll-like receptor expression in murine DC subsets: lack of TLR7 expression by CD8 alpha+ DC correlates with unresponsiveness to imidazoquinolines. Eur. J. Immunol. 33(4), 827–833(2003).
  • Poovassery JS, Bishop GA. Type I IFN receptor and the B cell antigen receptor regulate TLR7 responses via distinct molecular mechanisms. J. Immunol. 189(4), 1757–1764(2012).
  • Clingan JM, Matloubian M. B Cell-intrinsic TLR7 signaling is required for optimal B cell responses during chronic viral infection. J. Immunol. 191(2), 810–818(2013).
  • Bekeredjian-Ding IB, Wagner M, Hornung V et al. Plasmacytoid dendritic cells control TLR7 sensitivity of naive B cells via type I IFN. J. Immunol. 174(7), 4043–4050(2005).
  • Alexopoulou L, Desnues B, Demaria O. [Toll-like receptor 8: the awkward TLR]. Med. Sci. (Paris) 28(1), 96–102(2012).
  • Cervantes JL, Weinerman B, Basole C, Salazar JC. TLR8: the forgotten relative revindicated. Cell. Mol. Immunol. 9(6), 434–438(2012).
  • Crozat K, Vivier E, Dalod M. Crosstalk between components of the innate immune system: promoting anti-microbial defenses and avoiding immunopathologies. Immunol. Rev. 227(1), 129–149(2009).
  • Janke M, Poth J, Wimmenauer V et al. Selective and direct activation of human neutrophils but not eosinophils by Toll-like receptor 8. J. Allerg. Clin. Immunol. 123(5), 1026–1033(2009).
  • Ablasser A, Poeck H, Anz D et al. Selection of molecular structure and delivery of RNA oligonucleotides to activate TLR7 versus TLR8 and to induce high amounts of IL-12p70 in primary human monocytes. J. Immunol. 182(11), 6824–6833(2009).
  • Smits EL, Ponsaerts P, Berneman ZN, Van Tendeloo VF. The use of TLR7 and TLR8 ligands for the enhancement of cancer immunotherapy. Oncologist 13(8), 859–875(2008).
  • Liu J, Xu C, Hsu LC, Luo Y, Xiang R, Chuang TH. A five-amino-acid motif in the undefined region of the TLR8 ectodomain is required for species-specific ligand recognition. Mol. Immunol. 47(5), 1083–1090(2010).
  • Gorden KK, Qiu X, Battiste JJ, Wightman PP, Vasilakos JP, Alkan SS. Oligodeoxynucleotides differentially modulate activation of TLR7 and TLR8 by imidazoquinolines. J. Immunol. 177(11), 8164–8170(2006).
  • Meier A, Chang JJ, Chan ES et al. Sex differences in the Toll-like receptor-mediated response of plasmacytoid dendritic cells to HIV-1. Nat. Med. 15(8), 955–959(2009).
  • Torcia MG, Nencioni L, Clemente AM et al. Sex differences in the response to viral infections: TLR8 and TLR9 ligand stimulation induce higher IL10 production in males. PLoS ONE 7(6), e39853(2012).
  • Berghofer B, Frommer T, Haley G, Fink L, Bein G, Hackstein H. TLR7 ligands induce higher IFN-alpha production in females. J. Immunol. 177(4), 2088–2096(2006).
  • Seillet C, Laffont S, Tremollieres F et al. The TLR-mediated response of plasmacytoid dendritic cells is positively regulated by estradiol in vivo through cell-intrinsic estrogen receptor alpha signaling. Blood 119(2), 454–464(2012).
  • Han JH, Park SY, Kim JB et al. TLR7 expression is decreased during tumour progression in transgenic adenocarcinoma of mouse prostate mice and its activation inhibits growth of prostate cancer cells. Am. J. Reprod. Immunol. 70(4), 317–326(2013).
  • Kang S-J, Tak J-H, Cho J-H, Lee H-J, Jung Y-J. Stimulation of the endosomal TLR pathway enhances autophagy-induced cell death in radiotherapy of breast cancer. Genes Genomics 32(6), 599–606(2010).
  • Cherfils-Vicini J, Platonova S, Gillard M et al. Triggering of TLR7 and TLR8 expressed by human lung cancer cells induces cell survival and chemoresistance. J. Clin. Invest. 120(4), 1285–1297(2010).
  • Ochi A, Graffeo CS, Zambirinis CP et al. Toll-like receptor 7 regulates pancreatic carcinogenesis in mice and humans. J. Clin. Invest. 122(11), 4118–4129(2012).
  • Smith EB, Schwartz M, Kawamoto H et al. Antitumor effects of imidazoquinolines in urothelial cell carcinoma of the bladder. J. Urol. 177(6), 2347–2351(2007).
  • Spaner DE, Miller RL, Mena J, Grossman L, Sorrenti V, Shi Y. Regression of lymphomatous skin deposits in a chronic lymphocytic leukemia patient treated with the Toll-like receptor-7/8 agonist, imiquimod. Leuk. Lymphom. 46(6), 935–939(2005).
  • Smits EL, Cools N, Lion E et al. The Toll-like receptor 7/8 agonist resiquimod greatly increases the immunostimulatory capacity of human acute myeloid leukemia cells. Cancer Immunol. Immunother. 59(1), 35–46(2010).
  • Bao M, Liu YJ. Regulation of TLR7/9 signaling in plasmacytoid dendritic cells. Protein Cell 4(1), 40–52(2013).
  • Yang Y, Liu B, Dai J et al. Heat shock protein gp96 is a master chaperone for Toll-like receptors and is important in the innate function of macrophages. Immunity 26(2), 215–226(2007).
  • Kim YM, Brinkmann MM, Paquet ME, Ploegh HL. UNC93B1 delivers nucleotide-sensing Toll-like receptors to endolysosomes. Nature 452(7184), 234–238(2008).
  • Ewald SE, Engel A, Lee J, Wang M, Bogyo M, Barton GM. Nucleic acid recognition by Toll-like receptors is coupled to stepwise processing by cathepsins and asparagine endopeptidase. J. Exp. Med. 208(4), 643–651(2011).
  • Li L, Cousart S, Hu J, McCall CE. Characterization of interleukin-1 receptor-associated kinase in normal and endotoxin-tolerant cells. J. Biol. Chem. 275(30), 23340–23345(2000).
  • Lin SC, Lo YC, Wu H. Helical assembly in the MyD88–IRAK4–IRAK2 complex in TLR/IL-1R signalling. Nature 465(7300), 885–890(2010).
  • Kawai T, Sato S, Ishii KJ et al. Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat. Immunol. 5(10), 1061–1068(2004).
  • Ninomiya-Tsuji J, Kishimoto K, Hiyama A, Inoue J, Cao Z, Matsumoto K. The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 398(6724), 252–256(1999).
  • Sun L, Deng L, Ea CK, Xia ZP, Chen ZJ. The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. Mol. Cell. 14(3), 289–301(2004).
  • Zhang G, Ghosh S. Toll-like receptor-mediated NF-kappaB activation: a phylogenetically conserved paradigm in innate immunity. J. Clin. Invest. 107(1), 13–19(2001).
  • Gorden KB, Gorski KS, Gibson SJ et al. Synthetic TLR agonists reveal functional differences between human TLR7 and TLR8. J. Immunol. 174(3), 1259–1268(2005).
  • Drobits B, Holcmann M, Amberg N et al. Imiquimod clears tumors in mice independent of adaptive immunity by converting pDCs into tumor-killing effector cells. J. Clin. Invest. 122(2), 575–585(2012).
  • Urosevic M, Oberholzer PA, Maier T et al. Imiquimod treatment induces expression of opioid growth factor receptor: a novel tumor antigen induced by interferon-alpha? Clin. Cancer Res. 10(15), 4959–4970(2004).
  • Tel J, Sittig SP, Blom RA et al. Targeting uptake receptors on human plasmacytoid dendritic cells triggers antigen cross-presentation and robust type I IFN secretion. J. Immunol. 191(10), 5005–5012(2013).
  • Wenzel J, Uerlich M, Haller O, Bieber T, Tueting T. Enhanced type I interferon signaling and recruitment of chemokine receptor CXCR3-expressing lymphocytes into the skin following treatment with the TLR7-agonist imiquimod. J. Cut. Pathol. 32(4), 257–262(2005).
  • Koga-Yamakawa E, Dovedi SJ, Murata M et al. Intratracheal and oral administration of SM-276001: a selective TLR7 agonist, leads to antitumor efficacy in primary and metastatic models of cancer. Int. J. Cancer 132(3), 580–590(2013).
  • Rajagopal D, Paturel C, Morel Y, Uematsu S, Akira S, Diebold SS. Plasmacytoid dendritic cell-derived type I interferon is crucial for the adjuvant activity of Toll-like receptor 7 agonists. Blood 115(10), 1949–1957(2010).
  • Inglefield JR, Dumitru CD, Alkan SS et al. TLR7 agonist 852A inhibition of tumor cell proliferation is dependent on plasmacytoid dendritic cells and type I IFN. J. Interferon Cytokine Res. 28(4), 253–263(2008).
  • Le Mercier I, Poujol D, Sanlaville A et al. Tumor promotion by intratumoral plasmacytoid dendritic cells is reversed by TLR7 ligand treatment. Cancer Res. 73(15), 4629–4640(2013).
  • Pantel A, Teixeira A, Haddad E, Wood EG, Steinman RM, Longhi MP. Direct type I IFN but not MDA5/TLR3 activation of dendritic cells is required for maturation and metabolic shift to glycolysis after poly IC stimulation. PLoS Biol. 12(1), e1001759(2014).
  • Ito T, Amakawa R, Kaisho T et al. Interferon-alpha and interleukin-12 are induced differentially by Toll-like receptor 7 ligands in human blood dendritic cell subsets. J. Exp. Med. 195(11), 1507–1512(2002).
  • Tel J, Schreibelt G, Sittig SP et al. Human plasmacytoid dendritic cells efficiently cross-present exogenous Ags to CD8+ T cells despite lower Ag uptake than myeloid dendritic cell subsets. Blood 121(3), 459–467(2013).
  • Beck B, Dorfel D, Lichtenegger FS et al. Effects of TLR agonists on maturation and function of 3-day dendritic cells from AML patients in complete remission. J. Transl. Med. 9, 151(2011).
  • Nair S, McLaughlin C, Weizer A et al. Injection of immature dendritic cells into adjuvant-treated skin obviates the need for ex vivo maturation. J. Immunol. 171(11), 6275–6282(2003).
  • Prins RM, Craft N, Bruhn KW et al. The TLR-7 agonist, imiquimod, enhances dendritic cell survival and promotes tumor antigen-specific T cell priming: relation to central nervous system antitumor immunity. J. Immunol. 176(1), 157–164(2006).
  • Hong X, Dong T, Hu J et al. Synergistical toll-like receptors activated dendritic cells induce antitumor effects against carcinoembryonic antigen-expressing colon cancer. Int. J. Col. Dis. 28(1), 25–33(2013).
  • Dhodapkar MV, Sznol M, Zhao B et al. Induction of antigen-specific immunity with a vaccine targeting NY-ESO-1 to the dendritic cell receptor DEC-205. Sci. Transl. Med. 6(232), 232ra251(2014).
  • Fehres CM, Bruijns SC, Van Beelen AJ et al. Topical rather than intradermal application of the TLR7 ligand imiquimod leads to human dermal dendritic cell maturation and CD8 T-cell cross-priming. Eur. J. Immunol. 44(8), 2145–2124(2014).
  • Stary G, Bangert C, Tauber M, Strohal R, Kopp T, Stingl G. Tumoricidal activity of TLR7/8-activated inflammatory dendritic cells. J. Exp. Med. 204(6), 1441–1451(2007).
  • Kalb ML, Glaser A, Stary G, Koszik F, Stingl G. TRAIL(+) human plasmacytoid dendritic cells kill tumor cells in vitro: mechanisms of imiquimod- and IFN-alpha-mediated antitumor reactivity. J. Immunol. 188(4), 1583–1591(2012).
  • Bourquin C, Schmidt L, Lanz AL et al. Immunostimulatory RNA oligonucleotides induce an effective antitumoral NK cell response through the TLR7. J. Immunol. 183(10), 6078–6086(2009).
  • Chuang CM, Monie A, Hung CF, Wu TC. Treatment with imiquimod enhances antitumor immunity induced by therapeutic HPV DNA vaccination. J. Biomed. Sci. 17, 32(2010).
  • Dumitru CD, Antonysamy MA, Gorski KS et al. NK1.1+ cells mediate the antitumor effects of a dual Toll-like receptor 7/8 agonist in the disseminated B16-F10 melanoma model. Cancer Immunol. Immunother. 58(4), 575–587(2009).
  • Hamm S, Rath S, Michel S, Baumgartner R. Cancer immunotherapeutic potential of novel small molecule TLR7 and TLR8 agonists. J. Immunotoxicol. 6(4), 257–265(2009).
  • Wysocka M, Newton S, Benoit BM et al. Synthetic imidazoquinolines potently and broadly activate the cellular immune response of patients with cutaneous T-cell lymphoma: synergy with interferon-gamma enhances production of interleukin-12. Clin. Lymphoma Myeloma 7(8), 524–534(2007).
  • Grela F, Aumeunier A, Bardel E et al. The TLR7 agonist R848 alleviates allergic inflammation by targeting invariant NKT cells to produce IFN-gamma. J. Immunol. 186(1), 284–290(2011).
  • Dummer R, Hauschild A, Becker JC et al. An exploratory study of systemic administration of the Toll-like receptor-7 agonist 852A in patients with refractory metastatic melanoma. Clin. Cancer Res. 14(3), 856–864(2008).
  • Morse MA, Chapman R, Powderly J et al. Phase I study utilizing a novel antigen-presenting cell-targeted vaccine with Toll-like receptor stimulation to induce immunity to self-antigens in cancer patients. Clin. Cancer Res. 17(14), 4844–4853(2011).
  • Huang SJ, Hijnen D, Murphy GF et al. Imiquimod enhances IFN-gamma production and effector function of T cells infiltrating human squamous cell carcinomas of the skin. J. Invest. Dermatol. 129(11), 2676–2685(2009).
  • Lu H, Wagner WM, Gad E et al. Treatment failure of a TLR-7 agonist occurs due to self-regulation of acute inflammation and can be overcome by IL-10 blockade. J. Immunol. 184(9), 5360–5367(2010).
  • Narayan R, Nguyen H, Bentow JJ et al. Immunomodulation by imiquimod in patients with high-risk primary melanoma. J. Invest. Dermatol. 132(1), 163–169(2012).
  • Xiong Z, Ohlfest JR. Topical imiquimod has therapeutic and immunomodulatory effects against intracranial tumors. J. Immunother. 34(3), 264–269(2011).
  • Bourquin C, Wurzenberger C, Heidegger S et al. Delivery of immunostimulatory RNA oligonucleotides by gelatin nanoparticles triggers an efficient antitumoral response. J. Immunother. 33(9), 935–944(2010).
  • Dang Y, Wagner WM, Gad E et al. Dendritic cell-activating vaccine adjuvants differ in the ability to elicit antitumor immunity due to an adjuvant-specific induction of immunosuppressive cells. Clin. Cancer Res. 18(11), 3122–3131(2012).
  • Bourquin C, Schmidt L, Hornung V et al. Immunostimulatory RNA oligonucleotides trigger an antigen-specific cytotoxic T-cell and IgG2a response. Blood 109(7), 2953–2960(2007).
  • Goldinger SM, Dummer R, Baumgaertner P et al. Nano-particle vaccination combined with TLR-7 and -9 ligands triggers memory and effector CD8(+) T-cell responses in melanoma patients. Eur. J. Immunol. 42(11), 3049–3061(2012).
  • Broomfield SA, Van Der Most RG, Prosser AC et al. Locally administered TLR7 agonists drive systemic antitumor immune responses that are enhanced by anti-CD40 immunotherapy. J. Immunol. 182(9), 5217–5224(2009).
  • Ma F, Zhang J, Zhang J, Zhang C. The TLR7 agonists imiquimod and gardiquimod improve DC-based immunotherapy for melanoma in mice. Cell. Mol. Immunol. 7(5), 381–388(2010).
  • Fiorenza S, Kenna TJ, Comerford I et al. A combination of local inflammation and central memory T cells potentiates immunotherapy in the skin. J. Immunol. 189(12), 5622–5631(2012).
  • Clark RA, Huang SJ, Murphy GF et al. Human squamous cell carcinomas evade the immune response by down-regulation of vascular E-selectin and recruitment of regulatory T cells. J. Exp. Med. 205(10), 2221–2234(2008).
  • Aranda F, Llopiz D, Diaz-Valdes N et al. Adjuvant combination and antigen targeting as a strategy to induce polyfunctional and high-avidity T-cell responses against poorly immunogenic tumors. Cancer Res. 71(9), 3214–3224(2011).
  • Warger T, Rechtsteiner G, Schmid B, Osterloh P, Schild H, Radsak MP. Transcutaneous immunization with imiquimod is amplified by CD40 ligation and results in sustained cytotoxic T-lymphocyte activation and tumor protection. Clin. Rev. Allerg. Immunol. 32(1), 57–66(2007).
  • Fotin-Mleczek M, Duchardt KM, Lorenz C et al. Messenger RNA-based vaccines with dual activity induce balanced TLR-7 dependent adaptive immune responses and provide antitumor activity. J. Immunother. 34(1), 1–15(2011).
  • Adams S, O’Neill DW, Nonaka D et al. Immunization of malignant melanoma patients with full-length NY-ESO-1 protein using TLR7 agonist imiquimod as vaccine adjuvant. J. Immunol. 181(1), 776–784(2008).
  • Bishop GA, Hsing Y, Hostager BS, Jalukar SV, Ramirez LM, Tomai MA. Molecular mechanisms of B lymphocyte activation by the immune response modifier R-848. J. Immunol. 165(10), 5552–5557(2000).
  • Tomai MA, Imbertson LM, Stanczak TL, Tygrett LT, Waldschmidt TJ. The immune response modifiers imiquimod and R-848 are potent activators of B lymphocytes. Cell. Immunol. 203(1), 55–65(2000).
  • Green NM, Laws A, Kiefer K et al. Murine B cell response to TLR7 ligands depends on an IFN-beta feedback loop. J. Immunol. 183(3), 1569–1576(2009).
  • Shi Y, White D, He L, Miller RL, Spaner DE. Toll-like receptor-7 tolerizes malignant B cells and enhances killing by cytotoxic agents. Cancer Res. 67(4), 1823–1831(2007).
  • Wolska A, Cebula-Obrzut B, Smolewski P, Robak T. Effects of Toll-like receptor 7 and Toll-like receptor 9 signaling stimulators and inhibitors on chronic lymphocytic leukemia cells ex vivo and their interactions with cladribine. Leuk. Lymph. 54(6), 1268–1278(2013).
  • Spaner DE, Shi Y, White D et al. Immunomodulatory effects of Toll-like receptor-7 activation on chronic lymphocytic leukemia cells. Leukemia 20(2), 286–295(2006).
  • Wang D, Precopio M, Lan T et al. Antitumor activity and immune response induction of a dual agonist of Toll-like receptors 7 and 8. Mol. Cancer Ther. 9(6), 1788–1797(2010).
  • Shojaei H, Oberg HH, Juricke M et al. Toll-like receptors 3 and 7 agonists enhance tumor cell lysis by human gammadelta T cells. Cancer Res. 69(22), 8710–8717(2009).
  • Adlard AL, Dovedi SJ, Telfer BA et al. A novel systemically administered Toll-like receptor 7 agonist potentiates the effect of ionizing radiation in murine solid tumor models. Int. J. Cancer 135(4), 820–829(2014).
  • Dewan MZ, Vanpouille-Box C, Kawashima N et al. Synergy of topical Toll-like receptor 7 agonist with radiation and low-dose cyclophosphamide in a mouse model of cutaneous breast cancer. Clin. Cancer Res. 18(24), 6668–6678(2012).
  • Dovedi SJ, Melis MH, Wilkinson RW et al. Systemic delivery of a TLR7 agonist in combination with radiation primes durable antitumor immune responses in mouse models of lymphoma. Blood 121(2), 251–259(2013).
  • Mangsbo SM, Sandin LC, Anger K, Korman AJ, Loskog A, Totterman TH. Enhanced tumor eradication by combining CTLA-4 or PD-1 blockade with CpG therapy.J. Immunother. 33(3), 225–235(2010).
  • Lanford RE, Guerra B, Chavez D et al. GS-9620, an oral agonist of Toll-like receptor-7, induces prolongedsuppression of hepatitis B virus in chronically infected chimpanzees. Gastroenterology(7), 1508–1517, 1517.e1–10(2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.