195
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Ultra-Small Solid Archaeolipid Nanoparticles for Active Targeting to Macrophages of the Inflamed Mucosa

, , , , &
Pages 1165-1175 | Received 30 Dec 2016, Accepted 03 Mar 2017, Published online: 27 Apr 2017

References

  • Danese S Fiocchi C . Ulcerative colitis. N. Engl. J. Med.365, 1713 – 1725 (2011).
  • Baumgart DC Sandborn WJ . Crohn’s disease. Lancet380, 1590 – 1605 (2012).
  • Lewis RT Maron DJ . Efficacy and complications of surgery for Crohn's disease. Gastroenterol. Hepatol.6 (9), 587 – 596 (2010).
  • Talley NJ Abreu MT Achkar JP et al. An evidence-based systematic review on medical therapies for inflammatory bowel disease. Am. J. Gastroenterol.106 (Suppl. 1), S2 – S25 (2011).
  • Rutgeerts P Vermeire S Van Assche G . Biological therapies for inflammatory bowel diseases. Gastroenterology136 (4), 1182 – 1197 (2009).
  • Gómez-Gómez GJ Masedo A Yela C Martínez-Montiel M del P Casís B . Current stage in inflammatory bowel disease: what is next?World J. Gastroenterol.21 (40), 11282 – 11303 (2015).
  • Barnes PJ Adcock IM . Glucocorticoid resistance in inflammatory diseases. Lancet373 (9678), 1915 – 1917 (2009).
  • Kopylov U Ben-Horin S Seidman E . Therapeutic drug monitoring in inflammatory bowel disease. Ann. Gastroenterol.27, 304 – 312 (2014).
  • Ben-Horin S Kopylov U Chowers Y . Optimizing anti-TNF treatments in inflammatory bowel disease. Autoimmun. Rev.13, 24 – 30 (2014).
  • Dave M Purohit T Razonable R Loftus EV Jr . Opportunistic infections due to inflammatory bowel disease therapy. Inflamm. Bowel Dis.20 (1), 196 – 212 (2014).
  • Targownik LE Bernstein CN . Infectious and malignant complications of TNF inhibitor therapy in IBD. Am. J. Gastroenterol.108 (12), 1835 – 1842 (2013).
  • Hua S Marks E Schneider JJ Keely S . Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: selective targeting to diseased versus healthy tissue. Nanomedicine11, 1117 – 1132 (2015).
  • Brennan FR Dill Morton L Spindeldreher S et al. Safety and immunotoxicity assessment of immunomodulatory monoclonal antibodies. MAbs2 (3), 233 – 255 (2010).
  • Heinsbroek Sigrid EM Gordon S . The role of macrophages in inflammatory bowel diseases. Expert Rev. Mol. Med.11, e14 (2009).
  • Neurath MF . Cytokines in inflammatory bowel disease. Nat. Rev. Immunol.14 (5), 329 – 342 (2014).
  • Antoni L Nuding S Wehkamp J Stange EF . Intestinal barrier in inflammatory bowel disease. World J. Gastroenterol.20 (5), 1165 – 1179 (2014).
  • Tirosh B Khatib N Barenholz Y Nissan A Rubinstein A . Transferrin as a luminal target for negatively charged liposomes in the inflamed colonic mucosa. Mol. Pharm.6, 1083 – 1091 (2009).
  • Canny G Levy O Furuta GT et al. Lipid mediator-induced expression of bactericidal/permeability-increasing protein (BPI) in human mucosal epithelia. Proc. Natl Acad. Sci. USA99, 3902 – 3907 (2002).
  • Ramasundara M Leach ST Lemberg DA Day AS . Defensins and inflammation: the role of defensins in inflammatory bowel disease. J. Gastroenterol. Hepatol.24, 202 – 208 (2009).
  • Goggins BJ Chaney C Radford-Smith GL et al. Hypoxia and integrin-mediated epithelial restitution during mucosal inflammation. Front. Immunol.11, 272 (2013).
  • Fallingborg J Christensen LA Jacobsen BA Rasmussen SN . Very low intraluminal colonic pH in patients with active ulcerative colitis. Dig. Dis. Sci.38 (11), 1989 – 1993 (1993).
  • Lamprecht A Schafer U Lehr CM . Size-dependent bioadhesion of micro- and nanoparticulate carriers to the inflamed colonic mucosa. Pharm. Res.18, 788 – 793 (2001).
  • Corcelli A Lobasso S . Characterization of lipids of halophilic Archaea. In: Methods in microbiology-extremophiles (volume 35).RaineyAFOrenAA ( Eds). Elsevier, Amsterdam, The Netherlands, 585 – 613 (2006).
  • Altube MJ Selzer SM de Farias MA Villares Portugal R Morilla MJ Romero EL . Surviv-ing nebulization-induced stress: dexamethasone in pH-sensitive archaeosomes. Nanomedicine (Lond.)11 (16), 2103 – 2117 (2016).
  • Gonzalez RO Higa LH Cutrullis RA et al. Archaeosomes made of Halorubrum tebenquichense total polar lipids: a new source of adjuvancy. BMC Biotechnol.9, 71 (2008).
  • Kates M Kushwaha SC . Isoprenoids and polar lipids of extreme halophiles. In:Archaea: A Laboratory Manual, Halophiles.DassarmaS ( Ed.). Cold Spring Harbor Laboratory Press, NY, USA, 35 – 54 (1995).
  • Bötcher CJF van Gent CM Pries C . A rapid and sensitive submicron phosphorus determination. Anal. Chim. Acta24, 203 – 204 (1961).
  • Higa LH Schilrreff P Perez AP et al. Ultradeformable archaeosomes as new topical adjuvants. Nanomedicine8 (8), 1319 – 1328 (2012).
  • Silva AC González-Mira E García ML et al. Preparation, characterization and biocompatibility studies on risperidone-loaded solid lipid nanoparticles (SLN): high pressure homogenization versus ultrasound. Colloids Surf. B Biointerfaces86, 158 – 165 (2011).
  • Porter CJ Charman WN . In vitro assessment of oral lipid based formulations. Adv. Drug Deliv. Rev.50 (Suppl. 1), S127 – S147 (2001).
  • Serpe L Canaparo R Daperno M et al. Solid lipid nanoparticles as anti-inflammatory drug delivery system in a human inflammatory bowel disease whole-blood model. Eur. J. Pharm. Sci.39, 428 – 436 (2010).
  • Petersen S Steiniger F Fischer D Fahr A Bunies H . The physical state of lipid nanopar-ticles influences their effect on in vitro cell viability. Eur. J. Pharm. Biopharm.79, 150 – 161 (2011).
  • Jores K Mehnert W Drechsler M Bunjes H Johann C Mäder K . Investigations on the structure of solid lipid nanoparticles (SLN) and oil-loaded solid lipid nanoparticles by photon correlation spectroscopy, field-flow fractionation and transmission electron microscopy. J. Control. Release95 (2), 217 – 227 (2014).
  • Kuntsche J Horst JC Bunjes H . Cryogenic transmission electron microscopy (cryo-TEM) for studying the morphology of colloidal drug delivery systems. Int. J. Pharm.417, 120 – 137 (2011).
  • Fang J Fang C Liu C Su Y . Lipid nanoparticles as vehicles for topical psoralen delivery: solid lipid nanoparticles (SLN) versus nanostructured lipid carriers (NLC). Eur. J. Pharm. Biopharm.702, 633 – 640 (2008).
  • Yoon JJ Kim JH Park TG . Dexamethasone-releasing biodegradable polymer scaffolds fabricatedby a gas-foaming/salt-leaching method. Biomaterials24, 2323 – 2329 (2004).
  • Griffiths PC Cattoz B Ibrahim MS Anuonye JC . Probing the interaction of nanoparticles with mucin for drug delivery applications using dynamic light scattering. Eur. J. Pharm. Biopharm.97A, 218 – 222 (2015).
  • Pakatip R Cook JM Florence AT . Nanosystem drug targeting: facing up to complex realities. J. Control. Release141, 265 – 276 (2010).
  • Shapira A Yoav DL Henk JB Assaraf YG . Nanomedicine for targeted cancer therapy: towards the overcoming of drug resistance. Drug Resist. Updat.14, 150 – 163 (2011).
  • Mane V Muro S . Biodistribution and endocytosis of ICAM-1-targeting antibodies versus nanocarriers in the gastrointestinal tract in mice. Int. J. Nanomedicine7, 4223 – 4237 (2012).
  • Harel E Rubinstein A Nissan A et al. Enhanced transferrin receptor expression by proinflammatory cytokines in enterocytes as a means for local delivery of drugs to inflamed gut mucosa. PLoS ONE6 (9), e24202 (2011).
  • Xiao B Laroui H Ayyadurai S et al. Mannosylated bioreducible nanoparticle-mediated macrophage-specific TNF-alpha RNA interference for IBD therapy. Biomaterials34 (30), 7471 – 7482 (2013).
  • Coco R Plapied L Pourcelle V et al. Drug delivery to inflamed colon by nanoparticles: comparison of different strategies. Int. J. Pharm.440 (1), 3 – 12 (2013).
  • Zhu S Niu M O’Mary H Cui Z . Targeting of tumor associated macrophages made possible by PEG-sheddable, mannose modified nanoparticles. Mol. Pharm.10 (9), 3525 – 3530 (2013).
  • Zhao C Fana T Yang Y et al. Preparation, macrophages targeting delivery and anti-inflammatory study of penta-peptide grafted nanostructured lipid carriers. Int. J. Pharm.450 (1–2), 11 – 20 (2013).
  • Hua S . Orally administered liposomal formulations for colon targeted drug delivery. Front. Pharmacol.5, 138 (2014).
  • Schwarz JC Baisaeng N Hoppel M Löw M Keck CM Valenta C . Ultra-small NLC for improved dermal delivery of coenyzme Q10. Int. J. Pharm.447, 213 – 217 (2013).
  • Nafee N Husari A Maurer CK et al. Antibiotic-free nanotherapeutics: ultra-small, mucus-penetrating solid lipid nanoparticles enhance the pulmonary delivery and anti-virulence efficacy of novel quorum sensing inhibitors. J. Control. Release192, 131 – 140 (2014).
  • Lohan SB Bauersachs S Ahlberg S et al. Ultra-small lipid nanoparticles promote the penetration of coenzyme Q10 in skin cells and counteract oxidative stress. Eur. J Pharm. Biopharm.89, 201 – 207 (2015).
  • Yamauchi K Onoue Y Tsujimoto T Kinoshita M . Archaebacterial lipids: high surface activity of polyisoprenoid surfactants in water. Colloids Surf. B Biointerfaces10, 35 – 39 (1997).
  • Wickham M Wilde P Fillery-Travis A . A physicochemical investigation of two phosphatidylcholine/bile salt interfaces: implications for lipase activation. Biochim. Biophys. Acta1580 (2–3), 110 – 122 (2002).
  • Torcello-Gómez A Maldonado-Valderrama J de Vicente J Cabrerizo-Vílchez MA Gálvez-Ruiz MJ Martín-Rodríguez A . Investigating the effect of surfactants on lipase interfacial behaviour in the presence of bile salts. Food Hydrocolloids25, 809 – 816 (2011).
  • Maldonado-Valderrama J Woodward NC Gunning AP et al. Interfacial characterization of beta-lactoglobulin networks: displacement by bile salts. Langmuir24 (13), 6759 – 6767 (2008).
  • Wulff-Pérez M de Vicente J Martín-Rodríguez A Gálvez-Ruiz MJ . Controlling lipolysis through steric surfactants: new insights on the controlled degradation of submicron emulsions after oral and intravenous administration. Int. J. Pharm.423, 161 – 166 (2012).
  • van Dullemen HM van Deventer SJ Hommes DW et al. Treatment of Crohn’s disease with anti-tumor necrosis factor chimeric monoclonal antibody (cA2). Gastroenterology109, 129 – 135 (1995).
  • Strober W Fuss IJ Blumberg RS . The immunology of mucosal models of inflammation. Annu. Rev. Immunol.20, 495 – 549 (2002).
  • Ruffolo C Scarpa M Faggian D et al. Subclinical intestinal inflammation in patients with Crohn’s disease following bowel resection: a smoldering fire. J. Gastrointestinal Surg.14, 24 – 31 (2010).
  • Peyrin-Biroulet L Loftus EV Jr Colombel J Sandborn WJ . Long-term complications, extraintestinal manifestations, and mortality in adult Crohn’s disease in population-based cohorts. Inflamm. Bowel Dis.17, 471 – 478 (2011).
  • Ito H Takazoe M Fukuda Y et al. A pilot randomized trial of a human anti-interleukin-6 receptor monoclonal antibody in active Crohn’s disease. Gastroenterology126, 989 – 996 (2004).
  • Zundler S Neurath MF . Interleukin-12: functional activities and implications for disease. Cytokine Growth Factor Rev.26 (5), 559 – 568 (2015).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.