174
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Novel surface-engineered Solid Lipid Nanoparticles of Rosuvastatin Calcium for low-density lipoprotein-receptor Targeting: a Quality By Design-driven Perspective

, , , , , & show all
Pages 333-356 | Received 18 Sep 2016, Accepted 07 Dec 2016, Published online: 17 Jan 2017

References

  • Maranhao RC Tavares ER . Advances in non-invasive drug delivery for atherosclerotic heart disease . Expert Opin. Drug Deliv.12 ( 7 ), 1135 – 1147 ( 2015 ).
  • Mahamuni SP Khose RD Menaa F Badole SL . Therapeutic approaches to drug targets in hyperlipidemia . Biomedicine2 ( 4 ), 137 – 146 ( 2012 ).
  • Martin PD Warwick MJ Dane AL Brindley C Short T . Absolute oral bioavailability of rosuvastatin in healthy white adult male volunteers . Clin. Ther.25 ( 10 ), 2553 – 2563 ( 2003 ).
  • Rubba P Marotta G Gentile M . Efficacy and safety of rosuvastatin in the management of dyslipidemia . Vasc. Health Risk Manag.5 ( 1 ), 343 – 352 ( 2009 ).
  • Nainwal P Singh A Nanda D Jain DA . A comparative solubility enhancement study of rosuvastatin using solubilization techniques . Indian J. Pharmceut.2 ( 1 ), 13 – 16 ( 2011 ).
  • Akbari BV Valaki BP Maradiya VH Akbari AK Vidyasagar G . Enhancement of solubility and dissolution rate of rosuvastatin calcium by complexation with beta-cyclodextrin . Int. J. Pharm. Biol. Arch.2 ( 1 ), 511 – 520 ( 2011 ).
  • Kapure VJ Pande VV Deshmukh PK . Dissolution enhancement of rosuvastatin calcium by liquisolid compact technique . J. Pharmac.2013 , 1 – 9 ( 2013 ).
  • Palani K Christoper GVP Kesavan SK . Enhancement of rosuvastatin calcium bioavailability applying nanocrystal technology and in-vitro, in-vivo evaluations . Asian J. Pharm. Clin. Res.8 ( 2 ), 88 – 92 ( 2015 ).
  • Kamel AO Mahmoud AA . Enhancement of human oral bioavailability and in vitro antitumor activity of rosuvastatin via spray dried self-nanoemulsifying drug delivery system . J. Biomed. Nanotechnol.9 ( 1 ), 26 – 39 ( 2013 ).
  • Balakumar K Raghavan CV Selvan NT Prasad RH Abdu S . Self nanoemulsifying drug delivery system (SNEDDS) of rosuvastatin calcium: design, formulation, bioavailability and pharmacokinetic evaluation . Colloids Surf. B Biointerfaces112 , 337 – 343 ( 2013 ).
  • Muller RH Mader K Gohla S . Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art . Eur. J. Pharm. Biopharm.50 ( 1 ), 161 – 177 ( 2000 ).
  • Mehnert M Mader K . Solid lipid nanoparticles production, characterization and applications . Adv. Drug Deliv. Rev.47 , 165 – 196 ( 2001 ).
  • Sood S Jawahar N Jain K Gowthamarajan K Meyyanathan SN . Olanzapine loaded cationic solid lipid nanoparticles for improved oral bioavailability . Curr. Nanosci.9 ( 1 ), 26 – 34 ( 2013 ).
  • Gaur PK Mishra S Bajpai M Mishra A . Enhanced oral bioavailability of efavirenz by solid lipid nanoparticles: in vitro drug release and pharmacokinetics studies . BioMed. Res. Int.2014 , 1 – 9 ( 2014 ).
  • Chalikwar SS Belgamwar VS Talele VR Surana SJ Patil MU . Formulation and evaluation of nimodipine-loaded solid lipid nanoparticles delivered via lymphatic transport system . Colloids Surf. B Biointerfaces97 , 109 – 116 ( 2012 ).
  • Varshosaz J Minayian M Moazen E . Enhancement of oral bioavailability of pentoxifylline by solid lipid nanoparticles . J. Liposome Res.20 ( 2 ), 115 – 123 ( 2010 ).
  • Pandita D Ahuja A Lather V et al. Development of lipid-based nanoparticles for enhancing the oral bioavailability of paclitaxel . AAPS PharmSciTech12 ( 2 ), 712 – 722 ( 2011 ).
  • Paliwal R Paliwal SR Agrawal GP Vyas SP . Biomimetic solid lipid nanoparticles for oral bioavailability enhancement of low molecular weight heparin and its lipid conjugates: in vitro and in vivo evaluation . Mol. Pharm.8 ( 4 ), 1314 – 1321 ( 2011 ).
  • Harde H Das M Jain S . Solid lipid nanoparticles: an oral bioavailability enhancer vehicle . Expert Opin. Drug Deliv.8 ( 11 ), 1407 – 1424 ( 2011 ).
  • Aburahma MH Badr-Eldin SM . Compritol 888 ATO: a multifunctional lipid excipient in drug delivery systems and nanopharmaceuticals . Expert Opin. Drug Deliv.11 ( 12 ), 1865 – 1883 ( 2014 ).
  • Santos Maia C Mehnert W Schaller M et al. Drug targeting by solid lipid nanoparticles for dermal use . J. Drug Target.10 ( 6 ), 489 – 495 ( 2002 ).
  • Rostami E Kashanian S Azandaryani AH Faramarzi H Dolatabadi JE Omidfar K . Drug targeting using solid lipid nanoparticles . Chem. Phys. Lipids181 , 56 – 61 ( 2014 ).
  • Swami R Singh I Jeengar MK Naidu VG Khan W Sistla R . Adenosine conjugated lipidic nanoparticles for enhanced tumor targeting . Int. J. Pharm.486 ( 1–2 ), 287 – 296 ( 2015 ).
  • Bondi ML Di Gesu R Craparo EF . Lipid nanoparticles for drug targeting to the brain . Methods Enzymol.508 , 229 – 251 ( 2012 ).
  • Singh I Swami R Pooja D Jeengar MK Khan W Sistla R . Lactoferrin bioconjugated solid lipid nanoparticles: a new drug delivery system for potential brain targeting . J. Drug Target.24 ( 3 ), 212 – 223 ( 2015 ).
  • Blasi P Giovagnoli S Schoubben A Ricci M Rossi C . Solid lipid nanoparticles for targeted brain drug delivery . Adv. Drug Deliv. Rev.59 ( 6 ), 454 – 477 ( 2007 ).
  • Tian Q Ding F Guo L Wang J Wu F Yu Y . Targeted solid lipid nanoparticles with peptide ligand for oral delivery of atorvastatin calcium . RSC Adv.6 , 35901 – 35909 ( 2016 ).
  • Shilpi S Vimal VD Soni V . Assessment of lactoferrin-conjugated solid lipid nanoparticles for efficient targeting to the lung . Prog. Biomater.4 ( 1 ), 55 – 63 ( 2015 ).
  • Dhawan S Kapil R Singh B . Formulation development and systematic optimization of solid lipid nanoparticles of quercetin for improved brain delivery . J. Pharm. Pharmacol.63 ( 3 ), 342 – 351 ( 2010 ).
  • Huszar D Varban ML Rinninger F et al. Increased LDL cholesterol and atherosclerosis in LDL receptor-deficient mice with attenuated expression of scavenger receptor B1 . Arterioscler. Thromb. Vasc. Biol.20 ( 4 ), 1068 – 1073 ( 2000 ).
  • Lagor WR Millar JS . Overview of the LDL receptor: relevance to cholesterol metabolism and future approaches for the treatment of coronary heart disease . J. Receptor Ligand Channel Res.3 , 1 – 14 ( 2009 ).
  • Field FJ Fujiwara D Born E Chappell DA Mathur SN . Regulation of LDL receptor expression by luminal sterol flux in CaCo-2 cells . Arterioscler. Thromb.13 ( 5 ), 729 – 737 ( 1993 ).
  • Srivastava RA Ito H Hess M Srivastava N Schonfeld G . Regulation of low density lipoprotein receptor gene expression in HepG2 and Caco2 cells by palmitate, oleate, and 25-hydroxycholesterol . J. Lipid. Res.36 ( 7 ), 1434 – 1446 ( 1995 ).
  • Harisa GI Alanazi FK . Low density lipoprotein bionanoparticles: from cholesterol transport to delivery of anti-cancer drugs . Saudi. Pharm. J.22 ( 6 ), 504 – 515 ( 2014 ).
  • Khumsupan P Ramirez R Khumsupan D Narayanaswami V . Apolipoprotein E LDL receptor-binding domain-containing high-density lipoprotein: a nanovehicle to transport curcumin, an antioxidant and anti-amyloid bioflavonoid . Biochim. Biophys. Acta1808 ( 1 ), 352 – 359 ( 2010 ).
  • Bandyopadhyay S Beg S Katare OP Sharma G Singh B . QbD-oriented development of self-nanoemulsifying drug delivery systems (SNEDDS) of valsartan with improved biopharmaceutical performance . Curr. Drug Deliv.12 ( 5 ), 544 – 563 ( 2015 ).
  • Beg S Sharma G Thanki K Jain S Katare OP Singh B . Positively charged self-nanoemulsifying oily formulations of olmesartan medoxomil: systematic development, in vitro, ex vivo and in vivo evaluation . Int. J. Pharm.493 ( 1–2 ), 466 – 482 ( 2015 ).
  • Beg S Sandhu PS Batra RS Khurana RK Singh B . QbD-based systematic development of novel optimized solid self-nanoemulsifying drug delivery systems (SNEDDS) of lovastatin with enhanced biopharmaceutical performance . Drug Deliv.22 ( 6 ), 765 – 784 ( 2014 ).
  • Bandyopadhyay S Katare OP Singh B . Optimized self nano-emulsifying systems of ezetimibe with enhanced bioavailability potential using long chain and medium chain triglycerides . Colloids Surf. B Biointerfaces100 , 50 – 61 ( 2014 ).
  • Kaila HO Ambasana MA Thakkar RS Saravaia HT Shah AK . A new improved RP-HPLC method for assay of rosuvastatin calcium in tablets . Indian72 ( 5 ), 592 – 598 ( 2010 ).
  • Raza K Singh B Singal P Wadhwa S Katare OP . Systematically optimized biocompatible isotretinoin-loaded solid lipid nanoparticles (SLNs) for topical treatment of acne . Colloids Surf. B Biointerfaces105 , 67 – 74 ( 2013 ).
  • Zhao YQ Wang LP Ma C Zhao K Liu Y Feng NP . Preparation and characterization of tetrandrine-phospholipid complex loaded lipid nanocapsules as potential oral carriers . Int. J. Nanomed.8 , 4169 – 4181 ( 2013 ).
  • Jain AK Thanki K Jain S . Co-encapsulation of tamoxifen and quercetin in polymeric nanoparticles: implications on oral bioavailability, antitumor efficacy, and drug-induced toxicity . Mol. Pharm.10 ( 9 ), 3459 – 3474 ( 2013 ).
  • Singh B Singh S . A comprehensive computer program for study of drug release kinetics from compressed matrices . Indian J. Pharm. Sci.60 , 313 – 316 ( 1998 ).
  • Singh B Kaur T Singh S . Correction of raw dissolution data for loss of drug during sampling . Indian J. Pharm. Sci.59 , 196 – 199 ( 1997 ).
  • Goldstein JL Brown MS Anderson RG Russell DW Schneider WJ . Receptor-mediated endocytosis: concepts emerging from the LDL receptor system . Annu. Rev. Cell Biol.1 , 1 – 39 ( 1985 ).
  • Feng D Ohlsson L Duan RD . Curcumin inhibits cholesterol uptake in Caco-2 cells by down-regulation of NPC1L1 expression . Lipids Health Dis.9 , 40 ( 2010 ).
  • Alqahtani S Alayoubi A Nazzal S Sylvester PW Kaddoumi A . Nonlinear absorption kinetics of self-emulsifying drug delivery systems (SEDDS) containing tocotrienols as lipophilic molecules: in vivo and in vitro studies . AAPS J.15 ( 3 ), 684 – 695 ( 2013 ).
  • Tariq M Alam MA Singh AT Iqbal Z Panda AK Talegaonkar S . Biodegradable polymeric nanoparticles for oral delivery of epirubicin: in vitro, ex vivo, and in vivo investigations . Colloids Surf. B. Biointerfaces128 , 448 – 456 ( 2015 ).
  • Shah MK Madan P Lin S . Elucidation of intestinal absorption mechanism of carvedilol-loaded solid lipid nanoparticles using Caco-2 cell line as an in-vitro model . Pharm. Dev. Technol. doi:10.3109/10837450.2014.938857 ( 2014 ) ( Epub ahead of print ).
  • Sharma G Beg S Thanki K et al. Systematic development of novel cationic self-nanoemulsifying drug delivery systems of candesartan cilexetil with enhanced biopharmaceutical performance . RSC Adv.5 ( 87 ), 71500 – 71513 ( 2015 ).
  • Tripathi CB Beg S Kaur R Shukla G Bandopadhyay S Singh B . Systematic development of optimized SNEDDS of artemether with improved biopharmaceutical and antimalarial potential . Drug Deliv.29 , 1 – 15 ( 2016 ).
  • Zakeri-Milani P Valizadeh H Tajerzadeh H et al. Predicting human intestinal permeability using single-pass intestinal perfusion in rat . J. Pharm. Pharm. Sci.10 ( 3 ), 368 – 379 ( 2007 ).
  • Sakamoto K Tabata T Shirasaki K Inagaki T Nakayama S . Effects of gamma-oryzanol and cycloartenol ferulic acid ester on cholesterol diet induced hyperlipidemia in rats . Jpn J. Pharmacol.45 ( 4 ), 559 – 565 ( 1987 ).
  • Yang RL Shi YH Hao G Li W Le GW . Increasing oxidative stress with progressive hyperlipidemia in human: relation between malondialdehyde and atherogenic index . J. Clin. Biochem. Nutr.43 ( 3 ), 154 – 158 ( 2008 ).
  • Moriel P Plavnik FL Zanella MT Bertolami MC Abdalla DSP . Lipid peroxidation and antioxidants in hyperlipidemia and hypertension . Biol. Res.33 ( 2 ), 1 – 11 ( 2000 ).
  • Araujo FB Barbosa DS Hsin CY Maranhao RC Abdalla DS . Evaluation of oxidative stress in patients with hyperlipidemia . Atherosclerosis.117 ( 1 ), 61 – 71 ( 1995 ).
  • Ma Y Zheng Y Zeng X et al. Novel docetaxel-loaded nanoparticles based on PCL-Tween-80 copolymer for cancer treatment . Int. J. Nanomed.6 , 2679 – 2688 ( 2011 ).
  • Sahana B Santra K Basu S Mukherjee B . Development of biodegradable polymer based tamoxifen citrate loaded nanoparticles and effect of some manufacturing process parameters on them: a physicochemical and in-vitro evaluation . Int. J. Nanomed.5 , 621 – 630 ( 2010 ).
  • Hu L Tang X Cui F . Solid lipid nanoparticles (SLNs) to improve oral bioavailability of poorly soluble drugs . J. Pharm. Pharmacol.56 ( 12 ), 1527 – 1535 ( 2004 ).
  • Jenning V Mader K Gohla SH . Solid lipid nanoparticles (SLN™) based on binary mixtures of liquid and solid lipids: a 1H-NMR study . Int. J. Pharm.25 , 15 – 21 ( 2000 ).
  • Xu S Olenyuk BZ Okamoto CT Hamm-Alvarez SF . Targeting receptor-mediated endocytotic pathways with nanoparticles: rationale and advances . Adv. Drug Deliv. Rev.65 ( 1 ), 121 – 138 ( 2012 ).
  • Pinzon-Daza M Garzon R Couraud P et al. The association of statins plus LDL receptor-targeted liposome-encapsulated doxorubicin increases in vitro drug delivery across blood-brain barrier cells . Br. J. Pharmacol.167 ( 7 ), 1431 – 1447 ( 2012 ).
  • Yuan H Chen CY Chai GH Du YZ Hu FQ . Improved transport and absorption through gastrointestinal tract by PEGylated solid lipid nanoparticles . Mol. Pharm.10 ( 5 ), 1865 – 1873 ( 2013 ).
  • Ali Khan A Mudassir J Mohtar N Darwis Y . Advanced drug delivery to the lymphatic system: lipid-based nanoformulations . Int. J. Nanomed.8 , 2733 – 2744 ( 2013 ).
  • Chai GH Xu Y Chen SQ et al. Transport mechanisms of solid lipid nanoparticles across Caco-2 cell monolayers and their related cytotoxicology . ACS Appl. Mater. Interfaces8 ( 9 ), 5929 – 5940 ( 2016 ).
  • Guri A Gulseren I Corredig M . Utilization of solid lipid nanoparticles for enhanced delivery of curcumin in cocultures of HT29-MTX and Caco-2 cells . Food Funct.4 ( 9 ), 1410 – 1419 ( 2013 ).
  • Rejman J Oberle V Zuhorn IS Hoekstra D . Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis . Biochem. J.377 ( Pt 1 ), 159 – 169 ( 2004 ).
  • Zhang S Li J Lykotrafitis G Bao G Suresh S . Size-dependent endocytosis of nanoparticles . Adv. Mater.21 , 419 – 424 ( 2009 ).
  • Kim HR Gil S Andrieux K et al. Low-density lipoprotein receptor-mediated endocytosis of PEGylated nanoparticles in rat brain endothelial cells . Cell Mol. Life Sci.64 ( 3 ), 356 – 364 ( 2007 ).
  • Fong SY Brandl M Bauer-Brandl A . Phospholipid-based solid drug formulations for oral bioavailability enhancement: a meta-analysis . Eur. J. Pharm. Sci.80 , 89 – 110 ( 2015 ).
  • Fong SY Bauer-Brandl A Brandl M . Oral bioavailability enhancement through supersaturation: an update and meta-analysis . Expert Opin. Drug Deliv.11 , 1 – 24 ( 2016 ).
  • Rajman I Eacho PI Chowienczyk PJ Ritter JM . LDL particle size: an important drug target?Br. J. Clin. Pharmacol.48 ( 2 ), 125 – 133 ( 1999 ).
  • Fong LG Fujishima SE Komaromy MC Pak YK Ellsworth JL Cooper AD . Location and regulation of low-density lipoprotein receptors in intestinal epithelium . Am. J. Physiol.269 ( 1 Pt 1 ), G60 – G72 ( 1995 ).
  • Makwana V Jain R Patel K Nivsarkar M Joshi A . Solid lipid nanoparticles (SLN) of Efavirenz as lymph targeting drug delivery system: elucidation of mechanism of uptake using chylomicron flow blocking approach . Int. J. Pharm.495 ( 1 ), 439 – 446 ( 2015 ).
  • Prokop A Davidson JM . Nanovehicular intracellular delivery systems . J. Pharm Sci.97 ( 9 ), 3518 – 3590 ( 2008 ).
  • Liu J Gong T Wang C Zhong Z Zhang Z . Solid lipid nanoparticles loaded with insulin by sodium cholate-phosphatidylcholine-based mixed micelles: preparation and characterization . Int. J. Pharm.340 ( 1–2 ), 153 – 162 ( 2007 ).
  • Kapse-Mistry S Govender T Srivastava R Yergeri M . Nanodrug delivery in reversing multidrug resistance in cancer cells . Front. Pharmacol.5 , 159 – 181 ( 2014 ).
  • Candela P Gosselet F Miller F et al. Physiological pathway for low-density lipoproteins across the blood-brain barrier: transcytosis through brain capillary endothelial cells in vitro . Endothelium15 ( 5–6 ), 254 – 264 ( 2008 ).
  • Jimenez MA Scarino ML Vignolini F Mengheri E . Evidence that polyunsaturated lecithin induces a reduction in plasma cholesterol level and favorable changes in lipoprotein composition in hypercholesterolemic rats . J. Nutr.120 ( 7 ), 659 – 667 ( 1990 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.