73
Views
0
CrossRef citations to date
0
Altmetric
Special Report

Plant Components for Immune Modulation Targeting Dendritic Cells: Implication for Therapy

, &
Pages 1037-1053 | Published online: 27 Nov 2014

References

  • Segura E, Amigorena S. Inflammatory dendritic cells in mice and humans. Annu. Rev. Immunol. 29, 163–183 (2011).
  • Boltjes A, van Wijk F. Human dendritic cell functional specialization in steady-state and inflammation. Front. Immunol. 1(5), 131 (2014).
  • Ardavín C. Origin, precursors and differentiation of mouse dendritic cells. Nat. Rev. Immunol. 3(7), 582–590 (2003).
  • Reizis B, Bunin A, Ghosh HS, Lewis KL, Sisirak V. Plasmacytoid dendritic cells: recent progress and open questions. Annu. Rev. Immunol. 29, 163–183 (2011).
  • Merad M, Sathe P, Helft J, Miller J, Mortha A. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu. Rev. Immunol. 31, 563–604 (2013).
  • Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations. Annu. Rev. Immunol. 28, 445–489 (2010).
  • Muranski P, Restifo NP. Essentials of Th17 cell commitment and plasticity. Blood 121(13), 2402–2414 (2013).
  • Liston A, Gray DH. Homeostatic control of regulatory T cell diversity. Nat. Rev. Immunol. 14(3), 154–165 (2014).
  • Ballesteros-Tato A, Randall TD. Priming of T follicular helper cells by dendritic cells. Immunol. Cell. Biol. 92, 22–27 (2014).
  • Fu RH, Wang YC, Liu SP et al. Acetylcorynoline impairs the maturation of mouse bone marrow-derived dendritic cells via suppression of IκB kinase and mitogen-activated protein kinase activities. PLoS ONE 8(3), e58398 (2013).
  • Nakahara T, Moroi Y, Uchi H, Furue M. Differential role of MAPK signaling in human dendritic cell maturation and Th1/Th2 engagement. J. Dermatol. Sci. 42(1), 1–11 (2006).
  • Jin Y, Fuller L, Ciancio G et al. Antigen presentation and immune regulatory capacity of immature and mature-enriched antigen presenting (dendritic) cells derived from human bone marrow. Hum. Immunol. 65(2), 93–103 (2004).
  • Laird MH, Rhee SH, Perkins DJ et al. TLR4/MyD88/PI3K interactions regulate TLR4 signaling. J. Leukoc. Biol. 85(6), 966–977 (2009).
  • Li X, He X, Liu B et al. Maturation of murine bone marrow-derived dendritic cells induced by Radix Glycyrrhizae polysaccharide. Molecules 17(6), 6557–6568 (2012).
  • Yoshimura S, Bondeson J, Foxwell BM, Brennan FM, Feldmann M. Effective antigen presentation by dendritic cells is NF-kappaB dependent: coordinate regulation of MHC, co-stimulatory molecules and cytokines. Int. Immunol. 13(5), 675–683 (2001).
  • Ardeshna KM, Pizzey AR, Devereux S, Khwaja A. The PI3 kinase, p38 SAP kinase, and NF-kappaB signal transduction pathways are involved in the survival and maturation of lipopolysaccharide-stimulated human monocyte-derived dendritic cells. Blood 96(3), 1039–1046 (2000).
  • Cella M, Engering A, Pinet V, Pieters J, Lanzavecchia A. Inflammatory stimuli induce accumulation of MHC class II complexes on dendritic cells. Nature 388(6644), 782–787 (1997).
  • de Jong EC, Smits HH, Kapsenberg ML. Dendritic cell-mediated T cell polarization. Dendritic cell-mediated T cell polarization. Springer Semin. Immunopathol. 26(3), 289–307 (2005).
  • Rolinski J, Hus I. Breaking immunotolerance of tumors: a new perspective for dendritic cell therapy. J. Immunotoxicol. 11(4), 311–318 (2014).
  • Steinman RM. The control of immunity and tolerance by dendritic cell. Pathol. Biol. (Paris) 51(2), 59–60 (2003).
  • Kelly K. History of medicine. NY, USA. Facts on file. 29–50 (2009). www.scribd.com/doc/26657174/The-History-of-Medicine-2009
  • Petrovska BB. Historical review of medicinal plants’ usage. Pharmacogn. Rev. 6(11), 1–5 (2012).
  • Sarkar K, Goswami S, Roy S et al. Neem leaf glycoprotein enhances carcinoembryonic antigen presentation of dendritic cells to T and B cells for induction of anti-tumor immunity by allowing generation of immune effector/memory response. Int. Immunopharmacol. 10(8), 865–874 (2010).
  • Bose A, Chakraborty K, Sarkar K et al. Neem leaf glycoprotein directs T-bet-associated type 1 immune commitment. Hum. Immunol. 70(1), 6–15 (2009).
  • Goswami S, Bose A, Sarkar K et al. Neem leaf glycoprotein matures myeloid derived dendritic cells and optimizes anti-tumor T cell functions. Vaccine 28(5), 1241–1252 (2010).
  • Roy S, Goswami S, Bose A et al. Neem leaf glycoprotein partially rectifies suppressed dendritic cell functions and associated T cell efficacy in patients with stage IIIB cervical cancer. Clin. Vaccine Immunol. 18(4), 571–579 (2011).
  • Chakraborty T, Bose A, Goswami KK, Goswami S, Chakraborty K, Baral R. Neem leaf glycoprotein suppresses regulatory T cell mediated suppression of monocyte/macrophage functions. Int. Immunopharmacol. 12(2), 326–333 (2012).
  • Munn DH, Mellor AL. Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends Immunol. 34(3), 137–143 (2013).
  • Roy S, Barik S, Banerjee S et al. Neem leaf glycoprotein overcomes indoleamine 2,3 dioxygenase mediated tolerance in dendritic cells by attenuating hyperactive regulatory T cells in cervical cancer stage IIIB patients. Hum. Immunol. 74(8), 1015–1023 (2013).
  • Mallick A, Ghosh S, Banerjee S et al. Neem leaf glycoprotein is nontoxic to physiological functions of Swiss mice and Sprague Dawley rats: histological, biochemical and immunological perspectives. Int. Immunopharmacol. 15(1), 73–83 (2013).
  • Feng Y, Zhu X, Wang Q et al. Allicin enhances host pro-inflammatory immune responses and protects against acute murine malaria infection. Malar. J. 268(11), 1475–2875 (2012).
  • Hasan NA, Zuhair MH, Safari E, Bozorgmehr M, Moazzeni SM. Evaluation of the effect of the 47 kDa protein isolated from aged garlic extract on dendritic cells. Iran J. Basic Med. Sci. 15(2), 745–751 (2012).
  • Hodge G, Hodge S, Han P. Allium sativum (garlic) suppresses leukocyte inflammatory cytokine production in vitro: potential therapeutic use in the treatment of inflammatory bowel disease. Cytometry 48(4), 209–215 (2002).
  • Kurup VP, Barrios CS, Raju R, Johnson BD, Levy MB, Fink JN. Immune response modulation by curcumin in a latex allergy model. Clin. Mol. Allergy. 5, 1 (2007).
  • Kim GY, Kim KH, Lee SH et al. Curcumin inhibits immunostimulatory function of dendritic cells: MAPKs and translocation of NF-kappa B as potential targets. J. Immunol. 174(12), 8116–8124 (2005).
  • Jeong YI, Kim SW, Jung ID et al. Curcumin suppresses the induction of indoleamine 2,3-dioxygenase by blocking the Janus-activated kinase-protein kinase Cdelta-STAT1 signaling pathway in interferon-gamma-stimulated murine dendritic cells. J. Biol. Chem. 284(6), 3700–3708 (2009).
  • Shirley SA, Montpetit AJ, Lockey RF, Mohapatra SS. Curcumin prevents human dendritic cell response to immune stimulants. Biochem. Biophys. Res. Commun. 374(3), 431–436 (2008).
  • Rogers NM, Stephenson MD, Kitching AR, Horowitz JD, Coates PT. Amelioration of renal ischaemia-reperfusion injury by liposomal delivery of curcumin to renal tubular epithelial and antigen-presenting cells. Br. J. Pharmacol. 166(1), 194–209 (2012).
  • Jung ID, Jeong YI, Lee CM et al. COX-2 and PGE2 signaling is essential for the regulation of IDO expression by curcumin in murine bone marrow-derived dendritic cells. Int. Immunopharmacol. 10(7), 760–768 (2010).
  • Lv J, Shao Q, Wang H et al. Effects and mechanisms of curcumin and basil polysaccharide on the invasion of SKOV3 cells and dendritic cells. Mol. Med. Rep. 8(5), 1580–1586 (2013).
  • Dong JC, Dong XH. Comparative study on effect of astragulus injection and interleukin-2 in enhancing anti-tumor metastasis action of dendrite cells. Zhongguo Zhong Xi Yi Jie He Za Zhi 25(3), 236–239 (2005).
  • Huang WM, Liang YQ, Tang LJ, Ding Y, Wang XH. Antioxidant and anti-inflammatory effects of Astragaluspolysaccharide on EA.hy926cells. Exp. Ther. Med. 6(1), 199–203 (2013).
  • Shao BM, Xu W, Dai H, Tu P, Li Z, Gao XM. A study on the immune receptors for polysaccharides from the roots of Astragalusmembranaceus, a Chinese medicinal herb. Biochem. Biophys. Res. Commun. 320, 1103–1111 (2004).
  • Dong J, Gu HL, Ma CT, Zhang F, Chen Z, Zhang Y. Effects of large dose of Astragalusmembranaceus on the dendritic cell induction of peripheral mononuclear cell and antigen presenting ability of dendritic cells in children with acute leukemia. Zhongguo Zhong Xi Yi Jie He Za Zhi 25(10), 872–875 (2005).
  • Shao P, Zhao LH, Zhi Chen, Pan JP. Regulation on maturation and function of dendritic cells by Astragalusmongholicus polysaccharides. Int. Immunopharmacol. 6(7), 1161–1166 (2006).
  • Chen CJ, Li ZL, Fu Q et al. Effect of Astragalus polysaccharides on the phenotype and functions of human dendritic cells in vitro. Nan Fang Yi Ke Da Xue Xue Bao. 29(6), 1192–1194 (2009).
  • Liu QY, Yao YM, Zhang SW, Sheng ZY. Astragalus polysaccharides regulate T cell-mediated immunity via CD11c(high)CD45RB(low) DCs in vitro. J. Ethnopharmacol. 136(3), 457–464 (2011).
  • Liu LM, Zhang LS. Effect of astragalus polysaccharide on the function and maturation of plasmacytoid dendritic cells from chronic myelogenous leukemia before and after treatment. Zhonghua Xue Ye Xue Za Zhi 31(11), 740–743 (2010).
  • Liu QY, Yao YM. The regulatory effect and mechanism of Astragalus polysaccharides on CD11c (high) CD45RB (low) dendritic cell. Zhonghua Shao Shang Za Zhi 27(2), 95–99 (2011).
  • Du X, Zhao B, Li J et al. Astragalus polysaccharides enhance immune responses of HBV DNA vaccination via promoting the dendritic cell maturation and suppressing Treg frequency in mice. Int. Immunopharmacol. 14(4), 463–470 (2012).
  • Fr⊘kiær H, Henningsen L, Metzdorff SB et al. Astragalus root and elderberry fruit extracts enhance the IFN-β stimulatory effects of Lactobacillus acidophilus in murine-derived dendritic cells. PLoS ONE 7(10), e47878 (2012).
  • Li W, Sun YN, Yan XT et al. Flavonoids from Astragalusmembranaceus and their inhibitory effects on LPS-stimulated pro-inflammatory cytokine production in bone marrow-derived dendritic cells. Arch. Pharm. Res. 37(2), 186–192 (2014).
  • Wang J, Zhang QY, Chen YX. Effects of Astragalusmembranaceus on cytokine secretion of peripheral dendritic cells in children with Henoch-Schonleinpurpura in the acute phase. Zhongguo Zhong Xi Yi Jie He Za Zhi 29(9), 794–797 (2009).
  • Chiang LC, Chiang W, Chang MY, Lin CC. In vitro cytotoxic, antiviral and immunomodulatory effects of Plantago major and Plantagoasiatica. Am. J. Chin. Med. 31(2), 225–234 (2003).
  • Huang DF, Xie MY, Yin JY et al. Immunomodulatory activity of the seeds of Plantagoasiatica L. J. Ethnopharmacol. 124(3), 493–498 (2009).
  • Huang D, Nie S, Tang Y, Wan Y, Chen Y, Xie M. Effects of phenylethanoid glycosides from seeds of Plantagoasiatica on maturation of dendritic cells. Zhongguo Zhong Yao Za Zhi. 34(14), 1831–1834 (2009).
  • Huang DF, Tang YF, Nie SP, Wan Y, Xie MY, Xie XM. Effect of phenylethanoid glycosides and polysaccharides from the seed of Plantagoasiatica L. on the maturation of murine bone marrow-derived dendritic cells. Eur. J. Pharmacol. 620(1–3), 105–111 (2009).
  • Huang D, Nie S, Jiang L, Xie M. A novel polysaccharide from the seeds of Plantagoasiatica L. induces dendritic cells maturation through toll-like receptor 4. Int. Immunopharmacol. 18(2), 236–243 (2014).
  • Liu Y, Chen Y, Lamb JR, Tam PK. Triptolide, a component of Chinese herbal medicine, modulates the functional phenotype of dendritic cells. Transplantation 84(11), 1517–1526 (2007).
  • Liu Q, Chen T, Chen G et al. Triptolide impairs dendritic cell migration by inhibiting CCR7 and COX-2 expression through PI3-K/Akt and NF-kappaB pathways. Mol. Immunol. 44(10), 2686–2696 (2007).
  • Zhang Y, Ma X. Triptolide inhibits IL-12/IL-23 expression in APCs via CCAAT/enhancer-binding protein alpha. J. Immunol. 184(7), 3866–3877 (2010).
  • Yan YH, Shang PZ, Lu QJ, Wu X. Triptolide regulates T cell-mediated immunity via induction of CD11c(low) dendritic cell differentiation. Food Chem. Toxicol. 50(7), 2560–2564 (2012).
  • Liu LM, Han XH, Zhang XX et al. Regulations of function and maturation of plasmacytoid dendritic cells from primary immune thrombocytopenia patients by triptolide. Zhonghua Xue Ye Xue Za Zhi 33(9), 720–724 (2012).
  • Zhang G, Chen J, Liu Y, Yang R, Guo H, Sun Z. Triptolide-conditioned dendritic cells induce allospecific T-cell regulation and prolong renal graft survival. J. Invest. Surg. 26(4), 191–199 (2013).
  • Xu Z, Chen X, Zhong Z, Chen L, Wang Y. Ganoderma lucidum polysaccharides: immunomodulation and potential anti-tumor activities. Am. J. Chin. Med. 39(1), 15–27 (2011).
  • Meng J1, Hu X, Shan F et al. Analysis of maturation of murine dendritic cells (DCs) induced by purified Ganoderma lucidum polysaccharides (GLPs). Int. J. Biol. Macromol. 49(4), 693–699 (2011).
  • Yue GG, Chan BC, Han XQ et al. Immunomodulatory activities of Ganoderma sinense polysaccharides in human immune cells. Nutr. Cancer 65(5), 765–774 (2013).
  • Abe M, Akbar F, Hasebe A, Horiike N, Onji M. Glycyrrhizin enhances interleukin-10 production by liver dendritic cells in mice with hepatitis. J. Gastroenterol. 38(10), 962–967 (2003).
  • Kim ME, Kim HK, Kim DH, Yoon JH, Lee JS. 18β-Glycyrrhetinic acid from licorice root impairs dendritic cells maturation and Th1 immune responses. Immunopharmacol. Immunotoxicol. 35(3), 329–335 (2013).
  • Subapriya R, Nagini S. Medicinal properties of neem leave: a review. Curr. Med. Chem. Anticancer Agents 5(2), 149–146 (2005).
  • Ayaz E, Alpsoy HC. Garlic (Alliumsativum) and traditional medicine. Turkiye Parazitol. Derg. 31(2), 145–149 (2007).
  • Kyo E, Uda N, Kasuga S, Itakura Y. Immunomodulatoryeffects of aged garlic extract. J. Nutr. 131(3S), 1075S–1079S (2001).
  • Marsh CL, Torrey RR, Woolley JL, Barker GR, Lau BH. Superiority of intravesical immunotherapy with Corynebacteriumparvum and Alliumsativum in control of murine bladder cancer. J. Urol. 137(2), 359–362 (1987).
  • Kyo E, Uda N, Suzuki A et al. Immunomodulation and antitumor activities of aged garlic extract. Phytomedicine 5(4), 259–267 (1998).
  • Ahmadabad HN, Hassan ZM, Safari E, Bozorgmehr M, Ghazanfari T, Moazzeni SM. Evaluation of the immunomodulatory effect of the 14 kDa protein isolated from aged garlic extract on dendritic cells. Cell. Immunol. 269(2), 90–95 (2011).
  • Aggarwal BB, Shishodia S, Takada Y et al. Curcumin suppresses the paclitaxel-induced nuclear factor-kappaB pathway in breast cancer cells and inhibits lung metastasis of human breast cancer in nude mice. Clin. Cancer Res. 11(20), 7490–7498 (2005).
  • Ireson C, Orr S, Jones DJ et al. Characterization of metabolites of the chemopreventive agent curcumin in human and rat hepatocytes and in the rat in vivo, and evaluation of their ability to inhibit phorbol ester-induced prostaglandin E2 production. Cancer Res. 61(3), 1058–1064 (2001).
  • Kawamori T, Lubet R, Steele VE et al. Chemopreventive effect of curcumin, a naturally occurring anti-inflammatory agent, during the promotion/progression stages of colon cancer. Cancer Res. 59(3), 597–601 (1999).
  • Ruby AJ, Kuttan G, Babu KD, Rajasekharan KN, Kuttan R. Anti-tumour and antioxidant activity of natural curcuminoids. Cancer Lett. 94(1), 79–83 (1995).
  • Johnson JJ, Mukhtar H. Curcumin for chemoprevention of colon cancer. Cancer Lett. 255(2), 170–181 (2007).
  • Stan SD, Kar S, Stoner GD, Singh SV. Bioactive food components and cancer riskreduction. J. Cell. Biochem. 104(1), 339–356 (2008).
  • Mellor AL, Munn DH. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat. Rev. Immunol. 4(10), 762–774 (2004).
  • Platanias LC. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat. Rev. Immunol. 5(5), 375–386 (2005).
  • Rogers NM, Kireta S, Coates PT. Curcumin induces maturation-arrested dendritic cells that expand regulatory T cells in vitro and in vivo. Clin. Exp. Immunol. 162(3), 460–473 (2010).
  • Cong Y, Wang L, Konrad A, Schoeb T, Elson CO. Curcumin induces the tolerogenic dendritic cell that promotes differentiation of intestine-protective regulatory T cells. Eur. J. Immunol. 39(11), 3134–3146 (2009).
  • Wang X, Dong H, Shu X, Zheng Z, Yang B, Huang L. Large-scale separation of alkaloids from Corydalis bungeana Turcz. by pH-zone-refining counter-current chromatography. Molecules 17, 14968–14974 (2012).
  • Liu Q. Triptolide and its expanding multiple pharmacological functions. Int. Immunopharmacol. 11(3), 377–383 (2011).
  • Benzie IFF, Wachtel-Galor S (Eds). Herbal Medicine Biomolecular and Clinical Aspects (2nd Edition). CRC Press, FL, USA (2011).
  • Figdor CG, de Vries IJ, Lesterhuis WJ, Melief CJ. Dendritic cell immunotherapy: mapping the way. Nat. Med. 10(5), 475–480 (2004).
  • Amirghofran Z, Ahmadi H, Karimi MH. Immunomodulatory activity of the water extract of Thymusvulgaris, Thymusdaenensis, and Zatariamultiflora on dendritic cells and T cells responses. J. Immunoassay Immunochem. 33(4), 388–402 (2012).
  • Bordbar N, Karimi MH, Amirghofran Z. The effect of glycyrrhizin on maturation and T cell stimulating activity of dendritic cells. Cell. Immunol. 280(1), 44–49 (2012).
  • Bordbar N, Karimi MH, Amirghofran Z. Phenotypic and functional maturation of murine dendritic cells induced by 18 alpha- and beta-glycyrrhetinic acid. Immunopharmacol. Immunotoxicol. 36(1), 52–60 (2014).
  • Karimi MH, Ebrahimnezhad S, Namayandeh M, Amirghofran Z. The effects of cichoriumintybus extract on the maturation and activity of dendritic cells. Daru 22(1), 28 (2014).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.